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Abstract

In this report we deal with two of the basic problems of computer graphics required for

rendering: visibility of two-point computations and ray-casting. The first part of the report is
devoted to the introduction of spatial data structures designed to decrease the time complexity

of these problems. Most of the report presents our own ideas concerning spatial data structures
developed in the past year. They concern the experimental evaluation of these spatial data

structures, the positioning of a splitting plane for a BSP tree, and cache sensitive mapping for
a BSP tree in the memory.
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1 Introduction

The principal goal of computer graphics is the image synthesis of a scene representing reality.
The algorithms for image synthesis have a different time complexity and quality of their outputs.

The main effort devoted to the research in the area of image generation is oriented to the
synthesis of high quality and photo-realistic images. By a photo-realistic image, we mean

an image indistinguishable from a photograph of the real world. The scene is modelled by
geometric object primitives; it is not exceptional that their numbers may reach hundreds of

thousands for one scene.

In this paper we will refrain from such problems of image synthesis concerning object mod-

elling, shading models, and global illumination. We will focus on the problem of time and space
complexity.

There have been developed two main classes of algorithms for photo-realistic rendering:
ray–tracing and radiosity. These are sometimes combined together to overcome their opposite

shortcomings. The common property of both algorithms is their high time and space complexity.
The algorithms spend most of the time repeatedly computing visibility for pairs of points in

the scene. The problem is more formally defined as follows: two points (x, y, z) and (x′, y′, z′)
are mutually visible if the abscissa connecting them does not intersect any object located in

the scene. The computation of the visibility is indispensable to determine correctly the global
illumination and shading of objects by light sources. The second important problem of image

generation is ray-casting: for a ray given by its origin and direction vector, we want to find the
closest object which is intersected by the ray if an intersection exists.
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The time devoted to solve both of these problems is typically 95% or more of total rendering

time. The rest of the time is consumed by specific computation and cannot be decreased. In
case of ray–tracing it is necessary to determine the reflected and refracted rays, evaluate colour

of pixels, etc. For these reasons the main effort concerning the algorithms for image synthesis
is aimed to reduce the time and space complexity of visibility computation.

The report is organized as follows. Chapter 2 introduces basic definitions and terminology
needed for comprehension of this report. Chapter 3 summarizes the previous results and work

in the area of visibility computation for high-quality images. Chapter 4 describes our advances
and approaches to the problem. Chapter 5 outlines the open problems and ideas that should
be solved in our future work. Chapter 6 concludes the report.

2 Basic definitions

In this opening we define the basic terms required for better comprehension of further chapters.

Definition 1 Let ray in n-dimensional space be determined by its origin and direction vector.
The ray corresponds geometrically to the half-line in n-dimensional space.

Definition 2 Let A1 and A2 be a pair of points in n-dimensional space. Then pair of points
visibility algorithm solves the following problem: pair of points are mutually visible if the ab-

scissa connecting them does not intersect any object located in n-dimensional space. Contrarily,
the objects are not mutually visible, i.e., there is at least one intersection with object(s) and

the abscissa connecting the pair of points.

Definition 3 Let ray-casting be a problem described as follows: For a given ray find the closest

object which is intersected by the ray if such an object exists.

Definition 4 Let Cn denote a cell in n-dimensional space. Cn is defined as a n-dimensional

region determined by continuous (n − 1)-dimensional boundaries. The boundary of the cell
does not cross itself. Let ∂Cn denote the boundary of cell Cn.

Definition 5 The cell Cn is separating if its boundary splits the n-dimensional space into two

disjoint parts ρ(Cn) and τ(Cn) with the following properties: for each pair of points if one is
in ρ and the second in τ , the abscissa connecting the points intersects the boundary of the cell.

Definition 6 We call ǫ-surrounding of point A in n-dimensional space Pn the following set of
points:

surrounding(P, ǫ) = {x ∈ Pn, ‖A− x‖ ≤ ǫ}

Definition 7 The cell Cn is closed if it is separating and one of the parts ρ(Cn) or τ(Cn) is
finite. The finite part of the cell is called inner and the other one is outer.

Definition 8 The cell Cn is elementary if its inner part ρ(Cn) does not contain any other cell
or any part of other cell.

Definition 9 The cell Cn is hierarchical if it contains fully a set of elementary cells SE(Cn)

or a set of hierarchical cells SH(Cn).

Definition 10 Spatial subdivision (SSD) of a cell Gn is such a finite ordered set K of cells,

that for each point P ∈ Gn exists a cell Cn, Cn ∈ K, P ∈ Cn.
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Definition 11 Elementary spatial subdivision (ESSD) of a cell Gn is SSD, so that SSD is

composed of a finite ordered set K of closed, disjoint, separating, and elementary cells with the
property: V (Gn) =

∑i=k
i=1 V (Cn

i ), where V (Cn) is the volume of the cell Cn.

Definition 12 Two cells Cn
1 and Cn

2 are neighbours for a particular ESSD if and only if

∂Cn
1

⋂

∂Cn
2 6= ∅

Note: Usually, the neighbouring information is formed during the process of constructing ESSD.

The alternative is to construct the neighbouring information on the demand after constructing
ESSD.

Definition 13 Let hierarchical spatial subdivision (HSSD) of a cell Gn be two finite sets E

and H . Let E be a set of elementary cells and H a nonempty set of hierarchical cells.

3 Related work/Previous results

In this chapter we describe the application of visibility computations and the ray-casting prob-
lem to advanced rendering techniques. Further, we outline the principle and properties of basic

accelerating methods for visibility computations developed in the past.

3.1 Ray-tracing

In this section we recall the fundamentals of the ray-tracing algorithm for better understanding
of the derivation of time complexity given throughout this report. Let us suppose the objects

in the scene are described by their geometrical and optical properties. The basic principle of
the ray-tracing algorithm is the simulation of the real world by means of geometrical optics.

Figure 1: Basic concept of ray-tracing

The resulting image is created as follows (see Fig. 1): For each pixel in the screen window

we cast a ray P towards the scene space and solve the problem of ray-casting. If this so-called
primary ray does not intersect any object in the scene space, the colour of the corresponding

pixel in the screen window is a background colour. Otherwise, there is an intersection point
A, and we solve the visibility problems between A and all the point lights located in the scene

by shadow rays (S0, S1, S2, S3). If the surface properties of the object primitives include the
reflectiveness or refractiveness, then reflected (R0) and refracted (T ) rays (they are also called

secondary rays) to solve the ray-casting problem are generated. The process of generation
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of secondary rays is performed recursively until some depth of recursion is reached. The ray

generation process corresponds to the binary tree.

The light contributions corresponding to the direct illumination by light sources and indi-

rect illumination by reflected/refracted rays are computed from the surface properties and the
mutual geometrical position of the rays and the light sources.

3.2 Visibility computation

In this section we present the methods for acceleration of visibility computations. We derive

the time complexity of a naive algorithm and then show the methods that reduce it. The
time complexity will be described for the ray-tracing algorithm for ease of understanding. The

number of visibility computations for radiosity is much higher than for ray-tracing, and therefore
the question of time complexity of visibility computation is also very important.

3.2.1 Naive approach

The naive approach does not use any acceleration. The following pseudo-codes outline the

naive approach for ray-casting and for visibility computations.

function visibility(point_A, point_B):boolean

A:boolean;

N,i:integer;

begin

N:=number of objects;

construct the abscissa L between point_A and point_B;

for(i:=1;i<=N;i:=i+1)

begin

A:=exists the intersection with object[i] and the abscissa L;

if (A=TRUE) then

break;

end

visibility:=not A;

end

function ray_casting(ray_origin, ray_direction):object

t,res_t:real;

N,i,index:integer;

begin

N:=number of objects;

res_t:=infinity;

index:=-1;

for(i:=1;i<=N;i:=i+1)

begin

t:=calculate the closest positive

intersection of ray with object[i];

if (t<res_t) then

begin

t:=res_t;

index:=i;

end

end

ray_casting:=object(i);

end

3.2.2 Time complexity

Let us discuss the time complexity of the naive approach for ray-casting and visibility.

Lemma 1 The pair of points visibility and ray-casting problem has O(n) time complexity for

the naive approach.
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PROOF: a) visibility problem: in the worst case the ray is checked with all objects in the scene

space, the last test with object can occlude the points. b) ray-casting: the closest object to a
ray-origin has to be selected, and in the worst case it is the last one.

It is evident the naive method is computationally complex. Most of the total rendering time
(more than 95 percent) is devoted to the computation of the intersections of the ray with objects

[71]. The time requirements depend particularly on the shape of the objects in the scene. The
smallest time requirements to compute the intersection are for sphere; they are significantly

higher for the objects as quadrics and NURBS.

Lemma 2 Let us consider the allowed depth of recursion h, the number of pixels in the image
width× height, and the number of lights lm. Then for n objects in the scene the upper limit

of number of calculations of intersection of a ray with object is expressed as follows:

Imax = O(Rmax.n),

where Rmax denotes the maximal number of rays generated:

Rmax = O(width× height× 2(h−1) × (lm + 1))

PROOF: The generation of secondary rays for one pixel is described by generation of a binary

tree, which is expressed by term 2h−1. It is necessary to compute the shadow ray for every
intersection point; it is expressed by the term (lm + 1). The number of pixels to be computed
is width × height, and the worth time complexity of both ray-casting and the visibility naive

algorithm is O(n).

For instance, if the width = 800, height = 600, n = 1000, lm = 2, and h = 3, the whole
picture requires computing the huge number 10.08× 109 of intersection calculations.

Lemma 3 The visibility problem can be solved by ray-casting.

PROOF: We proof the lemma by algorithm construction. For a pair of points A and B we

construct a ray. Then we perform a ray-casting algorithm. There are three possibilities:
a) there is no intersection of a ray with any object - points are mutually visible

b) the closest intersection point lies outside the abscissa connecting the pair of points - the

points are mutually visible
c) the closest intersection point lies inside the abscissa connecting the pair of points - the points

are not mutually visible

It is obvious that all objects are not transparent and specular, but on the other hand, the
number of the primitives in the scene is usually much higher than for example those given

above. The computational complexity is also decreased if the reflected ray does not hit any
object and leaves the scene space completely. The increase of the depth of recursion leads

to the comparatively slight increase of the time complexity for real scenes. Nevertheless, the
number of the intersection calculations is still very large. The time complexity O(n) of this

naive approach makes it practically unusable for real rendering applications.

3.3 Introduction to algorithmic improvements

This section gives a survey of algorithmic approaches to decrease the time complexity of vis-

ibility computation and ray-casting. We try to determine time complexity for all algorithms,
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but we must state beforehand, the derivation is cumbersome and it is made under simplify-

ing circumstances. The researchers have done some attempts to determine time complexity
of accelerating techniques [55] [13] in the past, but theoretical analysis is rather scarce and

differs with the results of measurements. The problem is that we can determine time com-
plexity under simplifying conditions for the worst case, but the average time complexity is not

strongly connected with worst time complexity. Therefore the researchers often have recourse
to the measurement on some benchmarking scenes and compare the times measured with some
reference algorithms.

The algorithm to decrease the time complexity of visibility computation and ray-casting are
based either on space subdivision schemes [68], the hierarchical clustering of objects [7], or the

combination of these principles [31]. The space subdivision approach is more common and less
computationally expensive than the hierarchical one.

3.4 Bounding volumes

A naive ray-tracing algorithm tests every object for intersection with a given ray. The inter-
section test itself is an expensive operation. Therefore it is advantageous to enclose the objects

in a bounding volume (often called bounding box) with a simple ray intersection test. Then if
the ray intersects the bounding volume, the ray intersection with the object is performed.

A simple method uses spheres as bounding volumes. The second possibility is to use rect-
angular parallepipeds parallel to coordinate axes. Another alternative uses arbitrarily oriented

rectangular parallepipeds [21]. The mutually opposite requirements posed on the properties of
bounding volume are as follows:

• the probability of intersection with the object if it intersects the bounding volume is high.

• the time complexity of intersection calculation of a ray with the bounding volume is small.

From these demands we can further deduce for polyhedron representation that the bounding
volume should be a convex cell with a small number of polygon boundaries.

Hierarchical bounding volumes

A natural extension to bounding volumes is a hierarchy of bounding volumes (HBV in the

following text). Bounding volume hierarchy takes advantage of hierarchical coherence. Given
the bounding volumes of the objects, a n-ary tree of enclosing volumes is created with the

bounding volumes of the objects at the leaves and at every intermediate node a bounding
volume that encloses completely the volumes of the subtrees. The construction of HBV proceeds

bottom-up.

The hierarchy gives naturally the method for testing the ray with the objects. If the ray

does not intersect the enclosing volume at the root, it does not intersect any object. If the ray
intersects the root, the tree is recursively descended to the leaf to test for ray intersections with

the bounding volumes of the subtrees. The method for construction of HBV was first described
in [22].

3.5 Spatial subdivision structures

Spatial subdivision is another very popular method to decrease the number of object-intersection
tests. The basic method was developed independently by other authors ([29] [18] [19]). The

common principle of all spatial subdivision structures is to divide the cell Cn into a set of cells
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S(Cn) by a set of (n − 1) dimensional boundaries Sb(∂C
n). In terms of definitions given in

Chapter 2 to create ESSD or HSSD over initial cell, each elementary cell contains a list of
objects fully or partially contained in the cell. The visibility and ray-casting problem are thus

localized to the elementary cells. If any intersection exists with an object belonging to the
elementary cell and if the intersection point lies in the elementary cell, then the intersection

point is found. If we have more intersection points inside the subvolume, the closest one is
selected. If the intersection does not exist or the intersection point lies outside currently pro-
cessed elementary cell, the computation is proceeded to the next elementary cell along the path

of the ray.

The elementary cells are either of the same shape, structure, and size or irregular. The

common property of the spatial subdivision schemes as opposed to the hierarchical bounding
volumes is that the elementary cells are disjointed (non-overlapping). The constructed subvol-

umes are either addressed directly or there is some hierarchy constructed over the elementary
cells represented by hierarchical cells. The construction of spatial subdivision structures is

created using a top-down approach. The spatial data structures are space oriented instead of
object oriented for the hierarchical methods.

Let us describe the spatial subdivision schemes in more detail.

3.5.1 Binary space partitioning

A Binary Space Partitioning (BSP) tree is a spatial data structure that can be used to solve a
variety of geometrical computational problems. It was initially developed as a means of solving

the hidden surface problem in computer graphics [23].

It is the analogue to the search binary tree, but the data in the BSP tree represent n-
dimensional data. The BSP tree hierarchically subdivides an initial cell Cn

p containing a collec-
tion of objects defined in n-space. The tree is formed by recursively subdividing the cell Cn in

two cells Cn
left and Cn

right, usually halves. The resulting data structure is a binary tree in which
each interior node represents a partitioning hyper-plane and its children represent convex sub

cells determined by the partitioning. The leaf nodes of a BSP tree are convex non-overlapping
elementary cells.

The leaves of a BSP tree are either occupied fully or partially by objects or vacant. The
construction of the tree is done recursively by subdividing the space in the mid-point until the

number of objects in a currently subdivided cell is smaller than a constant or the depth of the
cell in the tree is equal to a constant. The algorithm as described above is currently the most

commonly used. Typical threshold value for maximal number of objects in a leaf is about 3, the
typical upper limit for depth is 30. The elementary cell is often called leaf and the hierarchical

cell (inner), node. The partitioning process is depicted in a Fig. 2.

The important factor influencing the construction of a BSP tree and its resulting properties

is the splitting criterion for positioning the splitting plane. The requirements posed on the BSP
tree for visibility computations are:

• well balanced,

• low depth,

• memory efficient.

The following pseudo-codes outline the principle of construction of a BSP tree and traversing
a ray through the tree [60].

The construction of a BSP tree over objects in the scene is done as follows:
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Figure 2: Partitioning of space by a BSP tree

procedure Subdivide(CurrentNode, CurrentTreeDepth, CurrentSubdividingAxis)

begin

if ( (CurrentNode contains too many primitives) and

(CurrentTreeDepth is not too deep) )

begin

Children of CurrentNode := CurrentNode’s Bounding Volume;

{ Note that child[0].max.DividingAxis and

child[1].min.DividingAxis are always equal. }

if (CurrentSubdividingAxis = X) then

begin

child[0].max.x=child[1].min.x := mid-point of CurrentNodes’s X-Bound

NextSubdividingAxis := Y-Axis

end

else

if (CurrentSubdividingAxis = Y) then

begin

child[0].max.y=child[1].min.y := mid-point of CurrentNodes’s Y-Bound

NextSubdividingAxis := Z-Axis

end

else

if (CurrentSubdividingAxis = Z) then

begin

child[0].max.z=child[1].min.z := mid-point of CurrentNodes’s Z-Bound

NextSubdividingAxis := X-Axis

end

for ( each of the primitives in CurrentNode’s object link list) do

if ( the primitive is within children’s bounding volume ) then

add the primitive to the children’s object link list

Subdivide ( child[0], CurrentTreeDepth+1, NextSubdividingAxis )

Subdivide ( child[1], CurrentTreeDepth+1, NextSubdividingAxis )

end

end

The traversal of a ray through a BSP tree:

function RayTreeIntersect(Ray, Node, min, max):object

begin

if ( Node is free ) then

RayTreeIntersect:="no intersect";

else

if ( Node is a leaf) then

begin

intersect Ray with each primitive in the object link list

discarding those farther away than "max";

RayTreeIntersect:="object with closest intersection point";

end

else

begin

dist := signed distance along Ray to the cutting plane of the Node;

near := child of Node for half-space containing the origin of Ray;
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Figure 3: Computing conditional probability that the ray hits object B once it passes through

volume A

far := the "other" child of Node - i.e. not equal to near

if ( (dist>max) and (dist<0) ) then { Whole interval is on near side }

RayTreeIntersect := RayTreeIntersect(Ray, near, min, max); { recursion }

else

if (dist<min) then { Whole interval is on far side = recursion }

RayTreeIntersect := RayTreeIntersect(Ray, far, min, max);

else

begin { the interval intersects the plane }

{ recursion }

hit_data := RayTreeIntersect(Ray, near, min, dist); { test near side }

if (hit_dat indicates that there was a hit) then

RayTreeIntersect := [hit_data];

{ recursion }

RayTreeIntersect := RayTreeIntersect(Ray, near, dist, max); { test far side }

end

end

end

Both pseudocodes are written recursively for ease of understanding. The efficient source code
is organized in such a way that recursive calls are omitted by maintaining an explicit stack in

the inner loop.

The whole process of construction of a BSP tree was modified and improved by MacDonald

and Booth [37]. Let us discuss the improvements in more detail.

3.5.2 Statistical optimization of a BSP tree

The time needed for construction of a BSP tree is typically insignificant compared with the

computation time spent in actual traversing the tree to determine ray object intersections.
Therefore it is advantageous to devote a greater effort to create a more efficient tree, under the
assumption, that the extra time would then be recovered during tree traversal.

MacDonald and Booth [37] used simple heuristics for finding the optimal position of a split-
ting plane. The plane remains perpendicular to one of the main coordinate axes, because of

simple computations performed later during traversal phase. The plane position is determined
by minimizing a cost function. The cost function is based on the probability that a ray hits

the object placed inside a certain volume once it passes through that volume as shown in Fig. 3.

Let us suppose that both object B and a volume A are of convex shape. It is mostly fulfilled

because objects are often temporarily replaced by their bounding volumes during construction
of a binary tree. Then the conditional probability Pr(B|A) is expressed as a ratio of the surface

area of the object B to the surface area of a volume A ([58] [21]):

Pr(B|A) =
SB

SA

=
2(xB.yB + xB.zB + yB.zB)

2(xA.yA + xA.zA + yA.zA)
(1)

The cost function can be expressed by the conditional probability. It expresses the estimated
time needed for traversing one ray through the specified tree. During the building of a binary

tree, the cost function helps to decide when and where to split certain subspace, i.e., to replace
one leaf node by a new internal node with two children – leaves. Let us assume the situation
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Figure 4: New costs after one subdivision step

at the beginning of a tree construction. One node contains n objects. All of them have to

be tested for intersection with a ray passing through the scene. The intersection test for i-th
object takes computation time Ti. The cost for such non-subdivided scene is given as follows:

C =
n
∑

i=1

Ti (2)

A space subdivision helps to decrease the number of intersection tests, but increases the

number of internal nodes. The cost has to incorporate time needed for traversing all nodes
visited by a ray. Let us suppose the splitting plane is perpendicular to x axis. Figure 4 shows

the geometrical factors that influence the change of the cost for one space subdivision step.

The node on the left side in Fig. 4 has been replaced by a new tree structure on the right

side in Fig. 4. Original cost C is changed to a new cost Cnew given as the sum of three terms
- CP , CL, and CR. The term CP is the cost of traversing the parent node only. It does not

incorporate any ray–object intersection tests. Costs for left and right child nodes, CL and CR,
contain a factor with conditional probability that a ray hits the node L or R once it visits the

parent node P. New cost Cnew is given as follows:

Cnew = CP + CL + CR = TP +
SL

S

nL
∑

j=1

Tj +
SR

S

nR
∑

k=1

Tk + TT (3)

where Tj, Tk is the time for intersection test with j-th and k-th object respectively
TT is the time for performing one traversal step

TP is the time for decision step in parent (internal) node
SL, SR is a surface area of left subspace and right subspace respectively

S is the surface are of the node to be subdivided
nL, nR is the number of objects belonging to the volume L and volume R

respectively

The formula (3) represents the worst case when the ray visits both left and right subspace.

Still some improvement could be achieved by incorporating another conditional probability
expressing that the ray visits the only one subspace. Such a situation occurs when either the

ray is directed into one subspace only or the ray hits any object in the first subspace and
does not continue to the second one. The probability would depend on the area obtained by

projecting objects from one subspace on the surface of the other subspace. In the following
text, we are dealing with this ”worst case” probability only.

The aim is to build the optimal binary tree with minimal global cost. This can be achieved
by minimizing values of the cost function (3) depending on the position of a splitting plane. The

plane can intersect some objects in the original volume and such objects have to be included
into both costs CL and CR. That is the reason why nL + nR ≥ n (n is the number of objects

in the original volume).

The minimum of the cost function can be roughly estimated using a few sample splitting

planes. MacDonald and Booth showed that there are two important positions of the splitting
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planes. One position is in the geometrical center of the volume. Let us call it spatial median.

The second position is in the middle of an ordered list of objects∗, which is called an object
median. The interval specified by spatial and object median marks the boundaries of possible

positions of the optimal splitting plane upon the condition that this plane does not intersect
any object. If objects inside the median interval are overlapping, then the optimal splitting

plane can lie outside this interval.

Although almost every splitting plane intersects some objects (especially for complex scenes),

this simple condition quickly gives relatively good estimation of its optimal position.

3.5.3 Octree

Octree (Octal tree) is recursive data structure that is similar to the quadtree in two-dimensional
space. In the opposite to the BSP tree the initial cell Cn

p is not split into halves but into 2n

cubic cells. The cubic cells, are often called voxels and they can vary in size. The general
definition defines the octree for n ∈ N , but the usual convention for an octree is restricted

to the three-dimensional case. The octree itself can serve as the representation of a three-
dimensional model; the leaves of the octree are either denoted empty or full. Another usage is
the acceleration technique for computing visibility and the ray-tracing. The use of an octree

for this purpose was introduced by Glassner [19]. The cells with high object complexity can be
recursively subdivided into smaller and smaller cells, generating new nodes in the octree.

The addressing of child nodes is provided by direct pointing or hash table. In case of hashing
the denotation of the child node is usually done by postfixing or prefixing the parent denotation

by ciphers from 1 to 8 corresponding to the geometrical position of the child node (see Fig. 5).
The numbering the nodes this way (instead of from 0 to 7) looses the octal purity of the original

scheme and improves the hashing itself.

Figure 5: Octree subdivision

We should note that the traversal of an octree in sorted order along the ray path is more
complicated than for a BSP tree or SEADS (see subsection 3.5.4). It is due to the more complex

decision computation for each traversal step. The octree naturally exploits the spatial coherence
because objects that are close to each other in space are represented by leaves that are close to

each other in the octree. The termination criteria for octree construction is the same as for a
BSP tree: the maximal allowed depth and the minimal number of objects in leaves.

The properties of an octree from the point of view of visibility computations are rather worse.
Each node can cover a small object and the intersection calculation has to be performed each

time entering the node, which can be very large. The intersection calculation is also performed
if the probability of a successful intersection with an object in the leaf of an octree is quite small.
The next disadvantage can be considered small occupancy of leaves. The empty neighbouring

∗Objects are ordered by the x coordinate in the case of a splitting plane perpendicular to the x axis; similarly

for the other two orientations of the splitting plane
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leaves have to be determined and traversed. The small occupancy of leaves implies relatively

large memory requirements for octree representation.

There is the modification of surface area heuristics for octree data structures called Octree-R

[70]. If the surface area heuristics is applied to the octree structure to each subdividing plane
independently, we can decrease the rendering time from 4% up to 47% depending on the scene

characteristics.

3.5.4 SEADS

Spatially Enumerated Auxiliary Data Structure (SEADS in the following text) is another method
of spatial subdivision. It involves the subdivision of initial cell Cn

p into equally sized elementary

cells regardless of the occupancy of objects. The n-dimensional grid resembles the subdivision
of a two-dimensional screen into pixels. The list of objects that are partially or fully contained

in the cell is assigned to each parallepiped cell (also called voxel for three-dimensional space).
The method was first introduced in [18] and the traversal algorithm of this data structure was

improved by Hsiung [26] and Endl [17].

Figure 6: SEADS - grid structure

Since the grid is created regardless of occupancy by objects, a SEADS subdivision formsmany

more voxels and therefore it demands necessary storage space. Nevertheless, the traversal of
SEADS structure can be performed very efficiently by a 3D-DDA algorithm. It is analogous to

the algorithm for drawing a straight line in two-dimensional space and requires thus a simple
operation for each traversal step (addition, subtraction, and comparison). A ray is only tested

with the few grid elements that are traversed by the ray.

The problem with the SEADS is the occupancy of most voxels is very small, and therefore the

ray traverse a lot of empty voxels before hitting the full voxel. The method is the only one from
all accelerating methods that was analyzed well enough in [13]. The analysis shows the optimal

division for one axis is for k = const.N
1

3 and the minimal total time per ray corresponds to

tmin = const.N
1

3 for the N objects of the same shape and size in the scene.

3.6 Ray-space subdivision methods

The method is based on the ray-space subdivision by 5-dimensional coordinates. The first three
coordinates of the ray-space are Euclidean and they express the origin of the ray. The next two

coordinates are spherical and determine the direction of the ray. The space subdivision is thus
as follows:

R5 = E3 × σ2

Let us suppose we have N objects in the cell, which are indexed from 0 to (N − 1).
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Definition 14 The assignment function fA(x, y, z, ϕ, ρ) is the discrete function f : E3× σ2 →
Z+
0

⋃

{−1} that solves the ray-casting problem and is defined as follows:

fA(x, y, z, ϕ, ρ) = i

{

i = k, k ∈< 0, N − 1 > corresponds to the closest object intersected
i = −1 if the ray does not intersect any object in the cell

The space, over which function fA is defined, has to be discretized for practical use. In the

case the direction of rays in discretized positions creates generalized rays, and the fA should
return the candidate list of indexes instead of one index to object primitives that are visible

from the origin point. The origin of the ray is also discretized and corresponds to the cell, and
the total volume which can be reached by the ray is called hyper-cubic region.

The ray-acceleration scheme was suggested by Arvo and Kirk [3] and further elaborated by
Simiakakis [57]. The ray-space can be achieved by binary partitioning. Whatever the improve-

ments of the algorithm, the method suffers from an algorithmic paradox: the construction
of the candidate lists is much more difficult than with the space subdivision schemes. Arvo

and Kirk report the high time complexity of detecting polyhedral intersections and suggest
the approximation where hypercubic regions are bound by cones [21]. Nevertheless the time

complexity is still higher than for space subdivision techniques.

4 Our work and results

4.1 Methods for experimental evaluation and comparison of ASDS

The problem of auxiliary spatial data structure (ASDS in the following text) is the evaluation
and the comparison of time and space complexity with regard to input data. It is rather

impossible to determine the time and space complexity by means of asymptotic comparisons.
It is due to the relatively high complexity of traversal algorithms and the input data dependency.

This property of different acceleration schemes was used to demonstrate the advantages of some
methods proposed by scientists on particular scenes that fitted well their accelerating method.

Standard Procedural Data method

The way to encounter this problem partially was introduced by Haines [24] who proposed a

Standard Procedural Data method (SPD in the following text). It is a collection of the scenes
which are generated by a program. The description of scenes consists of basic primitives, and

it can be converted easily to the format used by different rendering packages. The idea is
promising, but the requirements posed on performance of current rendering systems are much

higher than the ones in the time of introduction of the SPD in 1987. The scenes processed
today contain up to hundreds of thousands of object primitives. SPD models are constructed
by fractals and the number of primitives is rather small. That is why scientists in research

papers use some scenes which are more complex and correspond to the time of paper issue.
For the same reasons we have selected some SPD data (see Fig. 7) and other scene data (see

Fig. 8) to measure the performance of different accelerating techniques. The images presented
in this report were computed by a ray-tracing algorithm.

We have perused the ways for spatial data construction and their traversal for visibility
computation. The time complexity is highly connected with the number and distribution of

objects in the scene. The properties of algorithms for visibility computation can be evaluated
for some specific algorithms. We selected the ray-tracing algorithm for the evaluation because

of its simpler implementation. Moreover, the ray-tracing actually solves only the visibility
algorithm. In case of radiosity it is necessary to compute some additional operations (matrix

solving, meshing) to get the resulting image.
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Figure 7: Standard (SPD) scenes – balls, rings , and tetra (resolution 512× 512)

Figure 8: Specific scenes – fluid, m-fluid , and room (resolution 512× 512)

The evaluation of the algorithm is based on two sets of tasks to be computed. The first set
Ω(NRC) specifies NRC of ray-casting tasks, the second set Υ(NV C) specifies NV C of visibility

ones. These sets are always the same to obtain a given image for all acceleration techniques,
but each algorithm handles the sets with different time and space complexity.

The ASDS properties can be grouped into two parts. The first one includes static properties
corresponding to the ASDS construction and the second one reflects the dynamic behaviour

of ASDS during the visibility computation. These properties are mutually connected with the
scene characteristics over which ASDS is built.

Let us classify the properties concerning ASDSs into some groups. Each parameter belongs
to one or more groups. The parameters express both maximal and average values. The groups

are marked by following letters:

• B .. specified before computation, independent of ASDS properties and the implementa-

tion itself. They depend on the distribution and geometrical properties of the objects in
the scene and other required parameters.

• D .. derived from the B parameters, but they are not specified by the user.

• C .. computed from the construction of ASDS, independent of Ω(NVC) and Υ(NRC)

tasks. They describe how the ASDS meets with the object distribution in the scene.

• R .. computed from rendering , they are dependent on B, D, and C. They reflect dynamic

behaviour of ASDS with respect to Ω(NRC) and Υ(NV C).
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• T .. time parameters dependent on implementation, compiler and architecture used. They

correspond to the real time consumed to obtain the resulting image.

NX ,NY B the resolution of the image

NO B the number of scene objects and their distribution in the scene

NL B the number and position of lights in the scene

OPCAMERA B the position, the orientation, and other settings of camera

SCOV B,D the percentage of screen coverage

DCOMPX D depth complexity, i.e., the average number of object primitives that
are hit by an arbitrary ray from the viewpoint (see [55])

VSCENE B,D the volume taken by the bounding box of the whole scene

VBB B the sum of volumes specified by bounding boxes of object primitives

RBBSC = VBB

VSCENE
B the ratio of volumes for bounding boxes to the volume of whole

scene

DAREC B maximal depth allowed for secondary rays

Table 1 Scene and image characteristics

TCMAX B termination criteria for construction of ASDS

DREACH ≤ DMDEPTH C the maximal depth reached if any

NC C the number of cells

NEC C the number of empty cells (without objects)

RETNC = NEC

NC
C the ratio of empty cells to all cells

NRO C the total number of references to objects from all
(non-empty) elementary cells

NADC = NRO/NO − 1.0(≥ 0.0) C the average number of objects’ duplication for one
object in elementary cells

NAOIC = NRO

nC
C the average number of objects in all cells

NAOIFC = NRO

nC−nEC
C the average number of objects in full cells

VEMPTY C the sum of volumes taken by empty cells

RFVWV = VSCENE−VEMPTY

VSCENE
C the ratio of volumes of full cells to VSCENE

TCB T time required for construction of ASDS

Table 2 Static properties of ASDS

Tables 1-3 give the lists of some parameters describing some properties of ASDSs. It is even
possible to enlarge the set of parameters in Tables 1-3 by other mean and maximal values or

to relate the parameters to specific groups of rays, but these extensions are rather useless for
the purposes of evaluation.

Definition 15 The traversal step is the elementary operation to make a pass between two cells.
These two cells are either neighbouring and elementary or they have a hierarchical relationship.
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NPR = NX ×NY D the number of primary rays
NPRIT R number of intersections tests for all primary rays

and object primitives

NHPR = NPR.SCOV ERAGE D the number of primary rays hitting the objects
NSR D the number of shadow rays

NSRIT R the number of intersection tests carried out for all
shadow rays

NHSR D the number of shadow rays hitting objects
NSECR D the number of secondary (reflected + refracted)

rays
NSECRIT R the number of intersection tests performed for all

secondary rays
NHSECR R the number of secondary rays hitting the objects

NRPRT = NPRIT+NSRIT+NSECRIT

NHPR+NHSR+NHSECR
R the ratio of all intersection tests performed to

minimal intersection tests
NTEC R the number of traversed elementary cells
NTEEC R the number of traversed empty elementary cells

NTEFC = NTEC −NTEEC R the number of traversed non-empty elementary
cells

NITHC R the number of traversed hierarchical cells
NTAC = NTEC +NITHC R the number of all traversed elementary and hier-

archical cells

NAT = NTAC

NPR+NSR+NSECR
R the average number of traversed cells per one ray

(primary, secondary, shadow)

TTR T time required for the rendering itself of the image
for a specific ASDS

TTT T time devoted only to traversing ASDS (TTT <
TTR) during image synthesis

Table 3 Dynamic properties of ASDS

Then the overall time required for ray tracing algorithm itself can be expressed (terms are

described in Tables 1-3) in a simplified way as follows:

TTR
.
= (TT + TP ).NNODES + TI.(NHPR +NHSECR) + (4)

+TIUN .(NPRIT +NSECRIT +NSRIT −NHPR −NHSECR −NHSR) + const.

where TI is the time for performing one ray-object succeeded intersection test

TIUN is the time for performing one ray-object failed intersection test
TT is the time for performing one traversal step

TP is the time for a decision step in parent node

Total time TTR can be minimized by all R parameters in this equation including the volume
of non-empty cells and by other C parameters, e.g., by the average number of objects in a cell.

4.1.1 Comparison methodology for ASDS

The comparison between different ASDSs is usually performed only by times for rendering.

There are in general only twomethods, a new one and the old one, which are mutually compared.
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It is impossible to compare the results obtained by different researches in different papers due

to the different dependencies (hardware, compiler, implementation etc.).

The intent of this subsection is to give a new method for comparison of ASDS techniques

for visibility and ray-casting computation. The important assumption for comparison of some
ASDS methods for construction or implementation is that the image synthesis is performed

under the same conditions. In other words, the parameters denoted by B and thus also by D in
Tables 1-3 have to be equal, i.e., the result of both rendering processes has to be the same image.

The difference of some parameters indicates some errors in the algorithm implementation. The
time (TTR) and the space (NC) requirements are the most important aspects of practical
applicability of rendering software using ASDSs.

The first possibility is to compare some ASDS properties for a given scene by C and R

parameters so the comparison is independent of the architecture, implementation, and compiler
used. The set of parameters shown in the tables determines well the properties of the ASDSs.
Unfortunately, their number is rather high to be dealt with, and therefore we have tried to

restrict them reasonably. The restriction should be done so that each selected parameter
expresses some specific meaning. Moreover, selected parameters should express different and

important properties of ASDS for image synthesis.

We have divided the parameters expressing properties of ASDS for image synthesis into two

n-tuples. The first n-tuple concerns the properties of accelerating method and is independent
of the implementation. We propose to use the following septet ∆ of the parameters above for

this type of comparison:

∆ =< NC , RETNC, NADC , NAOIFC, RFVWV , NRPRT , NTAC > (5)

The second type of comparison concerns the implementation of ray-tracing source code. In
this case the parameters denoted by B, D, C, and R remain unchanged, parameters denoted by

T reflect the quality of implementation, or/and the optimization efficiency of a compiler, or/and
the performance of the architecture used. For the overall evaluation of ray-tracer performance

by triplet Λ other parameters from S, D, C, and R should also be taken into consideration.

Λ =< TCB , TTR,
TTT

TTR
>, (6)

The practical use of septet ∆ and triplet Λ is demonstrated in the following section.

4.2 Position of optimal splitting plane for BSP tree

As we described in Section 3.5.2, the minimal value of the cost function (3) depends on the

position of a splitting plane. MacDonald and Booth [37] estimated the optimal position to be
between spatial and object median, but it is truth only upon the condition that no objects are

intersected by a splitting plane.

To minimize the cost function (3) correctly, full range of the volume should be searched for

the optimal plane. Although the range is continuous, certain discrete points can be used to
simplify computations. Let us consider only one possible orientation of the splitting plane,

for instance perpendicular to the x axis as shown in Fig. 9. Bounding volumes can also be
used instead of real objects. Figure 9 shows an example of a scene with four objects and

corresponding graph of the cost function for unit size of the whole scene. The formula (3) has
been simplified to C = (SL/S)nL+ (SR/S)nR. Terms Tj and Tk have been set to one, because

all intersection tests are supposed to be of the same time complexity. Terms TP and TT have
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Figure 9: Key positions for selecting the optimal splitting plane

been set to zero, since their values do not change the shape of the graph, i.e., they do not

influence extremes of the cost function.

It is obvious that the cost function can be linearly interpolated between two adjacent key

positions as shown in Fig. 9. The number of objects between two adjacent key positions remains
constant and cost function depends only on the projected surface area. The cost function is

discontinuous and linear piecewise. Minimal value of the cost function can be found just at key
positions, i.e., using limited number of sample splitting planes.

The set of key positions within the x range is derived from min–max x coordinates of all
objects (their bounding volumes). In the sample scene in Fig. 9, four objects determine eight

key positions, two of them are optimal (for x = 0.3 and x = 0.7).

The example also shows that the optimal position does not have to be always inside the

interval specified by spatial and object median. Here the value of spatial median is 0.5. The
value of object median would be somewhere between 0.4 and 0.6, because in that range the

plane subdivides objects into two groups with the same cardinality. In spite of both optimal
positions are outside the interval.

Table 4 shows the statistics how often the optimal plane has been found inside and outside
the median interval for all six test scenes (for scenes see Fig 7 and 8).

Scene Number of Planes outside
splitting planes median interval [%]

balls 25514 46.3
rings 88995 70.0

tetra 7270 7.8

fluid 15978 50.5

m–fluid 16030 48.1
room 16060 19.5

Table 4 Positions of optimal splitting planes

The number of splitting planes outside the median interval is surprisingly high. It sometimes
represents more than 50% of all cases.

Implementation of the concept of key positions for setting the optimal splitting plane is
not too difficult. Since planes are perpendicular to main coordinate axes, min–max values of

bounding volumes for all objects are sorted into three lists, for each axis separately. A sorting
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is usually computed with O(n logn) complexity, but in this special case it is more convenient

to use radix sort algorithm with O(n) complexity only. Those three lists are prepared during
preprocessing phase and they are sorted only once. Whenever a node is split, new lists for child

nodes are created by selection of objects from the current node. This operation preserves the
order of key positions.

4.2.1 Orientation of the splitting plane

Whilst an octree structure can be built by evaluating optimal splitting planes in all three

directions (Whang et al. [70]), the only one plane from three candidates has to be selected for
the BSP tree. Two basic approaches can be recognized. First, the orientation of the plane is

changed in cyclic order on the path from the root of a BSP tree to the leaves. Second, minimal
value of the cost function taken from all three main directions always determines the splitting

plane orientation.

We have implemented both approaches and measured Λ and ∆ for them. In all cases the

second method (arbitrary orientation) gives better results.

4.2.2 Cutting off empty space

The BSP tree building process is usually terminated when either the predefined depth of a tree
is reached or the number of objects inside a subspace decreases under certain limit, typically

1–4 objects. It does not seem to be interesting to split a leaf node containing one object only.
Still this situation should also be investigated to ensure that the current cost function for a

certain tree is really minimal. We call this approach cutting off empty space.

Let A be a volume representing the whole scene consisting of one object only. Cost function

(2) is then expressed as CA =
∑1

i=1 Ti = T1. Let us suppose the volume is split by a plane in
such a way that the object B stays in the right subspace, whereas the left subspace is empty.

Then using formula (3) we get the following new cost:

Cnew = TP +
SL

S
(0 + TT ) +

SR

S
(

1
∑

k=1

Tk + TT ) = TP +
SL + SR

S
TT +

SR

S
T1 (7)

The term (SL + SR)/S can be further evaluated and the final formula is as follows:

Cnew = TP +
xAyA + xAzA + 2yAzA
xAyA + xAzA + yAzA

TT +
SR

S
T1 = TP +Const.TT +

SR

S
T1 (8)

The position of the splitting plane influences only the last term in the cost function (8).
Since constant coefficient (SL + SR)/S is always bigger than 1, cost Cnew could be also higher

than the original cost CA. Minimum of the function (8) is thus sensitive to computation times
TP , TT , and T1.

Real values of those computing times depend on the implementation of traversal algorithm.
One efficient implementation has been published in Graphics Gems III by Sung and Shirley

[60]. A BSP tree is traversed recursively from the root and a stack is used for storing nodes
that should be visited on a path of a ray. The selection of nodes on the path (equal to term TP )

needs much more computing time than simple pop operation (equal to term TT ) performing
a traversal step from a node to another one. Both values TP and TT can be precomputed for

given implementation, and they stay constant for the whole computing process.

The time T1 needed for one intersection test depends on the object geometry. Simple ge-

ometrical objects like spheres and triangles can be tested in time comparable with time TP .
Complex objects like NURBS require more computing time [68].
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Figure 10: A volume with empty space and a corresponding BSP tree. Late cutting (left) is

less effective than early cutting (right).

Our test scenes consist of simple geometrical objects only. In this case, the cutting off
empty space does not improve the efficiency considerably. Comparing times TP and T1 for our
implementation, cutting off empty space is meaningful when the ratio of the object surface area

to volume surface area is smaller than 25% for spheres and 40% for triangles.

Empty space can be cut off not only from leaves, but also sooner, before splitting larger
volumes. Figure 10 shows that the second approach saves memory space and decreases com-
putational cost.

test scenes

properties balls rings tetra

1 2 2
1 [%] 1 2 2

1 [%] 1 2 2
1 [%]

NC 3244 19892 613 153456 78677 51 96056 11322 11.8

RETNC[%] 32.3 25.4 −6.9 15.9 25.5 +9.7 28.6 25.9 −2.7

NADC [%] 130.7 284.7 +154.0 4505 1337 −3168 7400 1052 −6348

NAOIFC 7.75 1.91 24.6 16.48 11.33 68.8 4.48 5.62 12.5

RFVWV [%] 43.3 28.8 −14.5 23.4 8.10 −15.3 6.54 3.12 −3.42

NRPRT 34.8 22.3 63.3 117.8 86.1 73.1 21.8 13.33 61.1

NAT 26.2 4.35 16.6 56.51 34.5 61.0 36.3 17.4 47.9

TCB[sec] 0.86 2.46 286 44.0 24.7 56.0 5.31 1.17 22.0

TTR[sec] 128.7 43.8 34.0 612.0 340.6 55.7 21.0 8.31 39.6

TTT/TTR[%] 51.6 69.9 +18.3 17.8 16.4 −1.4 49.5 60.5 +11.0

Table 5 The n-tuple ∆ and Λ for SPD scenes

4.2.3 Experimental results and discussion

Our improvements that decreases the time complexity of rendering using a BSP tree are shown

in Tables 5 and 6. The first method (1) is the algorithm [60] with splitting plane orientation
changing in cyclic order; its position always lies in the mid-point. In addition to the surface area
heuristics, the second method (2) uses the cutting off the empty spaces in both on the outside

and the inside of currently processed node introduced in subsection 4.2.2. Three columns are
reported in the Tables 5 and 6 for each scene. The parameters ∆ and Λ for method (1) are

in the first column, the parameters for method (2) are in the second one. The third column
describes their mutual position. In case the parameters ∆ and Λ express absolute values (NC ,

NAOIFC , NRPRT , NAT , TCB, TTR), the third column expresses the ratio of (2) to (1). In case
of relative parameters (RETNC, NAC , RFVWV ), the value in the third column is computed as
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test scenes

properties fluid m-fluid room

1 2 2
1 [%] 1 2 2

1 [%] 1 2 2
1 [%]

NC 28619 15912 55.6 18565 16727 90.1 167834 27925 16.6

RETNC[%] 11.3 27.7 +16.4 16.4 28.0 +11.6 27.5 18.4 −9.1

NADC [%] 2709 1486 −1223 1631 1121 −510 13172 1483 −11689

NAOIFC 2.78 3.47 124.8 3.23 2.94 91.0 8.49 5.41 63.7

RFVWV [%] 37.2 3.70 −33.5 42.8 1.21 −41.6 12.2 40.6 +28.4

NRPRT 10.0 4.0 40.0 10.1 3.3 32.7 63.0 19.3 30.6

NAT 21.1 16.1 76.9 24.3 16.7 68.7 64.7 32.3 49.9

TCB[sec] 1.16 1.57 135.3 1.11 1.64 148.8 14.56 3.06 21.0

TTR[sec] 20.6 14.1 68.1 63.8 36.6 57.4 277.0 71.9 26.0

TTT/TTR[%] 75.1 82.3 +7.2 61.8 80.2 18.4 26.8 41.1 +14.3

Table 6 The n-tuple ∆ and Λ for specific scenes

the difference (2) and (1).

We can also compare the results which have been achieved by better positioning of the

splitting plane (see 4.2) instead of the median interval [37]. The gain has been from 1% (scene
balls) to 12% (scene room).

The improvement achieved by the method with empty space cutting off (called newf) in leaves
is not so significant as we expected. The gain has been from 1% (scene room) to 7% (scene

m-fluid) to the method (2). The small gain is due to the low time complexity of intersection
calculation of a ray with objects in the scene comparing with the time complexity of traversal

step.

Preliminary results
Very recently we have implemented the method that performs cutting off empty space in both

inner nodes and leaves of BSP tree. The decision whether to cut off the empty space in a leaf is
used in the method described here in 4.2.2. For cutting off the empty space in inner nodes we
use another decision step based on surface area heuristics. Its disadvantage is that it has to take

into account the ratio of the real time complexity of traversal step and intersection calculation.
The new method (called newsf) decreases the time complexity from 1% (scene m-fluid) to 14%

(scene rings) compared with the method newf.

To conclude the comparisons, we have decreased the time complexity of rendering by our

method newsf from 30% up to 87% of time complexity required for uniform BSP tree.

4.3 Cache sensitive representation of BSP tree

In this part of the report we propose a new representation of the BSP tree data structure in

the memory. The proposed memory mapping is designed to improve the spatial locality of data
represented by the BSP tree to decrease the traversal complexity. The septet ∆ remains the

same, the triplet Λ changes.

4.3.1 Motivation: memory hierarchy

The time complexity of a traversal algorithm is connected with the hardware where the al-

gorithm is executed. For analysis we suppose Harvard architecture with separated caches for
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instructions and data. Let TMM denote memory latency (time to read/write one word of data

from main memory to processor/cache).

The larger the memory and the lower the access time, the higher the cost of the memory.

Since the instruction latency of processors is smaller than TMM , between the memory and
the processor is placed cache: smaller memory with lower access time TC . This solution is

economical; it uses temporal and spatial locality for accessing the data. The data between the
cache and the main memory are transferred by blocks corresponding to the cache line size SCL.

In this part of the report concerning cache sensitive representation of BSP tree we denote
the time consumed by operations in terms of cycles. Let TW denote the time of the operation

performed in a node during traversing. Typical values for today’s superscalar processors are
TMM = 55, TC = 4, TW = 5, SCL = 128Bytes for MIPS R8000 (taken from [51]). Note that

TW ≪ TMM .

4.3.2 Standard methods of representation for binary trees

Binary trees can be either static or dynamic. A static tree once constructed remains unchanged
during its use until its destruction. A dynamic tree enables to perform operations with nodes,

e.g., to insert or delete a node.

Definition 16 We call a binary tree complete if all leaves are positioned in the same depth

d from the root node and the number of leaves is 2d, incomplete tree is the tree, which is not
complete.

Definition 17 We call a subtree F of binary tree T arbitrarily connected subgraph of T .

Definition 18 We call a rooted subtree RF of a binary tree T such a subtree of T that contains
the root of T .

Definition 19 Let hC define complete height of a binary tree T as the depth of the maximal
complete rooted subtree of binary tree T .

In this report we deal with static binary trees only, the BSP tree is its typical example. Let
us review for the binary tree representations.

Random representation

A usual way to store the arbitrary binary tree is to represent each node as a special variable.

The disadvantage of the method is the additional memory consumed by pointers, which can
be, e.g., four times greater than the actual information stored in the node. The only advantage

is that it is simple to implement. The situation is depicted in Fig. 11 (a). The addresses of the
nodes in the memory have no connection with the position in the tree. It corresponds to the
pseudo-code given in [60] by Sung.

Depth-first-search (DFS) representation

The nodes are put in the memory in the DFS order they are constructed (see Fig. 11 (b) ).
To alleviate the problem of the memory size consumed by pointers required for each allocated

variable, large block of memory can be allocated and the nodes are then allocated subsequently
from such a memory block. The size of the allocated block is expressed as SO = (2+2.N ).SP+
SI .N , where N is the number of nodes to be stored in the block. For large N nearly up to

2.N.SP of memory taken by pointers are saved in comparison with random representation.
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Figure 11: Binary tree representations (SCL = 3.size(node)) (a) Random (b) DFS (c) Subtree

4.3.3 Subtree representation

We propose the following data structure in order to reduce the traversal time of the binary tree
in DFS order. We suppose that we allocate one big block of memory and then we occupy it by

the nodes - organized into smaller subtrees with the size smaller or equal to SCL; see Fig. 11
(c). Once the subtree is read to the cache, the access time to some child nodes is equal to TC .

The subtree needs not be complete.

There are two ways for representing a subtree (Fig. 12). Ordinary subtrees have all the nodes

of the same size, with two pointers to two descendants, regardless whether the descendant lies
in the subtree or not. Compact subtrees have no pointers among the nodes inside the subtree

because their addressing can be provided explicitly by a traversal program. The leaves of
incomplete binary subtrees have to be marked in a special data variable (one bit for each

node).

Figure 12: Subtree representation: (a) Ordinary (b) Compact

4.3.4 Time complexity and cache hit ratio analysis

In this subsection we are going to analyze the behaviour of the various representations during
binary tree traversal. We assume the traversal is performed in depth-first-search order for

simplicity. Another simplifying assumption is the data are in the main memory and none of
them are located in the cache, i.e., cache hit ratio CHR = 0.0. The analysis is provided assuming

the binary tree is complete. The analysis is based on the height h of the complete binary tree,
for an incomplete binary tree we can compute average the depth of a tree hA and substitute it

for h.

This analysis enables us to compute the average time TA for performing a traversal on an

binary tree of depth l from the root to a leaf. We suppose that in the each node the probability
that we turn left is equal to pL = 0.5.

If some data are already located in the cache (CHR > 0), it is very difficult to analyze [2].
Since the cache has an asynchronous behaviour we analyze it by means of simulation.
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Random representation

Since we suppose CHR = 0.0 during the whole traversing, i.e., the access time to each node

during traversing is TMM , we can express TA as follows:

TA
.
= (TMM + TW ).(l+ 1) (9)

For TMM = 53, TW = 5, l = 23 we obtain the time TA = 1392.0 cycles.

DFS representation

This storage is influenced by reading the nodes for the next traversal step if we continue the

traversal to the left descendant. Assuming the size of the node is SIN , thus the number of
nodes in one cache line is SCL/SIN , we can derive TA as follows:

TA
.
= (l+ 1).(pL.TMM .SIN/SCL + TC .(1− SIN/SCL) + TW + (1− pL).TMM) (10)

For TMM = 53, TC = 4, TW = 5, l = 23, SIN = 12, SCL = 128, we get time TA = 859.1.

Ordinary subtree representation

Assume that SCL and SIN are given. For each subtree, we are required to store SST bytes
additionally, that are used as the identification of the type of the subtree. Let us express the

memory part taken by a complete subtree with the height h:

M(h) = (2h+1 − 1).SIN + ST ≤ SCL (11)

From (11) we can derive the complete height of the subtree hC as follows:

hC = ⌊−1 + log2[(SCL − SST )/SIN + 1]⌋ (12)

The subtree of height hC is stored fully in one cache line. The rest of the cache line can be
used to store NODK nodes in the depth d = hC + 1 in the subtree:

NODK = ⌊[SCL − (2hC+1 − 1).SIN − SST ]/SIN⌋ (13)

The average height of the subtree to be used in the formula should be computed expressing

the time complexity of binary tree traversal. The average height of the subtree hA ≥ hC is
computed as follows:

hA = −1 + log2(2
hC+1 +NODK) (14)

Finally, the total time to traverse the tree for the depth l from root to arbitrary leaf is:

TA = (l+ 1).(TW + TMM .1/(hA + 1) + TC .DA/(DA + 1)) (15)

For TMM = 53, TC = 4, TW = 5, l = 23, SIN = 12, SST = 4, SCL = 128, we get hC = 2,

NODK = 3, hA = 2.46, and TA = 555.9 cycles.
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Compact subtree representation

Let us denote the portion of the memory for representation of the information inside the node

SI , the memory occupied by one pointer SP . The memory part taken by a complete subtree
with the height h is then:

M(h) = (2dk+1 − 1).SI + 2dk+1.SP + ST ≤ SCL (16)

Complete height of the subtree hC is from (16) derived similarly to (12) as follows:

hC = −1 + ⌊((SCL + SI − SST )/(SI + SP ))⌋ (17)

Similarly as for an ordinary subtree, we derive the number of nodes in the depth d = hC +1 as

follows:

NODK = ⌊(SCL − 2hC+1.(SI + SP ) + SI − SST )/(SI + SP )⌋ (18)

The hA and tA is computed by equations (14) and (15). For TMM = 53, TC = 4, TW = 5, l =

23, SP = 4, SI = 4, SST = 4, SCL = 128, we compute hC = 3, NODK = 0, hA = 3.0, and
TA = 510.0 cycles.

Figure 13: The analysis A: TA = f1(SCL), B: hA = f2(SCL), C: NODK = f3(SCL), D: Ndk =

f4(SCL); Representation (a) Random (b) DFS, (c) Ordinal subtree, (d) Compact subtree

The functions hC , NODK, hA for ordinary and compact subtree and TA for all types of
storage in dependence on the cache line size are depicted in Fig 13.

4.3.5 Results of simulation

The simulation was done for the same times as in the subsection above: TMM = 53, TC = 4,

TW = 5, l = 23, SP = 4 Bytes, SI = 4 Bytes, SST = 4 Bytes. The simulation of traversing was
performed in depth-first-search order, the same as for theoretical analysis. The times obtained

by simulation correlate surprisingly well with the ones computed theoretically.

The cache was four–way set associative, cache line size SCL = 27 Bytes, the size of the cache

was 220 Bytes (1 MB). It corresponds to the number of cache lines 213 (8192). The cache
organization corresponds to that found in current superscalar processors, e.g., MIPS R8000 or

MIPS R10000 (see [51]). In Table 7 we can see the theoretical, simulated times, and their ratio.
The CHR reflects average hit ratio for any node during the traversal. The cache hit ratio for

the node as the function of its depth is in Table 8.
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Representation
Random DFS Ordinary subtree Compact subtree

tA (theoretical) 1392.0 859.1 555.9 510.0

t′A (simulated) 987.1 629.4 445.6 379.3

ratio = tA/t
′
A 1.41 1.36 1.24 1.34

CHR[%] 35.8 69.8 83.5 90.3

Table 7 The times computed theoretically and obtained by the simulation

Depth
0 1 2 3 4 5 6 7 8 9 10 11

CHR (Random) 100 100 100 100 97 91 62 52 39 25 21 18
CHR (DFS) 100 100 100 100 100 93 79 84 58 56 63 51

CHR (Ordinary subtree) 100 100 100 100 100 100 97 73 90 85 53 79
CHR (Compact subtree) 100 100 100 100 100 100 100 100 69 100 100 100

Depth
12 13 14 15 16 17 18 19 20 21 22 23

CHR (Random) 21 19 19 0 0 0 0 0 0 0 0 0
CHR (DFS) 57 59 47 59 54 48 51 49 47 54 43 54

CHR (Ordinary subtree) 80 64 66 79 66 70 72 74 61 75 74 62
CHR (Compact subtree) 7 100 100 100 1 100 100 100 0 100 100 100

Table 8 The cache hit ratio for the node as the function of its depth

Here we conclude the part of the report concerning the cache sensitive representation. The
proposed methods of subtree representation for binary tree in main memory decrease the traver-

sal time by 62% and increase the hit ratio from 30% to 90%. Moreover, the memory required
for representation of the binary tree is decreased by 57%.

5 Future work

In this chapter of the report we show the shortcomings of currently used ASDSs. Further, we

propose some new ideas and problems that should be solved and algorithmized to improve the
efficiency of ASDSs.

The shortcomings of current ASDSs can be divided into two groups. The first group of
ASDSs is noted for ”reasonable” memory complexity, but rather high time complexity. It

includes the adaptive, nonuniform data structures as octree, BSP tree, and bounding-volume
hierarchy. These ASDSs try to adapt the local distribution of objects in the scene, but the

result is mostly a too deep hierarchy that is costly to traverse. The second group includes
the regular ASDSs. They are actually represented by SEADS (grid) and its modifications

(see [14] and [49]). In the opposite to the original algorithm, the hierarchical and recursive
modifications are nonuniform. The time complexity of regular ASDSs is lower, but the memory
requirements are O(n3) and the time complexity of preprocessing phase is also high especially

for recursive/hierarchical modifications.

Let us outline some ideas and problems that should be investigated during our future re-
search.

Open problem 1 Let Φ(Cn) define a set of rectangular parallepipeds representing the objects

bounding volumes for initial cell Cn. The parallepipeds of Φ(Cn) can overlap arbitrarily. Find
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set of parallepipeds Ψ with the properties:

a) cells of Φ(Cn) and Ψ(Cn) create the space subdivision SSD, i.e., arbitrary two cells of
Φ(Cn) do not overlap mutually and arbitrary cell of Φ(Cn) and arbitrary cell of Ψ(Cn) do not

overlap as well.

b) the sum∗ of surface areas of Ψ(Cn) is minimal:

SSDΨ(C
n)opt = {SSDΨ(C

n)opt ∈ Ω∗(SSDΨ(C
n)) : f(SSDΨ(C

n)opt) ≤ f(SSDΨ),

∀SSDΨ(C
n)opt ∈ SSD∗

Ψ(C
n)},

where

f(SSDΨ(C
n)) =

i=k(SSDΨ(Cn))
∑

i=0

surface of(cell)i

Open problem 2 Find the neighbouring mapping of cells of Φ and Ψ for SSD obtained by

solution of Open problem 1.

Conjecture 1 Open problem 1 is NP -complete.

Task 1 Find an arbitrary suboptimal algorithm for Open problem 1.

Open problem 3 Find some set Γ of non-overlapping rectangular parallepipeds for set of
Φ(Cn) of bounding volumes. The surface area of each parallepiped Γ is greater than p.SSCENE,

where SSCENE is surface area of bounding volume of scene and p ∈ (0, 1 >.

Task 2 Find the algorithm for building a BSP tree that uses set Γ of solved Open problem 3

for given set Φ. Built BSP tree covers the surfaces of all parallepipeds in Γ.

Open problem 4 Find set of overlapping rectangular parallepipeds Θ(Cn) for given set of

bounding volumes of objects Φ(Cn). It means that arbitrary parallepipeds of Θ(Cn) and Φ do
not overlap and two arbitrary parallepipeds of Φ can overlap. Each point of bounding volume
of scene is covered at least by one parallepiped Φ or Θ.

Open problem 5 Find neighbouring information for Open problem 4.

Conjecture 2 Open problem 4 is NP -complete.

Task 3 Find an arbitrary suboptimal algorithm for Open problem 4.

Open problem 6 Find a time estimation algorithm for ASDSs and given time based on the
distribution and geometrical properties of objects in the scene. The algorithm estimates the

cost of rendering of given scene for set of ASDSs with given reliability.

Open problem 7 Find such set SC of ASDSs † that every ASDS in SC works for particular

group of object primitives. These groups are distinguished by the different geometrical proper-
ties of objects that the groups contain. Moreover, find the efficient traversal algorithm for this

set.

In the current state of our research, we can define more problems and ideas that should
be solved and verified by implementation. The problem of ASDSs is very complex and very

challenging, and no optimal solution is known for arbitrary objects distribution.

∗This requirement utilizes the surface area heuristics.
†This schemes minimizes the duplication of objects in elementary cells.
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6 Conclusions

In the first part of the report we have reviewed well-known ASDSs. In the second part we out-
lined the problems that we have addressed in the past: a generalized method for experimental

evaluation of ASDSs, improvements of cost function for a BSP tree, and the cache-sensitive
representation for a BSP tree. Recently, we have been working with ideas concerning mostly

improvements of a BSP tree for ray-casting and visibility computations. Currently, we are
working with ideas towards more general and specific ASDSs. In the preceding chapter we gave

some challenging problems concerning ASDSs. We are going to solve our problems, implement,
and evaluate them both theoretically and experimentally.
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Dissertation thesis

Title: Adaptive data structures for image synthesis

Abstract

In the dissertation thesis we are going to address the problem of pair-of-points visibility

computation and the ray-casting problem. We will propose new data structure(s) with better
or even optimal time complexity and with reasonable memory complexity with respect to the

number of objects in the scene. Our method will also take into account the local distribution
of objects and their geometrical properties with regard to the visibility problem. We want to
solve the problem of scene coverage by both sets of non-overlapping rectangular parallepipeds

and overlapping rectangular parallepipeds. We want to attack the problem of estimation of
time complexity of rendering for different spatial data structures. We also want to find such

combinations of overlapping data structures that perform with smaller time complexity than
the original ones. Furthermore, we are going to analyze the spatial data structures theoretically

and verify the results of the analysis experimentally by implementation.
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