Effective Homogeneous Transformation
of Large Raster Images

Vlastimil Havran, Jiif Zara
CTU Prague, Dept. of Computer Science

1 Introduction

Homogeneous transformation is one of the most general linear transformations. For coordinates
x,y in input image, the calculation of coordinates z’,y’ in output image can be expressed by
the following formulae:

a1 @12 @13
= a1 G G323
a31 @32 @33

' = (xxan +y*aia+ a13)/(x*as +y* aza + asz), H
Yy = (xxan +y*ax+as)/(x*as +y*asx+ asz),

is the homogeneous transformation matrix. All common types of linear transformations like
rotation, scaling, shear, etc. can be described by this matrix ([1]).

Sometimes we need to perform transformation of very large raster images obtained by
scanner, where the size 10.000 x 10.000 pixels in 8-bit grayscale is not exceptional. Storing of
such images for direct data manipulation in main memory requires 100 Mbytes RAM or more,
which causes the problem for IBM PC based machines. The standard page fault technique
is completely inconvenient. Although output pixels are processed one by one in a row, input
pixels are taken from positions, which are placed in different memory locations. We can find
complicated cases (large images, 45 degrees rotation), where for each pair of neighbouring
output pixels, two different pages are needed. It causes very low computational performance.

2 Implementation

We have designed virtualization technique specialized for transformations of raster images.
The system with two caches implemented in software is used. The free cache is the standard
cache managed by LRU technique. The second one called locked cache stores the part of input
image, which has not to be swapped to a disk. The granularity of both caches corresponds
with an image row or with a part of a row respectively.

The row can be registered either in the locked cache or in the free cache. Both caches
cooperate and exchange their data without disk using the cache management subsystem.
The restriction for used memory capacity is defined by the following expression:

management_system_RAM + free_cache_RAM + locked_cache_.RAM < CONST

The image transformation is performed in the following steps. First, we prepare the inversion
matrix for the direct calculation from output to input coordinates. Second, boundaries of input
image are transformed and clipped by output image rectangle. We obtain a polygonal output
area with up to 8 vertices, which has to be filled by transformed input pixels (see fig. 1).

locked area filled buffer

v = 2\

input image output image
Figure 1: Correspondence between input and output images

Output image is subdivided into horizontal strips. The width of each strip is iteratively
computed with the aim to utilize the maximum size of the locked cache. The required input
image data are loaded to the locked cache directly from disk. Since input data are ready,
calculation of the intensities in output horizontal strip is performed row by row and written
immediately to a disk.

The bilinear interpolation or a simple method of nearest neighbour can be used for eval-
uation of output pixel intensities. These methods are convenient, if the average scale ratio
between input and output image is about 1.0. In other cases we need to calculate the average
value from certain quadrilateral area. We have found out during the implementation, that
there are some problems with arithmetical precision concerning calculation of pixel values on
output image boundaries. They cause the processing of pixels behind bounds of input image.
This can be eliminated by careful processing bounds of output image rows.

A

time 90t

[sec]
80

70 T

601

50

.. N 400 kB
unlimited

40

30, rotation
0 20 40 60 80 angle [deg]

Figure 2: Total processing times for different sizes of the locked cache

Figure 3: System times for different sizes of the locked cache

3 Results

The implementation has been tested on rotation transformation of an image with 5.000 x 5.000
pixels (25 MB). The size of the output image was adjusted so that whole transformed input
would not be cut off. Figure 2 shows total processing time graphs dependent on different
rotation angles and different sizes of the locked cache. Computing time was measured on
SGI machine Indigo® (R4000/100 MHz). Figure 3 shows times devoted to system operations
(disk read/write ops.). Sizes of the locked cache were chosen as 1%, 3%, 5%, 7%, 9% and 48%
of the input image size. We consider as very promising result, that using the cache more than
10 times smaller than input data, the processing time was increased only by factor 1.2.

4 Conclusion

The implemented method is able to transform images, which are much larger than available
operating memory. High efficiency of the method is achieved by virtualization subsystem of
two caches, which was designed especially for large uncompressed image files.

We have compared our approach with software systems for image processing. Aldus Pho-
toStyler 1.1 was chosen for processing of an image with size of 1 Mbyte (MS Windows, 8 MB
RAM) and the speed was nearly the same, although our method has extremely low memory
requirements (hundreds of kbytes only). Other tests performed using PhotoStyler on bigger
images (9 Mbyte) consumed incredibly long times (several hours).

In our implementation, processing time depends linearly on the image size. The efficiency
is remarkable especially on images several times bigger than RAM available.

References

[1] Wolberg, G.: Digital Image Warping. IEEE Computer Society Press, Los Amitos, CA,
1990. ISBN 0-8186-8944-7.

