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Robot(6.7K) 429 MRays
sec Bike(12.6K) 217 MRays

sec Eiffel(14.9K) 499 MRays
sec Egoist(19.7K) 138 MRays

sec Tank(41.2K) 372 MRays
sec

Engine(61.7K) 181 MRays
sec Nissan(62.4K) 96 MRays

sec Lego(153.2K) 138 MRays
sec LegoX22(1862K) 49 MRays

sec IS4X8(514K) 222 MRays
sec

Figure 1: Test scenes complexity expressed as the number of NURBS surfaces + number of trimming curves varies from (6.7× 103 + 12×
103) to (514× 103 + 1589× 103). The speed of the GPU ray tracing for primary rays achieves 49 MRays/sec for complex scenes up to
499 MRays/secs for simple scenes on NVIDIA RTX 2080 Ti.

Abstract
The representation of geometric models by trimmed NURBS surfaces has become a standard in the CAD industry. In CAD
applications, the rendering of surfaces is usually solved by tessellation followed up by z-buffer rendering. Ray tracing of NURBS
surfaces has not been widely used in industry due to its computational complexity that hinders achieving real-time performance
in practice. We propose novel methods achieving faster point location search needed by trimming in the context of ray tracing
trimmed NURBS surfaces. The proposed 2D data structure based on kd-trees allows for faster ray tracing while it requires less
memory for its representation and less preprocessing time than previously published methods. Further, we show the current
state of the art for ray tracing trimmed NURBS surfaces on a GPU. With careful design and implementation, the number of rays
cast on a GPU may reach real-time performance in the order of tens to hundreds of million rays per second for moderately to
large complex scenes containing hundreds of thousands of NURBS surfaces and trimming curves.

In this supplementary material, we provide detailed results for
each test scene, the extended related work for ray tracing trimmed
NURBS surfaces (excluding trimming described in the main pa-
per), the visualizations for all tested trimming methods on three ex-
ample shapes, and visualizations of the number of trimming tests by
pseudo-color for the Nissan scene. In addition, we provide relevant
implementation details, including the memory layout of the trim-
ming data structure used in our ray tracing framework and pseu-
docode for point location search using the proposed trimming al-
gorithm.

1. Detailed Related Work on Ray Tracing Trimmed NURBS
surfaces

The rendering of NURBS surfaces has been a challenge since
the introduction of trimmed NURBS surfaces. The literature on
NURBS is vast and many algorithmic issues and data structures
are interrelated. We give an overview of the most important pa-
pers for the rendering of trimmed NURBS surfaces focusing on re-
cent work. We review the papers using tessellation, ray tracing, and
particularly the papers that deal with trimming for ray tracing of
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trimmed NURBS in the broader context. We also focus our survey
on the methods suitable for GPU implementation.

1.1. Rendering by GPU Tessellation

For direct interactive viewing with real-time performance in CAD
applications, the tessellation followed by z-buffer rendering is the
most widely used method [RHD89]. Tessellation can be adaptive,
driven by pixel error and utilize the tessellation capability of the
GPU [GBK05,ABGK04]. The tessellation of trimmed NURBS sur-
faces requires converting the trimming curves to a set of piece-
wise linear segments. The vertices of these linear segments are
the initial points used for triangular tessellation over the underly-
ing surface shape. The recent methods make use of the tessellation
units available in the modern GPUs [SS09,YBP14,PGLC∗18]. For
direct visualization, the triangles can be omitted using fragment
shaders [KKM07, KKM09, HH11, CAPD14]. Antialiasing has also
been addressed in the context of tessellation [SF19] by using sub-
pixel precise trimming based on the kd-trees.

There are also hybrid rendering approaches that use tessellation
on the GPU to obtain an initial estimate for ray tracing computa-
tion [ABS08]. Another hybrid technique [CBV∗14] uses tessella-
tion where possible and ray tracing only to avoid visible cracks in
the image while the artifacts are detected in image space. The Valk-
ering thesis [Val10] gave the details of yet another hybrid approach.

The algorithm used for trimming on the base NURBS surface de-
pends on whether it is used for tessellation with z-buffer or ray trac-
ing. For tessellation, the trimming methods approximate the trim-
ming boundary by linear segments until some error conditions in
projected 2D space or 3D space are met. The vertices on the bound-
ary are the initial points for the tessellation in the parametric space,
later converted to the 3D space.

1.2. Ray Tracing on the GPU

The pioneering work in ray tracing simple parametric surfaces di-
rectly without tessellation has been done in [Kaj82, Tot85, SB86,
Yan87, NSK90, LG90] on a CPU and could reach a non-interactive
response due to the complexity of underlying NURBS math and the
computational power of computers in those days.

The algorithms designed for modern GPUs must consider the
GPU architecture-specific features, namely massive parallelism
with thousands of threads, the relatively small count of registers
available on the computation unit, and the memory latency hiding
by context switching and relatively small cache in respect to the
high number of simultaneously running threads.

The existing methods can be divided into three groups based on
the approach used to compute the ray intersection with the NURBS
surface.

One method to compute the intersection of a ray against the
NURBS patch is based on Bézier clipping [NSK90, CSS97]. The
idea behind Bézier clipping is that the parametric space is itera-
tively reduced until the intersection is found. The algorithm allows
the computation of all the roots and can be computationally ex-
pensive. The original clipping method may suffer from degener-
ative cases and numerical robustness issues. The previous works

utilizing Bézier clipping on a CPU include the works of Ben-
thin et al. [BWS04] and Geimer and Abert [GA05]. The numer-
ically robust but more involved algorithm of Bézier clipping was
presented [EHS05] to handle special cases. However, the Bézier
clipping needs to compute a convex hull, is recursive in nature,
and hence may require many GPU registers. The method was
implemented on the GPU [PSS∗06] for approximating the trim-
ming curves with cubic ones. A similar approach was taken by
Schollmeyer and Fröhlich in [SF09]. Tejima et al. [TFM15] applied
Bézier clipping for Catmull-Clark subdivision surfaces converted
to cubic Bézier patches.

The second method computes the ray surface intersection di-
rectly on the base NURBS surface using numerical methods.
An example of such an approach is the work by Martin et
al. [MCFS00]. However, it is costly and potentially requires many
iterations. The ray is represented as an intersection of two perpen-
dicular planes. The original NURBS surface is subdivided into sub-
patches using a flatness criterion, where each subpatch contains the
reference to the original NURBS surface. The relatively small sub-
patches, including their bounding box, may provide a good initial
estimate to start Newton-Raphson iteration. Even if the subdivi-
sion to subpatches theoretically does not guarantee the convergence
(only within a limit), the concept can be successfully applied in a
practical algorithm. If the initial estimate for the intersection based
on the subpatch bounding box is close enough to the real root, the
method is very likely to converge to the actual intersection. To
provide a good initial estimate of the root, the concept of a close
approximate surface could be used [AGM06], sometimes called a
proxy geometry.

The third method, similar to the second one, is also direct and
uses an extra preprocessing step performing the lossless conversion
of NURBS surfaces into rational Bézier surfaces that are easier to
handle for numerical computation. This conversion makes numeri-
cal root finding more robust and faster while still representing the
intersection similarly to the previous methods, where the ray is rep-
resented by the intersection of two planes.

The comparison between the method of Bézier clipping, Newton
subdivision with many patches, and the variant of Newton iteration
with Krawczyk’s operator to guarantee the intersection on a CPU
was given by Benthin [BWN∗15, Chapter 6]. In the preprocess-
ing phase, the original NURBS surfaces are first approximated by
bicubic Bézier patches to allow for interactive rendering. Benthin
reports that the use of Krawczyk’s operator is very costly and re-
quires many iterations compared to the other two methods. Also,
the use of Bézier clipping results in relatively complex source code
that is not likely to be easily portable to a GPU. Therefore, in our
work, we have opted to use (sub)patches with flatness criterion in
the spirit of Martin et al. [MCFS00] for GPU implementation of
ray base NURBS surface intersection. Several NURBS subpatches
refer to a single base NURBS patch and each subpatch has its own
bounding box that provides a closer initial estimate of a ray inter-
section with the NURBS surface.

In general, to find the intersection of a ray with the base NURBS
surface, the iterative numerical method is needed to find an accu-
rate enough solution in as few as possible steps. There are many
root-finding methods with different convergence rates including bi-
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section, Newton-Raphson, secant, Broyden, etc. [PVTF01, Chapter
9]. The computation takes place in 2D parametric space where for
some (U,V ) coordinates the 3D point on the NURBS surfaces is
evaluated, and its distances to the two planes representing the ray
are computed. Several methods such as Newton-Raphson require
additionally to compute derivatives on the surface that is fortunately
possible. All iterative methods need to efficiently evaluate the 3D
point (and alternatively the derivatives) on the rational Bézier sur-
face for a given 2D point coordinates (U,V ) in parametric space.
There exist two algorithms to provide both points and derivatives
simultaneously, Mann-DeRose’s algorithm [MD95] with the com-
plexity O(N3) and Sederberg’s algorithm [Sed95] with the time
complexity O(N2). While the constants behind the Mann-DeRose
algorithm are lower, Sederberg’s algorithm requires a lower count
of registers and is better suited for the GPU implementation.

Motivated by the limited computation power of the hardware,
some previous algorithms restrict the maximum degree of the base
NURBS surfaces and curves, for example, to only a cubic degree of
curves [WF14, CAG∗13]. Such restrictions limit the applicability
of the algorithms as the input data in industrial practice may contain
much higher degrees or may result in approximate shape depiction
in rendered images. Some approximate approaches are designed
on that account to achieve the pixel or subpixel accuracy for pri-
mary rays. Binder et al. [BK18] presented a recent paper focusing
on untrimmed bicubic Bézier surfaces and Gregory patches starting
from Catmull-Clark subdivision surfaces. While the Catmull-Clark
surfaces with possible displacement textures based on subdivision
principles are used in the movie and game industry, they are not so
powerful modeling and general tools as general NURBS surfaces.
Another paper by Selgrad [SLM∗16] focuses on the BVH compres-
sion in the context of ray tracing subdivision and NURBS surfaces.

The previous work on algorithms for trimming in the context of
ray tracing trimmed NURBS surfaces is in Section 2 in the main
paper.

2. Ray Tracing Framework Overview

Let us briefly review the general ray tracing framework for ray trac-
ing trimmed NURBS surfaces in several steps below. It includes the
subject of our research, trimming, only as a single step.

• Step 1 – the conversion of trimmed NURBS surfaces and trim-
ming curves into rational Bézier surfaces without any loss of pre-
cision by the knot refinement [PT95],
• Step 2 – subdivision of Bézier surface patches into subpatches

until some flatness criteria are met, we follow the method of
Martin [MCFS00],
• Step 3 – pruning of void subpatches by trimming curves,
• Step 4 – building of the trimming data structure for each patch,
• Step 5 – building of the global acceleration data structure for ray

tracing of the subpatches’ tight bounding boxes,
• Step 6 – serialization of all the prepared data into the array

buffers and their transfer to the GPU memory,
• Step 7 – ray tracing over the built data structures

– 7 (a) traversing the data structure for ray tracing on a GPU to
the leaves containing Bézier surface subpatches,

– 7 (b) computing an intersection of the ray with the Bézier

surface subpatches, resulting in a 2D point given by UV co-
ordinates (u,v) in the parametric space,

– 7 (c) checking the 2D point (u,v) against the trimming curves
in 2D space.

The algorithm computing the trimming during ray tracing is only
a small part of the whole computation, Step 7(c), but it has to be
performed. In our implementation, we do not restrict the degree of
original NURBS surfaces nor trimming curves, and in this sense,
our method is general. Our paper focuses on Step 7(c) and Step 4
needed for trimming as described in Section 2, and related new
algorithms are given in Section 3 of the main paper.

Let us also briefly recall some other steps. Step 1 is well known
and exactly described in the book by Piegel and Tiler [PT95] for
both curves and surfaces. Step 6, memory layout and data transfer
from CPU to GPU, is trivial since the data on a CPU are put into
buffers and transferred to the GPU memory. Step 7(b), the compu-
tation of the intersection of a ray with an untrimmed Bézier patch,
is dealt with in papers such as [MCFS00].

2.1. Step 2 – Subdivision of Bézier Surfaces into Subpatches

The parametric patches can have significant curvature. Assum-
ing the ray intersection algorithm with base NURBS surface uses
Newton-Raphson iteration, the patches must be relatively flat to
provide a good initial estimate close to the real intersection. To
fulfill this assumption, the original Bézier patches are subdivided
into subpatches based on the flatness criterion as described in Mar-
tin [MCFS00], but the computation is done directly on converted
rational Bézier surfaces. Other subdivision algorithms and flatness
criteria are possible [Arm06], while the subdivision must be car-
ried out carefully as the created patches should ensure the conver-
gence of the root finding method used. Some surface refinement
algorithms on subdivision using normals criteria to evaluate flat-
ness can fail to detect the local maxima [Pet94, RHD89] and hence
are not suitable for practical use.

2.2. Step 3 – Pruning of Void Subpatches by Trimming Curves

Once the subpatches are created, an axis-aligned bounding box
is formed for each subpatch. Each subpatch is defined by control
points producing the surface that must lie inside the convex hull
of its control points, so the tight axis-aligned bounding box over
the control points must also contain the subpatch. Once the axis-
aligned box is projected into UV parametric space as line segments,
we can conservatively check whether a subpatch intersects a 2D
shape. If not, the subpatch is removed from the list of subpatches.
Depending on the use of trimming in a particular trimmed NURBS
model, it can result in a significant reduction of the subpatches. For
example, 60% to 80% subpatches can be removed in this step.

2.3. Step 5 and Step 7(a) – Ray Against Global Data Structure

These steps are addressed by many ray tracing surveys in detail,
e.g. [MSW19]. In principle, any efficient data structure for ray trac-
ing on a GPU can be used.

In our case, we have opted to use bounding volume hierarchy
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(BVH) with axis-aligned bounding boxes. The BVH is built by ge-
ometric median splits, along the longest axis first, then by round-
robin order [WHG84], and finally optimized by insertion [BHH13].
This optimization method provides the BVH with a small traversal
cost. Every BVH leaf with an axis-aligned bounding box has a ref-
erence to a single parametric patch consisting of the base surface
and the reference to the set of trimming curves. As described above,
the flatness criteria for base patch refinement produce relatively flat
axis-aligned boxes.

2.4. Step 7(b) – Ray Intersection with Base Surface Patch

In Step 1, we have converted trimmed NURBS surfaces to Bézier
patches without any loss of shape accuracy. In this step, we use a
direct algorithm Newton-Raphson method for ray-object intersec-
tion with the base surface represented by a Bézier surface, but not
directly on the NURBS surface as presented in [MCFS00]. For the
underlying evaluation algorithm of a 3D point given a pair (U,V )
we have tested both the Mann-DeRose algorithm [MD95] with the
complexity O(N3) and the Sederberg algorithm [Sed95] with com-
plexity O(N2). The ray-object intersection routine requires us to
subdivide the initial surface into patches following the flatness cri-
teria in [MCFS00, Section 2.3]. Sedeberg’s was faster by approxi-
mately 20 to 30% on a GPU, likely due to smaller register usage.

3. Traversal Algorithm Pseudocode

Algorithm 1 gives the pseudocode of the whole trimming process
based on traversing the kd-tree with curvesets (Algorithm 5), in-
cluding the parallel boxing given by Algorithm 2. Algorithm 3
describes the evaluation inside the curveset employing the binary
search and fast curve evaluation utilizing the Horner scheme in
Bernstein basis (Algorithm 4).

Algorithm 1 Trimming test for point p for kd-tree with curvesets.
Firstly, a kd-tree is traversed to find a leaf the point p lies inside.
If this leaf does not contain any curveset, the trimming test result
is decided by the precomputed number of intersections stored in
the leaf during the preprocessing phase. Otherwise, each curveset
has to be tested for intersection with the horizontal ray starting at
point p. The total count of intersections determines the result of
the trimming test. Curveset bounding boxes in conjunction with
parallel boxing are used to decrease the amount of the curvesets to
be evaluated for a ray-curve intersection.

function ISTRIMMED(p[up,vp])
lea f ← TRAVERSEKDTREE(p)
numIntersections← GETPRECOMPUTEDPARITY(lea f )
for each curveset cs stored in lea f do

[umin,vmin,umax,umax]← GETCURVESETBOUNDS(cs)
if (vp ≤ vmin) or (vp > vmax)) then

continue . point ouside curveset v range
end if
if (up > umax) then

continue . point is not affected by the curveset
end if
if (up ≤ umin) then

numIntersections← numIntersections+1
continue . intersection exists

end if
bbox← [umin,vmin,umax,umax]
[dmin,dmax]← GETCURVESETPARALLELBOX(cs)
pb← EVALPARALLELBOXING(p, dmin, dmax, bbox)
if (pb =+1) then

numIntersections← numIntersections+1
else if (pb = 0) then

numIntersections←
numIntersections+ BINSEARCHCURVESET(p,cs)

end if
end for
if ((numIntersections mod 2) = 0) then

return true
end if
return false

end function
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Algorithm 2 The function for parallel boxing pruning for point
p and a given parallel slab bounded by distances dmin and dmax
from the given bounding box diagonal. It computes distance d
of a point p from the bounding box diagonal taking into account
the curve/curveset orientation (L → R or R → L). Positive dis-
tance d always yields a point on the left side of the diagonal, and
hence intersection of a horizontal ray starting at point p with a
curve/curveset definitely exists for distances d higher than dmax
(function returns +1). Similarly, negative distance values d lower
than dmin detect no intersection (function returns −1). For point p
inside the parallel box the function returns 0.

function EVALPARALLELBOXING(p,dmin,dmax,bbox)
d← point p distance to bounding box bbox diagonal
if (d > dmax) then . p on the left of parallel box

return +1 . intersection exists
else if (d < dmin) then . p on the right of parallel box

return -1 . intersection does not exist
end if

. p inside parallel box - requires curve intersection test
return 0 . intersection may exist

end function

Algorithm 3 Binary search on trimming curves of curveset cs to
determine whether an intersection for a horizontal ray in a posi-
tive u-direction, starting at point p = [up,vp], with any curve in
the curveset exists (returns +1) or not (returns 0). The algorithm
is the same as one published by Schollmeyer et al. [SF19] except
for the parallel boxing part. Trim curves contained in the curveset
are stored linearly in increasing v-direction, and curveset orienta-
tion ∆u in u-direction is precomputed in preprocessing (∆u > 0
indicates orientation L → R; otherwise, orientation R → L is as-
sumed). When point p falls within the bounding box of any curve
(even after parallel boxing evaluation), then the ray-curve intersec-
tion algorithm BinSearchCurve has to be executed to determine on
which side of the curve point p lies (left side indicates intersection
- returns +1, right side no intersection - returns 0).

function BINSEARCHCURVESET(cs, p[up,vp])
imin← GETFIRSTCURVEINDEX(cs)
imax← imin +GETNUMBEROFCURVES(cs)−1
while true do . binary search loop

icenter← (imin + imax)/2
[umin,vmin,umax,vmax]← GETCURVEBOUNDS(icenter)
if (umin < up < umax) and (vmin < vp < vmax) then

bbox← [umin,vmin,umax,vmax]
[dmin,dmax]← GETCURVEPARALLELBOX(icenter)
pb← EVALPARALLELBOXING(p, dmin, dmax, bbox)
if (pb =+1) then

return +1 . intersection exists
else if (pb = 0) then . intersection may exist

return BINSEARCHCURVE(p, icenter)
end if
return 0 . intersection does not exist

end if
if (∆u > 0) then . curveset orientation L→ R

if (up > umin) and (vp < vmax) then
return 0 . intersection does not exist

end if
if (up < umax) and (vp > vmin) then

return +1 . intersection exists
end if

else . curveset orientation R→ L
if (up < umax) and (vp < vmax) then

return +1 . intersection exists
end if
if (up > umin) and (vp > vmin) then

return 0 . intersection does not exist
end if

end if
if (vp < vmin) then . binary search step

imax = icenter−1 . go to the left
else

imin = icenter +1 . go to the right
end if

end while
end function
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4. Fast Evaluation of Bézier Curves
As the derivative of the Bézier curve is not required, Algorithm
4 presented by Pavlidis [Pav82], known as the Horner scheme
in Bernstein basis, can be applied (the same method as used
in [SF19]). Exploiting the recursive derivation of the binomial coef-
ficients, the algorithm evaluates a Bézier curve of degree n inO(n)
steps using nested multiplications. The algorithm is also GPU-
friendly as it requires a small, constant number of registers to eval-
uate an arbitrary degree Bézier curve [SF19].

Algorithm 4 Fast algorithm for curve evaluation employing Horner
scheme in Bernstein basis. Note that if the input curve is rational
the control points Pi = [xi,yi] need to have their weights wi ap-
plied before the start of the algorithm (i.e to be pre-transformed
into homogeneous coordinates cpi = [wixi,wiyi,wi]) and the result-
ing point p needs to be divided by its weight p.w (i.e projected to
Euclidean space). The curve is given by index idx pointing into the
curve buffer where all curve data are serialized. The point to be
evaluated is given by the value of parameter t.

function EVALCURVE(t, idx)
cp← GETCURVECONTROLPOINTS(idx)
deg← GETCURVEDEGREE(idx)
u← 1.0− t . factored out (1− t)n

tn← 1.0 . factored out (t)n

bc← 1.0 . factored out binomial coefficient
p← u · cp[0] . first point with binomial coefficient = 1
for (int i = 1; i <= deg−1; i++) do

tn = tn · t
bc = bc · (deg− i+1)/i
p = (p+ tn ·bc · cp[i]) ·u

end for
p = p+ tn · t · cp[deg] . last point with binomial coeff. = 1
p = p/p.w . project to Euclidean space
return p

end function

5. Bisection Method for Bézier Curve Root-Finding
To test a ray-curve intersection (function BinSearchCurve in Algo-
rithm 3), we used a bisection that is a simple and robust method for
obtaining a root for a given function. We followed the approach in-
troduced by Schollmeyer et al. [SF19] and used an optimized ver-
sion of the bisection algorithm, which allows us to terminate the
search earlier once we know the point p is outside the searched
interval iteratively refined to converge to the root.

6. CUDA Implementation
The whole implementation in CUDA is divided into three kernels
that generate rays (primary or random), trace rays, and evaluate
shading. Ray tracing is implemented as one megakernel which tra-
verses BVH and for each patch that was hit, it executes the trim-
ming test (see function IsTrimmed in Algorithm 1). The megaker-
nel is executed on a 2D grid of blocks with 8×8 threads, which
we evaluated based on tests as the most suitable configuration for
primary rays.

All trimming data are serialized into buffers (see memory layout
section) stored in global memory. We also experimented with tex-
ture memory, the use of which proved to be less efficient on mod-
ern generations of NVIDIA graphics cards (architecture Turing and
Ampere) than global memory.

Algorithm 5 Algorithm to traverse a kd-tree for a given point
p. Kd-tree nodes are represented as a union of KdTreeInnerNode
and KdTreeLeaf structs introduced in the memory layout section.
Firstly, the point is tested against the bounding box of the root node,
followed by kd-tree traversal through the inner nodes until the leaf
is found.

function TRAVERSEKDTREE(p[up,vp])
[umin,vmin,umax,vmax]← GETROOTNODEBOUNDS()
if ((up > umax) || (up < umin)) then

return nullptr . out of bounds
end if
if ((vp > vmax) || (vp < vmin)) then

return nullptr . out of bounds
end if

. skip root bbox
nodeIdx← GETROOTNODEIDX()+2
while true do . traverse the kdtree

node← GETKDTREENODE(nodeIdx)
if (node.flagDimAndOffset & 0x80000000) then

break . leaf found
end if
if (node.flagDimAndOffset & 0x40000000) then

value← vp . subdivision in v direction
else

value← up . subdivision in u direction
end if

. index of the left child node
nodeIdx += node.flagDimAndOffset & 0x3FFFFFFF
if (value > node.splitCoordinate) then

nodeIdx++ . shift to the right child
end if

end while
return node

end function

The ray tracing kernels were compiled with a limitation of 96
registers for all implemented versions of trimming, which, as mea-
sured (see section 9.6), turned out to be the most suitable configu-
ration in terms of GPU occupancy.

7. Memory Layout

Figures 2 and 3 depict the memory layout of the trimming data
structure used in our implementation. The memory usage of the
layout was minimized. The data for parallel boxing requires 4 Bytes
and hence are placed into the otherwise unused memory padding
that must be done for the proper data alignment in memory.

Below we show the actual kd-tree node declaration and the data
interpretation. The kd-tree packing mode is equivalent to the one
described in the paper by Wald et al. [WSBW01], where one kd-
tree node is represented by 8 Bytes only. The kd-tree is built top-
down, going to the left child during the build, which allows avoid-
ing explicit storage of the left child offset in the leaf.
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Figure 2: The memory layout of the data structures for trimming
using a kd-tree built over the curves.
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float3
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float4
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float2
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Figure 3: The memory layout of the data structures for trimming
using a kd-tree built over the curvesets.

struct KdTreeInnerNode {
unsigned int flagDimAndOffset;
// bits 0..29 : offset bits to the left child
// (right child is stored next to it)
// bit 30 : split dimension (0=U, 1=V)
// bit 31 (sign): flag whether node is a leaf(0)
float splitCoordinate;

};
struct KdTreeLeaf {
unsigned int flagAndOffset;
// bits 0..30 : offset to first element
// bit 31 (sign) : flag whether node is
// a leaf(1)
unsigned int countAndParity;
// bits 0..30 : elements count
// bit 31 (sign) : precomputed parity

};

8. Implementation for Ray Tracing Trimmed NURBS
Surfaces

Even though the rendering libraries from big companies such
as Intel Embree 3.12.2 API and hence Ospray API [WJA∗17]
built on the top of Embree [WWB∗14], the NVIDIA OptiX API
7.2 [PBD∗10] allow specifying maximally cubic 3D curves, they
do not allow the specification of general curved surfaces, including
trimmed NURBS surfaces, as rendering primitives.

Despite the decade of existence of many modern APIs, the
trimmed NURBS surfaces for ray tracing are not supported. For
example, the CAD modeling packages, including ACIS geometric
kernel, C3D toolkit, and Parasolid library, do not feature ray trac-
ing capabilities as they are purely designed for geometric model-
ing. Other NURBS projects used for both open source and com-
mercial products such as OpenNURBS, LIBNURBS, NLib, SM-
Lib, TNSLib, GSNLib, and SISL libraries also have no support for
ray tracing. The only available trimmed NURBS implementation
of ray tracing is in BRL-CAD [Vel19] that is limited to CPU only
and features performance for complex scenes up to ≈ 3×106 rays
per second on a CPU for very simple scenes.

The current limited usage of ray-traced trimmed NURBS sur-
faces in applications is likely due to the intrinsic algebraic and
implementation complexity for trimmed NURBS surfaces and the
common belief in the CG community that ray tracing of trimmed
NURBS can only be slow.

For the reasons mentioned above, we have opted for our own
implementation on a GPU. We have implemented the previously
published algorithm with horizontal slabs [SF09] as a base method
that we take as a reference on the GPU. We opted for the implemen-
tation in CUDA that could be easily ported to OpenCL [MGM∗11].

9. Results
Below we describe the testing methodology and results for exten-
sive testing of the ray tracing algorithms for trimming approaches
published in previous papers and the newly proposed methods.

9.1. Test Scenes
Ten scenes used to evaluate the algorithms are depicted in Figure 1.
Table 1 shows the scene properties. All the datasets used for test-
ing are publicly available on the GrabCAD community webpages.
They contain only the trimmed NURBS surfaces, and there is no
simple triangle. The two large-scale scenes (LegoX22 and IS4X8)
were created in Rhinoceros 3D software by duplicating some mod-
els in space without instantiation of objects by a reference to eval-
uate the implemented algorithms properly.

9.2. Test Hardware and Methodology

We have used a computer with 128GB DDR3 RAM equipped with
CPU Intel I9-10900X with 10 cores and 19.25GB L2 cache, run-
ning MS Windows 10.0.18363 SR0.0. The NVIDIA driver version
460.93 and CUDA version 11.2 were used.

We performed testing on two different current GPU hardware
architectures to verify that the improvement is consistent on both
hardware architectures. The first GPU was NVIDIA RTX 2080 Ti
with 11GB RAM. The second GPU was NVIDIA RTX 3090 with
24GB RAM.

The tests were initiated by rendering a single frame 5 times to
warm up the GPU and then rendering the same frame 15 times
to evaluate each measurement on GPU properly. The shortest
recorded running time from the 15 measurements is reported in the
tables. There were outliers for running times of the frames due to
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Scene N[−] NB[−] NT H [−] NNC[−] NBC[−] NBCDx103 NT S NIT NHST Scov[%]
Robot 6756 12238 7445 37328 33775 1:18 2:5 3:11 22.35 4.65 4.86 51.51
Bike 12611 90396 12955 64372 176922 1:17 2:12 3:148 18.29 6.90 2.27 22.76
Eiffel 14880 17829 16691 133238 126921 1:88 2:1 3:38 12.99 2.76 7.23 20.82
Egoist 19706 159088 22918 115146 154081 1:48 2:33 3:73 28.54 15.96 7.80 18.48
Tank 48248 109832 50787 265630 206729 1:113 2:48 3:46 25.50 4.54 4.94 47.52
Engine 61724 233096 67014 314462 353738 1:122 2:48 3:184 30.29 11.52 5.97 37.30
Nissan 62463 665093 75492 346536 493586 1:136 2:65 3:293 57.04 16.31 7.83 56.75
Lego 153181 448626 170193 834907 822328 1:307 2:239 3:276 34.04 11.50 5.35 33.58
LegoX22 1862486 5369063 2061252 10083206 9876872 1:3739 2:2840 3:3297 63.32 23.20 7.07 46.47

IS4X8 514476 15859094 567946 2618992 6506071 1:692 2:304 3:5475 23.73 2.94 3.42 43.424:34 5:480

Table 1: The properties of test scenes used for measurement, the camera viewpoints correspond to images in the paper. N - count of
NURBS surfaces, NB - count of Bézier patches converted from NURBS surfaces, NT H - count of trimming holes, NNC - count of NURBS
trimming curves, NBC - count of Bézier trimming curves after conversion from NURBS trimming curves, NBCD - Bézier trimming curves
degree distribution, NT S - traversal steps per ray through BVH, NIT - intersection tests per ray through BVH (also ray-Bézier surface test
per ray), NHST - successful Bézier surface intersection tests per ray, ST - screen coverage ratio in percents.

the operating system behavior. Using median value or average/me-
dian value appeared to have a higher fluctuation than taking the
minimum time.

We have used three settings for shooting rays: (a) for real-time
rendering demonstrated in accompanying videos using four pri-
mary rays per pixel on FullHD image resolution (1920×1080),
totaling to 8.29 Mrays per frame. For testing the performance re-
ported in Tables (b) a 4K UHDTV resolution (3840×2160 pixels)
with 8 rays per pixel, totaling in 66.36×106 primary rays. The last
setting (c) also contains 66.36× 106 rays shot randomly through
the sphere, tightly enclosing the tight bounding box of the scene
geometry. This method produces a constant density of generated
random rays in space.

For setting (c), the random rays are generated on the fly directly
on the GPU, using the Halton generator of bases 2, 3, 5, and 7.
This results in a pretty uniform distribution of rays in space while
the rays are temporally incoherent. Each thread computes a list
of rays generated by subsequent indices of the Halton generator.
This method of rays generation is well reproducible and indepen-
dent of the rendering algorithm, including many other variables re-
quired for rendering algorithms (camera, light sources, surface re-
flectance). The source code to generate random rays in C++ as de-
scribed above is given in Listing 1 to allow for easy reproducibility.

1 // The C++ code to generate random lines in
2 // 3D scene with a constant density in space.
3 // The rays are highly incoherent.
4 #include <cmath>
5 #include <cassert>
6
7 // Generate Halton value, base is prime
8 // number: 2,3,5,7,11,13...
9 // Seed must be a prime integer > 1

10 double
11 HaltonValue(unsigned int seed, unsigned int base)
12 {
13 assert(seed > 0);
14 double h = 0.0;
15 double f;
16 double factor;
17
18 f = factor = 1.0 / (double)base;
19
20 while(seed > 0) {
21 h += (double)(seed % base) * factor;
22 seed /= base;
23 factor *= f;
24 }
25
26 return h;
27 }
28
29 // Generate a line on the sphere, lines uniformly
30 // distributed with a constant density in space.

31 // The method is to generate two points on the
32 // sphere with the random distribution and
33 // connect these two points. The sphere radius
34 // and center are specified.
35 void
36 GenerateGlobalLine(
37 double orig[3], double topoint[3], // output
38 const double radius, // input - sphere radius
39 const double center[3],
40 const double u0, const double u1,
41 const double u2, const double u3)
42 {
43 // First point
44 double direc1 = 2.0*M_PI*u0;
45 // z-coordinate .. uniform distribution
46 double alea = 1.0 - 2.0*u1;
47 // double direc2 = acos(alea);
48 double sindirec2 = sqrt(1.0 - alea*alea);
49 assert(sindirec2 >= 0.0);
50 assert(sindirec2 <= 1.0);
51
52 // Unit sphere, first, the point P1
53 orig[0] = center[0] + radius*cos(direc1) *

sindirec2; // x
54 orig[1] = center[1] + radius*sin(direc1) *

sindirec2; // y
55 orig[2] = center[2] + radius*alea; // z
56
57 // Second point, use two other values
58 direc1 = 2.0*M_PI*u2;
59 // z-coordinate .. uniform distribution
60 alea = 1.0 - 2.0*u3;
61 // double direc2 = acos(alea);
62 sindirec2 = sqrt(1.0 - alea*alea);
63 assert(sindirec2 >= 0.0);
64 assert(sindirec2 <= 1.0);
65
66 // Unit sphere, now the point P2
67 topoint[0] = center[0] + radius*cos(direc1) *

sindirec2; // x
68 topoint[1] = center[1] + radius*sin(direc1) *

sindirec2; // y
69 topoint[2] = center[2] + radius*alea; // z
70
71 #if 0
72 // You can compute normalized direction
73 // using the ray origin orig[]
74 dir[0] = topoints[0] - orig[0];
75 dir[1] = topoints[1] - orig[1];
76 dir[2] = topoints[2] - orig[2];
77 double mag = sqrt(dir[0]*dir[0] + dir[1]*dir[1]

+ dir[2]*dir[2]);
78 dir[0] /= mag;
79 dir[1] /= mag;
80 dir[2] /= mag;
81 #endif
82 return;
83 }
84
85 int
86 main(int argc, char *argv[])
87 {
88 // Specify the sphere enclosing the bounding
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89 // box of the scene
90 double center[3] = {0,0,0};
91 double radius = 100;
92 // The random line count to be generated
93 int N = 1920*1080;
94
95 // Here we generate the line segment with
96 // constant distribution in space
97 for(int i=0; i < N; i++) {
98 // Generate 4 random variables - using pseudo
99 // random generator, note that 2,3,5,7 must

100 // be used to work correctly
101 // The random value depends on the i in the

loop!!
102 double u0 = HaltonValue(i+1, 2);
103 double u1 = HaltonValue(i+1, 3);
104 double u2 = HaltonValue(i+1, 5);
105 double u3 = HaltonValue(i+1, 7);
106
107 double orig[3], topoint[3];
108
109 GenerateGlobalLine(
110 // two generated 3D points on the sphere
111 orig, topoint,
112 // sphere specification
113 radius, center,
114 // 4 random values with constant density
115 u0, u1, u2, u3);
116 } // for i
117
118 return 0;
119 }

Listing 1: The C++ implementation to generate random
incoherent rays with uniform distribution in space (i.e. constant
space density) used for the evaluation in the paper. The sphere must
be located in the center of the scene bounding box, and the sphere
diameter is equal to the length of the diagonal of the tight scene
bounding box.

9.3. Evaluating New Algorithms

Table 8 provides the legend describing the notation of individual
rows corresponding to the methods described in the main paper.

Table 9 shows the preprocessing time on a CPU, including the
parsing of the scene. Table 10 shows the performance in rays per
second for primary rays in detail for all the scenes and methods
on RTX 3090 expressed relatively, where the method of horizontal
slabs has been taken as the reference. Table 12 shows the perfor-
mance for shooting incoherent random rays. Table 11 and Table 13
show the performance of primary rays and random rays on RTX
2080 Ti.

Table 14 shows the overall memory consumption. Table 15
shows the memory needed by trimming curves and trimming ac-
celeration data structure. Table 16 shows the average count of trim-
ming tests per ray, demonstrating the reduction against the refer-
ence method, where the highest count is without data structure (the
slowest algorithm execution). Table 17 shows the average count of
traversal steps per ray through the trimming data structure. If no
data structure is used, the method represents a degenerated kd-tree
with a single leaf, so value 1 is reported. The average count of bi-
nary search steps is reported for horizontal slabs.

The four basic methods used to improve the kd-tree properties,
including parallel boxing for trimming algorithm, are not orthog-
onal. We can see the influence of individual methods and their
combined effect. We report here only 16+8 representative cases for
proposed data structures, three previous approaches, two of which
were improved by parallel boxing proposed in our paper. It gives in
total 29 methods tested.

In addition, we tested in total 240 combinations with different
parameter settings for all the scenes with kd-trees during our exper-
iments searching for the best constant values used in the techniques
as described in the main paper.

9.4. Random Rays versus Primary Rays
The speed of computation on both CPUs and GPUs is highly de-
pendent on the temporal and spatial data coherence that influences
the cache behavior. We have compared the performance of shooting
coherent primary rays against completely incoherent random rays
on the GPU, and the relative slowdown of incoherent random rays
to the same amount of primary rays is reported. The hit success for
random rays is different from primary rays. The averaged data for
the reference method are shown in Tables 18 and 19. The relative
improvements for our methods against the reference method show
a very similar pattern for random rays as for primary rays.

The performance for random rays is about 2.3× slower except
for the smallest scene, where likely the whole model fits into the
GPU cache. Random rays hit fewer surfaces, so another point of
view is to include the ratio of rays hitting the NURBS patches in
comparison, known as screen coverage for primary rays. The per-
formance of shooting random rays is 5× slower than for coherent
primary rays taking into account screen coverage. All the reported
speedups vary highly across the scenes.

9.5. Order of Trimming Curves Impact
The performance of both ray tracing base parametric surfaces and
trimming with parametric curves depends on their order. Let us re-
call that the order of the curve represents the number of control
points defining the curve. The degree of the curve is smaller by one
than the order of the curve.

The trimming takes more computation time in the ray tracing
evaluation if the order of parametric curves is higher. While the or-
der of some curves cannot be in general decreased without chang-
ing the curve shapes, it is possible to increase the order of curves by
inserting new control points without the change of curve shape. Be-
cause of the unavailability of the geometric data with higher-order
curves from professional engineering CAD tools we have simulated
this case by converting the available trimming curves to higher-
order ones. The curve degree elevation is realized by inserting new
control points into the curve so that the curve shape after the refine-
ment is not changed [PT95, Section 5.5]. All values describing the
newly created curves by refinement are non-zero.

We have tested the increase of order for eight methods, including
previously published reference methods and new ones. The rise in
curve order leads to a significant increase of computation time if
the trimming algorithm has to shoot a horizontal ray. When parallel
boxing is used, the cases for shooting horizontal rays are reduced,
and the computation time is only slightly increased. This provides
a significant advantage to the newly proposed algorithms with par-
allel boxing.

We show the order of surfaces and curves for the test scenes
in Table 1. The dependence of performance on the increase of
the order by a fixed value is shown in Table 2 for the reference
method [SF09] using horizontal slabs. We can see that with the
increase of curves order, the time spent on trimming can increase
moderately, even for big scenes and trimming curve order 15, the
decrease of performance is about 29%, the performance deteriora-
tion is higher for smaller scenes.

9.6. GPU Occupancy Impact
Figure 4 shows the dependence on setting the register count limit
on the GPU for CUDA for two methods on two scenes. This limit
is set before compilation. The number of registers used by partic-
ular routines sets the occupancy. The number of registers for one
thread is shown along the x-axis, the performance is shown relative
to the performance when setting no register limit for compilation.
According to the NVIDIA calculator for computing occupancy, it
was the most advantageous to use the limit of 96 registers. The pro-
gram executables compiled with this setting were used for all the
measurements.
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Timing/Scene Eiffel Nissan Lego AVG
Time Abs/Relative [msec] / [%]
1-LC+0 [msec] 125.28 811.99 372.06 436.44
1-LC+0 100.00 100.00 100.00 100.00
1-LC+3 107.65 101.44 102.46 103.85
1-LC+5 113.67 102.54 103.42 106.54
1-LC+7 127.53 105.30 106.31 113.05
1-LC+9 134.70 106.74 108.46 116.63
LC+12 154.15 111.26 113.37 126.26
LC+15 173.95 114.17 117.59 135.24
2-LC+B+0 [msec] 110.29 779.08 364.22 417.86
2-LC+B+0 100.00 100.00 100.00 100.00
2-LC+B+3 99.73 100.59 100.99 100.44
2-LC+B+5 99.28 100.91 101.10 100.43
2-LC+B+7 100.85 102.18 103.37 102.13
2-LC+B+9 101.54 102.22 103.68 102.48
2-LC+B+12 101.29 103.86 106.68 103.94
2-LC+B+15 102.17 104.92 107.89 104.99
3-HS[SF09]+0 [msec] 71.59 451.39 324.51 282.49
3-HS[SF09]+0 100.00 100.00 100.00 100.00
3-HS[SF09]+3 110.45 100.74 100.47 103.89
3-HS[SF09]+5 116.91 102.35 102.38 107.21
3-HS[SF09]+7 125.81 105.38 104.45 111.88
3-HS[SF09]+9 133.82 107.45 105.64 115.64
3-HS[SF09]+12 149.39 111.35 108.98 123.24
3-HS[SF09]+15 167.60 115.76 111.77 131.71
4-HS+B+0 [msec] 64.73 441.27 321.99 276.00
4-HS+B+0 100.00 100.00 100.00 100.00
4-HS+B+3 101.26 100.04 99.69 100.33
4-HS+B+5 101.45 100.50 100.18 100.71
4-HS+B+7 103.02 100.87 101.85 101.91
4-HS+B+9 106.20 101.85 102.04 103.36
4-HS+B+12 105.50 104.27 104.48 104.75
4-HS+B+15 104.81 105.49 105.92 105.41
5-KC+0 [msec] 74.25 448.17 324.42 282.28
5-KC+0 100.00 100.00 100.00 100.00
5-KC+3 113.81 101.16 101.04 105.34
5-KC+5 124.66 104.17 103.12 110.65
5-KC+7 143.94 107.96 106.21 119.37
5-KC+9 154.97 111.58 108.51 125.02
5-KC+12 180.68 117.97 113.01 137.22
5-KC+15 205.89 123.16 117.08 148.71
7-KC+B+0 [msec] 63.88 432.73 318.61 271.74
7-KC+B+0 100.00 100.00 100.00 100.00
7-KC+B+3 100.17 99.62 100.94 100.24
7-KC+B+5 101.26 101.01 101.98 101.42
7-KC+B+7 100.73 103.11 103.46 102.43
7-KC+B+9 102.98 104.44 103.72 103.71
7-KC+B+12 103.91 107.42 107.67 106.33
7-KC+B+15 106.00 109.25 109.15 108.13
14-KCS+0 [msec] 76.06 449.46 326.19 283.90
14-KCS+0 100.00 100.00 100.00 100.00
14-KCS+3 115.06 102.16 101.69 106.30
14-KCS+5 125.61 104.82 104.26 111.56
14-KCS+7 144.41 109.20 106.97 120.19
14-KCS+9 154.32 111.91 108.31 124.85
14-KCS+12 181.57 118.80 112.78 137.72
14-KCS+15 203.88 123.67 116.90 148.15
16-KCS+B+0 [msec] 64.39 432.12 319.09 271.87
16-KCS+B+0 100.00 100.00 100.00 100.00
16-KCS+B+3 100.22 100.43 100.80 100.48
16-KCS+B+5 99.82 102.27 102.24 101.44
16-KCS+B+7 102.44 104.28 103.41 103.38
16-KCS+B+9 103.33 105.69 105.44 104.82
16-KCS+B+12 103.56 108.09 107.01 106.22
16-KCS+B+15 105.56 110.25 110.05 108.62

Table 2: The increase of the computation time on NVIDIA RTX
3090 when increasing the order of trimming curves for three scenes
of different complexity.
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Figure 4: The relative GPU performance for two methods (hori-
zontal slabs, kd-tree) on scenes Eiffel and Nissan. The red curve
shows performance for scene Eiffel and horizontal slabs, the green
curve for scene Nissan and horizontal slabs, the blue curve for
scene Eiffel and kd-tree, and the orange curve for scene Nissan
and kd-tree.

Indirect profiling of trimming algorithm
Computation time[msec] Eiffel Nissan Lego
×1 (orig) 87.8 467.0 333.3
×3 111.2 526.6 363.1
×5 138.4 587.7 396.3
×10 205.3 747.0 478.5

Table 3: The increase of the computation time for running the trim-
ming curves algorithm repeatedly on NVIDIA RTX 3090.

9.7. Indirect Profiling of GPU Ray Tracing
The ray tracing on the GPU is implemented in a single megaker-
nel that does not allow for simple profiling available for CPUs by
NVIDIA Nsight software. Therefore, we have used the following
indirect profiling method. We have inserted multiple executions of
the same operation (either ray-patch intersection test or trimming
test) to measure the increase in computation time for the routine. It
is not an exact method as the cache behavior can influence the mea-
surement, but we assume that the higher GPU occupancy results in
a time increase that is approximately linear with the operation ex-
ecution count. The measured data for three scenes to demonstrate
repeated trimming test influence are shown in Tables 3 and 4, and
Tables 5 and 6 demonstrate the effect of repeated ray-base Bézier
patch intersection tests. Setting (b) was used for shooting the rays.

Analyzing the data measured for three scenes, the ray intersec-
tion with the base Bézier patch, including trimming, varied approx-
imately between 55% to 80% of the whole computation time. The
rest of computation, 20% to 45% for large models, is spent by
traversal of the BVH.

It shows the system is well balanced; the BVH traversal code
is very simple for a cost-optimized BVH hierarchy on the GPU. It
documents that the intersection of the ray against trimmed paramet-
ric patches is efficient.

The time required for trimming in the reference algorithm takes
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Indirect profiling of trimming algorithm
Computation time[msec] Eiffel Nissan Lego
×1 (orig) 131.1 709.5 491.6
×3 184.7 873.0 573.5
×5 228.1 1012.9 648.1
×10 328.8 1312.8 810.7

Table 4: The increase of the computation time for running the trim-
ming curves algorithm repeatedly on NVIDIA RTX 2080 Ti.

Indirect profiling of ray-base Bézier patch intersection
Computation time[msec] Eiffel Nissan Lego
×1 (orig) 84.4 464.2 331.7
×3 162.1 1116.7 829.7
×5 239.6 1773.1 1335.1
×10 432.8 3412.6 2592.4

Table 5: The increase of the computation time for running repeat-
edly the ray to base Bézier patch intersection algorithm on NVIDIA
RTX 3090.

between 4 to 20% of the whole computation time in our tests for
the three scenes. It gives us the space to improve on the total com-
putation time; although it is an estimation only since for repeated
execution, the data remains in the cache of a multiprocessor, so the
second and further execution of the same code is relatively faster.
On a GPU, it depends on the memory access pattern, the compu-
tation is memory bound. Therefore the interval 4 to 20% on tested
scenes is rather a lower bound, the real time taken by trimming
must be higher. That is clear for the Eiffel scene, where we achieve
the best improvement on kd-trees by 25% of the total time, while
rough estimation from the indirect profiling reports that only 20%
is taken by trimming.

9.8. Profiling by Saving Queries
Because the method in the previous section with indirect profiling
can be inaccurate with caches, we have also tried to estimate the im-
provement of our algorithm in a different way. We have saved the
trimming queries in the first pass to the array. Then in the second
pass, we have avoided computing traversal through BVH, the inter-
section of a ray with the base NURBS surface, and executed only
saved queries in the same order as for ray tracing. The achieved
speedups are shown for all scenes and methods in Table 20 for pri-
mary rays and in Table 21 for random rays.

Although the method is also not correct as it is a different megak-
ernel hence a different count of registers used, data transfer, cache

Indirect profiling of ray-base Bézier patch intersection
Computation time[msec] Eiffel Nissan Lego
×1 (orig) 134.1 707.0 490.7
×3 242.2 1636.5 1196.7
×5 345.2 2723.8 1939.3
×10 608.1 5394.0 4062.5

Table 6: The increase of the computation time for running repeat-
edly the ray to base Bézier patch intersection algorithm on NVIDIA
RTX 2080 Ti.

Scene Eiffel Nissan Lego
CUDA 11.44ms 59.89ms 105.23ms
OpenCL 16.31ms 64.08ms 107.77ms
OpenGL FS 53.16ms 323.54ms 797.46ms
OpenGL CS 63.02ms 378.54ms 1354.31ms

Slowdown to CUDA
OpenCL/CUDA ×1.43 ×1.07 ×1.02
(OpenGL FS)/CUDA ×4.65 ×5.40 ×7.58
(OpenGL CS)/CUDA ×5.51 ×6.32 ×12.87

Table 7: The GPU languages results for three scenes and the same
camera view to allow for mutual comparison. This comparison was
measured on NVIDIA RTX 2080 Ti.

behavior, etc., it shows that a potential performance improvement
for the best method is significant against the reference method. The
GPU performance could be doubled using the proposed data struc-
ture with kd-trees for random rays. The performance for coherent
queries given by primary rays is about three times higher than for
queries induced by random rays.

9.9. Different GPU Languages
Before we started the algorithm implementation in CUDA, we
wanted to know how fast the execution of ray tracing of trimmed
NURBS surfaces can be on a GPU depending on the choice of GPU
programming language. Therefore we have implemented a refer-
ence algorithm with horizontal slabs in basically all other three
common languages used in addition to NVIDIA CUDA for GPU
programming, namely OpenCL, OpenGL with fragment shaders,
and OpenGL with compute shaders. The four different implemen-
tations of the same algorithm were verified for correctness, provid-
ing the same numerical results for the same rays on different scenes
and hence the same images.

We show the performance of trimmed NURBS surfaces using
the trimming algorithm based on horizontal slabs in four differ-
ent languages; CUDA [NVI21], OpenCL [MGM∗11], OpenGL
GLSL [SG13] with fragment shader, and OpenGL GSL with com-
pute shader. The tests were measured on RTX 2080 Ti.

Table 7 contains the comparison for a subset of test scenes when
the trimming algorithm with horizontal slabs was implemented us-
ing four different GPU languages. The NVIDIA CUDA is slightly
faster than the NVIDIA OpenCL implementation. However, the
implementation in OpenGL GLSL with fragment shader is ap-
proximately six times slower on average than the implementation
in CUDA. The implementation in OpenGL GLSL with compute
shader is even slower than the implementation in OpenGL GLSL
with fragment shaders.

Therefore we have decided to use the only CUDA for the imple-
mentation of all algorithms and overall testing.

Acknowledgements
The authors acknowledge the support of the OP VVV MEYS
funded project CZ.02.1.01/0.0/0.0/16_019/0000765 “Research
Center for Informatics”. We would like to thank GrabCAD com-
munity for exposing many trimmed NURBS models.

References
[ABGK04] ÁKOS BALÁZS, GUTHE M., KLEIN R.: Fat borders: gap

filling for efficient view-dependent LOD NURBS rendering. Comput-
ers & Graphics 28, 1 (2004), 79–85. doi:https://doi.org/10.
1016/j.cag.2003.10.007. 2

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

https://doi.org/https://doi.org/10.1016/j.cag.2003.10.007
https://doi.org/https://doi.org/10.1016/j.cag.2003.10.007


J. Sloup & V. Havran / Optimizing Ray Tracing of Trimmed NURBS Surfaces on the GPU – supplementary

[ABS08] ABERT O., BRÖCKER M., SPRING R.: Accelerating rendering
of nurbs surfaces by using hybrid ray tracing. In WSCG (2008), pp. 261–
268. 2

[AGM06] ABERT O., GEIMER M., MULLER S.: Direct and fast ray
tracing of nurbs surfaces. In 2006 IEEE Symposium on Interactive Ray
Tracing (2006), pp. 161–168. doi:10.1109/RT.2006.280227. 2

[Arm06] ARMSTRONG J.: Recursive Subdivision, 10 2006. arXiv:
TechNoteTN-06-005. 3

[BHH13] BITTNER J., HAPALA M., HAVRAN V.: Fast Insertion-Based
Optimization of Bounding Volume Hierarchies. Computer Graphics Fo-
rum 32, 1 (2013), 85–100. URL: http://dx.doi.org/10.1111/
cgf.12000, doi:10.1111/cgf.12000. 4

[BK18] BINDER N., KELLER A.: Massively parallel stackless ray tracing
of catmull-clark subdivision surfaces, 2018. arXiv:1811.03510. 3

[BWN∗15] BENTHIN C., WOOP S., NIESSNER M., SELGRAD K.,
WALD I.: Efficient ray tracing of subdivision surfaces using tessellation
caching. In Proceedings of the 7th Conference on High-Performance
Graphics (New York, NY, USA, 2015), HPG ’15, Association for Com-
puting Machinery, p. 5–12. URL: https://doi.org/10.1145/
2790060.2790061, doi:10.1145/2790060.2790061. 2

[BWS04] BENTHIN C., WALD I., SLUSALLEK P.: Interactive Ray Trac-
ing of Free-Form Surfaces. In Proceedings of Afrigraph 2004 (November
2004). 2

[CAG∗13] CONCHEIRO R., AMOR M., GIL M., PADRÓN E. J., MAR-
TORELL X.: Rendering of bézier surfaces on handheld devices. J. WSCG
21, 3 (2013), 205–214. URL: http://wscg.zcu.cz/jwscg/J_
WSCG_2013/!_2013_J_WSCG-3.pdf. 3

[CAPD14] CONCHEIRO R., AMOR M., PADRÓN E. J., DOGGETT
M.: Interactive rendering of nurbs surfaces. Computer-Aided Design
56 (2014), 34–44. URL: https://www.sciencedirect.com/
science/article/pii/S0010448514001237, doi:https:
//doi.org/10.1016/j.cad.2014.06.005. 2

[CBV∗14] CLAUX F., BARTHE L., VANDERHAEGHE D., JESSEL
J.-P., PAULIN M.: Crack-free rendering of dynamically tesselated
b-rep models. Computer Graphics Forum 33, 2 (2014), 263–272.
URL: https://onlinelibrary.wiley.com/doi/abs/
10.1111/cgf.12308, arXiv:https://onlinelibrary.
wiley.com/doi/pdf/10.1111/cgf.12308, doi:https:
//doi.org/10.1111/cgf.12308. 2

[CSS97] CAMPAGNA S., SLUSALLEK P., SEIDEL H.-P.: Ray tracing of
spline surfaces: Bézier clipping, Chebyshev boxing, and bounding vol-
ume hierarchy - a critical comparison with new results. The Visual Com-
puter 13, 6 (1997), 265–282. 2

[EHS05] EFREMOV A., HAVRAN V., SEIDEL H.-P.: Robust and Nu-
merically Stable Bézier Clipping Method for Ray Tracing NURBS Sur-
faces. In Proceedings of the 21st Spring Conference on Computer Graph-
ics (New York, NY, USA, 2005), SCCG ’05, Association for Comput-
ing Machinery, p. 127–135. URL: https://doi.org/10.1145/
1090122.1090144, doi:10.1145/1090122.1090144. 2

[GA05] GEIMER M., ABERT O.: Interactive ray tracing of trimmed bicu-
bic bézier surfaces without triangulation. In WSCG (2005). 2

[GBK05] GUTHE M., BALÁZS A., KLEIN R.: GPU-based trimming and
tessellation of NURBS and T-Spline surfaces. ACM Trans. Graph. 24,
3 (July 2005), 1016–1023. URL: https://doi.org/10.1145/
1073204.1073305, doi:10.1145/1073204.1073305. 2

[HH11] HANNIEL I., HALLER K.: Direct rendering of solid cad models
on the gpu. In 2011 12th International Conference on Computer-Aided
Design and Computer Graphics (2011), pp. 25–32. doi:10.1109/
CAD/Graphics.2011.63. 2

[Kaj82] KAJIYA J. T.: Ray tracing parametric patches. In Proceedings of
the 9th Annual Conference on Computer Graphics and Interactive Tech-
niques (New York, NY, USA, 1982), SIGGRAPH ’82, Association for
Computing Machinery, p. 245–254. URL: https://doi.org/10.
1145/800064.801287, doi:10.1145/800064.801287. 2

[KKM07] KRISHNAMURTHY A., KHARDEKAR R., MCMAINS S.: Di-
rect evaluation of nurbs curves and surfaces on the gpu. In Proceed-
ings of the 2007 ACM Symposium on Solid and Physical Modeling (New
York, NY, USA, 2007), SPM ’07, Association for Computing Machin-
ery, p. 329–334. URL: https://doi.org/10.1145/1236246.
1236293, doi:10.1145/1236246.1236293. 2

[KKM09] KRISHNAMURTHY A., KHARDEKAR R., MC-
MAINS S.: Optimized GPU evaluation of arbitrary degree

nurbs curves and surfaces. Computer-Aided Design 41, 12
(2009), 971–980. URL: https://www.sciencedirect.
com/science/article/pii/S0010448509001833,
doi:https://doi.org/10.1016/j.cad.2009.06.015.
2

[LG90] LISCHINSKI D., GONCZAROWSKI J.: Improved techniques for
ray tracing parametric surfaces. The Visual Computer 6, 3 (1990), 134–
152. 2

[MCFS00] MARTIN W., COHEN E., FISH R., SHIRLEY P.: Practical
ray tracing of trimmed nurbs surfaces. J. Graph. Tools 5, 1 (Jan. 2000),
27–52. URL: https://doi.org/10.1080/10867651.2000.
10487519, doi:10.1080/10867651.2000.10487519. 2, 3, 4,
14

[MD95] MANN S., DEROSE T.: Computing values and derivatives of
bézier and b-spline tensor products. Computer Aided Geometric Design
12, 1 (1995), 107–110. URL: https://www.sciencedirect.
com/science/article/pii/016783969400030V, doi:
https://doi.org/10.1016/0167-8396(94)00030-V. 3, 4

[MGM∗11] MUNSHI A., GASTER B., MATTSON T. G., FUNG J.,
GINSBURG D.: OpenCL Programming Guide, 1st ed. Addison-Wesley
Professional, 2011. 7, 11

[MSW19] MCGUIRE M., SHIRLEY P., WYMAN C.: Introduction to real-
time ray tracing. In ACM SIGGRAPH 2019 Courses (New York, NY,
USA, 2019), SIGGRAPH ’19, Association for Computing Machinery.
URL: https://doi.org/10.1145/3305366.3328047, doi:
10.1145/3305366.3328047. 3

[NSK90] NISHITA T., SEDERBERG T., KAKIMOTO M.: Ray tracing
trimmed rational surface patches. vol. 24, pp. 337–345. doi:10.
1145/97879.97916. 2

[NVI21] NVIDIA CORPORATION: NVIDIA CUDA C programming
guide, 2021. Version 11.2. 11

[Pav82] PAVLIDIS T.: Algorithms for Graphics and Image Processing.
Springer Verlag, 1982. 6

[PBD∗10] PARKER S. G., BIGLER J., DIETRICH A., FRIEDRICH H.,
HOBEROCK J., LUEBKE D., MCALLISTER D., MCGUIRE M., MOR-
LEY K., ROBISON A., STICH M.: Optix: A general purpose ray
tracing engine. In ACM SIGGRAPH 2010 Papers (New York, NY,
USA, 2010), SIGGRAPH ’10, Association for Computing Machinery.
URL: https://doi.org/10.1145/1833349.1778803, doi:
10.1145/1833349.1778803. 7

[Pet94] PETERSON J. W.: Tessellation of NURB Surfaces. Academic
Press Professional, Inc., USA, 1994, p. 286–320. 3

[PGLC∗18] PALOMAR R., GÓMEZ-LUNA J., CHEIKH F. A.,
OLIVARES-BUENO J., ELLE O. J.: High-performance computation
of bézier surfaces on parallel and heterogeneous platforms. Interna-
tional Journal of Parallel Programming 46, 6 (Dec 2018), 1035–1062.
URL: https://doi.org/10.1007/s10766-017-0506-1,
doi:10.1007/s10766-017-0506-1. 2

[PSS∗06] PABST H., SPRINGER J. P., SCHOLLMEYER A., LENHARDT
R., LESSIG C., FROEHLICH B.: Ray Casting of Trimmed NURBS Sur-
faces on the GPU. In 2006 IEEE Symposium on Interactive Ray Tracing
(2006), pp. 151–160. doi:10.1109/RT.2006.280226. 2

[PT95] PIEGL L., TILLER W.: The NURBS book. Springer-Verlag, 1995.
3, 9

[PVTF01] PRESS W. H., VETTERLING W. T., TEUKOLSKY S. A.,
FLANNERY B. P.: Numerical Recipes in C++: The Art of Scientific
Computing, 2nd ed. Cambridge University Press, USA, 2001. 3

[RHD89] ROCKWOOD A., HEATON K., DAVIS T.: Real-time render-
ing of trimmed surfaces. In Proceedings of the 16th Annual Confer-
ence on Computer Graphics and Interactive Techniques (New York, NY,
USA, 1989), SIGGRAPH ’89, Association for Computing Machinery,
p. 107–116. URL: https://doi.org/10.1145/74333.74344,
doi:10.1145/74333.74344. 2, 3

[SB86] SWEENEY M. A. J., BARTELS R. H.: Ray tracing free-form b-
spline surfaces. IEEE Computer Graphics and Applications 6, 2 (1986),
41–49. doi:10.1109/MCG.1986.276691. 2

[Sed95] SEDERBERG T. W.: Point and tangent computation of tensor
product rational bézier surfaces. Computer Aided Geometric Design 12,
1 (1995), 103–106. URL: https://www.sciencedirect.com/
science/article/pii/016783969400029R, doi:https:
//doi.org/10.1016/0167-8396(94)00029-R. 3, 4

[SF09] SCHOLLMEYER A., FRÖHLICH B.: Direct trimming of nurbs
surfaces on the GPU. In ACM SIGGRAPH 2009 Papers (New York, NY,

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

https://doi.org/10.1109/RT.2006.280227
http://arxiv.org/abs/TechNote TN-06-005
http://arxiv.org/abs/TechNote TN-06-005
http://dx.doi.org/10.1111/cgf.12000
http://dx.doi.org/10.1111/cgf.12000
https://doi.org/10.1111/cgf.12000
http://arxiv.org/abs/1811.03510
https://doi.org/10.1145/2790060.2790061
https://doi.org/10.1145/2790060.2790061
https://doi.org/10.1145/2790060.2790061
http://wscg.zcu.cz/jwscg/J_WSCG_2013/!_2013_J_WSCG-3.pdf
http://wscg.zcu.cz/jwscg/J_WSCG_2013/!_2013_J_WSCG-3.pdf
https://www.sciencedirect.com/science/article/pii/S0010448514001237
https://www.sciencedirect.com/science/article/pii/S0010448514001237
https://doi.org/https://doi.org/10.1016/j.cad.2014.06.005
https://doi.org/https://doi.org/10.1016/j.cad.2014.06.005
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.12308
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.12308
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.12308
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.12308
https://doi.org/https://doi.org/10.1111/cgf.12308
https://doi.org/https://doi.org/10.1111/cgf.12308
https://doi.org/10.1145/1090122.1090144
https://doi.org/10.1145/1090122.1090144
https://doi.org/10.1145/1090122.1090144
https://doi.org/10.1145/1073204.1073305
https://doi.org/10.1145/1073204.1073305
https://doi.org/10.1145/1073204.1073305
https://doi.org/10.1109/CAD/Graphics.2011.63
https://doi.org/10.1109/CAD/Graphics.2011.63
https://doi.org/10.1145/800064.801287
https://doi.org/10.1145/800064.801287
https://doi.org/10.1145/800064.801287
https://doi.org/10.1145/1236246.1236293
https://doi.org/10.1145/1236246.1236293
https://doi.org/10.1145/1236246.1236293
https://www.sciencedirect.com/science/article/pii/S0010448509001833
https://www.sciencedirect.com/science/article/pii/S0010448509001833
https://doi.org/https://doi.org/10.1016/j.cad.2009.06.015
https://doi.org/10.1080/10867651.2000.10487519
https://doi.org/10.1080/10867651.2000.10487519
https://doi.org/10.1080/10867651.2000.10487519
https://www.sciencedirect.com/science/article/pii/016783969400030V
https://www.sciencedirect.com/science/article/pii/016783969400030V
https://doi.org/https://doi.org/10.1016/0167-8396(94)00030-V
https://doi.org/https://doi.org/10.1016/0167-8396(94)00030-V
https://doi.org/10.1145/3305366.3328047
https://doi.org/10.1145/3305366.3328047
https://doi.org/10.1145/3305366.3328047
https://doi.org/10.1145/97879.97916
https://doi.org/10.1145/97879.97916
https://doi.org/10.1145/1833349.1778803
https://doi.org/10.1145/1833349.1778803
https://doi.org/10.1145/1833349.1778803
https://doi.org/10.1007/s10766-017-0506-1
https://doi.org/10.1007/s10766-017-0506-1
https://doi.org/10.1109/RT.2006.280226
https://doi.org/10.1145/74333.74344
https://doi.org/10.1145/74333.74344
https://doi.org/10.1109/MCG.1986.276691
https://www.sciencedirect.com/science/article/pii/016783969400029R
https://www.sciencedirect.com/science/article/pii/016783969400029R
https://doi.org/https://doi.org/10.1016/0167-8396(94)00029-R
https://doi.org/https://doi.org/10.1016/0167-8396(94)00029-R


J. Sloup & V. Havran / Optimizing Ray Tracing of Trimmed NURBS Surfaces on the GPU – supplementary

USA, 2009), SIGGRAPH ’09, Association for Computing Machinery.
URL: https://doi.org/10.1145/1576246.1531353, doi:
10.1145/1576246.1531353. 2, 7, 9, 14

[SF19] SCHOLLMEYER A., FROEHLICH B.: Efficient and Anti-Aliased
Trimming for Rendering Large NURBS Models. IEEE Trans Vis Comput
Graph 25, 3 (Mar 2019), 1489–1498. 2, 5, 6, 14

[SG13] SHREINER D., GROUP T. K. O. A. W.: OpenGL Programming
Guide: The Official Guide to Learning OpenGL, Versions 4.3, 8th ed.
Addison-Wesley Professional, 2013. 11

[SLM∗16] SELGRAD K., LIER A., MARTINEK M., BUCHENAU C.,
GUTHE M., KRANZ F., SCHÄFER H., STAMMINGER M.: A com-
pressed representation for ray tracing parametric surfaces. ACM Trans.
Graph. 36, 1 (Nov. 2016). URL: https://doi.org/10.1145/
2953877, doi:10.1145/2953877. 3

[SS09] SCHWARZ M., STAMMINGER M.: Fast GPU-based adaptive tes-
sellation with CUDA. Computer Graphics Forum 28, 2 (Proceedings of
Eurographics 2009) (Mar. 2009), 365–374. 2

[TFM15] TEJIMA T., FUJITA M., MATSUOKA T.: Direct ray tracing
of full-featured subdivision surfaces with bezier clipping. Journal of
Computer Graphics Techniques (JCGT) 4, 1 (March 2015), 69–83. URL:
http://jcgt.org/published/0004/01/04/. 2

[Tot85] TOTH D. L.: On ray tracing parametric surfaces. In SIG-
GRAPH ’85: Proceedings of the 12th annual conference on Computer
graphics and interactive techniques (1985), ACM Press, pp. 171–179.
doi:http://doi.acm.org/10.1145/325334.325233. 2

[Val10] VALKERING E.: Ray tracing nurbs surfaces using cuda, 2010. 2

[Vel19] VELYKODNIY S.: Reengineering of open software system of 3d
modeling brl-cad. Innovative Technologies and Scientific Solutions for
Industries (09 2019), 62–71. doi:10.30837/2522-9818.2019.
9.062. 7

[WF14] WEI F., FENG J.: Real-time rendering of algebraic b-spline
surfaces via bézier point insertion. Science China Information Sci-
ences 57, 1 (Jan 2014), 1–15. URL: https://doi.org/10.1007/
s11432-012-4722-4, doi:10.1007/s11432-012-4722-4.
3

[WHG84] WEGHORST H., HOOPER G., GREENBERG D. P.: Im-
proved computational methods for ray tracing. ACM Trans. Graph.
3, 1 (Jan. 1984), 52–69. URL: https://doi.org/10.1145/
357332.357335, doi:10.1145/357332.357335. 4

[WJA∗17] WALD I., JOHNSON G., AMSTUTZ J., BROWNLEE C.,
KNOLL A., JEFFERS J., GUNTHER J., NAVRATIL P.: Ospray - a
cpu ray tracing framework for scientific visualization. IEEE Trans-
actions on Visualization and Computer Graphics 23, 1 (Jan. 2017),
931–940. URL: https://doi.org/10.1109/TVCG.2016.
2599041, doi:10.1109/TVCG.2016.2599041. 7

[WSBW01] WALD I., SLUSALLEK P., BENTHIN C., WAGNER M.: In-
teractive rendering with coherent ray tracing. Comput. Graph. Fo-
rum 20, 3 (2001), 153–165. URL: https://doi.org/10.1111/
1467-8659.00508, doi:10.1111/1467-8659.00508. 6

[WWB∗14] WALD I., WOOP S., BENTHIN C., JOHNSON G. S.,
ERNST M.: Embree: A kernel framework for efficient cpu ray trac-
ing. ACM Trans. Graph. 33, 4 (July 2014). URL: https://doi.
org/10.1145/2601097.2601199, doi:10.1145/2601097.
2601199. 7

[Yan87] YANG C.-G.: On speeding up ray tracing of b-spline sur-
faces. Computer-Aided Design 19, 3 (1987), 122–130. URL:
https://www.sciencedirect.com/science/article/
pii/0010448587901965, doi:https://doi.org/10.
1016/0010-4485(87)90196-5. 2

[YBP14] YEO Y. I., BHANDARE S., PETERS J.: Efficient pixel-accurate
rendering of animated curved surfaces. In Mathematical Methods for
Curves and Surfaces (Berlin, Heidelberg, 2014), Floater M., Lyche T.,
Mazure M.-L., Mørken K., Schumaker L. L., (Eds.), Springer Berlin Hei-
delberg, pp. 491–509. 2

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

https://doi.org/10.1145/1576246.1531353
https://doi.org/10.1145/1576246.1531353
https://doi.org/10.1145/1576246.1531353
https://doi.org/10.1145/2953877
https://doi.org/10.1145/2953877
https://doi.org/10.1145/2953877
http://jcgt.org/published/0004/01/04/
https://doi.org/http://doi.acm.org/10.1145/325334.325233
https://doi.org/10.30837/2522-9818.2019.9.062
https://doi.org/10.30837/2522-9818.2019.9.062
https://doi.org/10.1007/s11432-012-4722-4
https://doi.org/10.1007/s11432-012-4722-4
https://doi.org/10.1007/s11432-012-4722-4
https://doi.org/10.1145/357332.357335
https://doi.org/10.1145/357332.357335
https://doi.org/10.1145/357332.357335
https://doi.org/10.1109/TVCG.2016.2599041
https://doi.org/10.1109/TVCG.2016.2599041
https://doi.org/10.1109/TVCG.2016.2599041
https://doi.org/10.1111/1467-8659.00508
https://doi.org/10.1111/1467-8659.00508
https://doi.org/10.1111/1467-8659.00508
https://doi.org/10.1145/2601097.2601199
https://doi.org/10.1145/2601097.2601199
https://doi.org/10.1145/2601097.2601199
https://doi.org/10.1145/2601097.2601199
https://www.sciencedirect.com/science/article/pii/0010448587901965
https://www.sciencedirect.com/science/article/pii/0010448587901965
https://doi.org/https://doi.org/10.1016/0010-4485(87)90196-5
https://doi.org/https://doi.org/10.1016/0010-4485(87)90196-5


J. Sloup & V. Havran / Optimizing Ray Tracing of Trimmed NURBS Surfaces on the GPU – supplementary

1-LC list of curves only [MCFS00]
2-LC+B list of curves only [MCFS00] + parallel boxing
3-HS[SF09] horizontal slabs [SF09] . . . reference method
4-HS+B reference method HS [SF09] + parallel boxing
5-KC kd-tree on curves
6-KC+R kd-tree on curves + refinement in leaves
7-KC+B kd-tree on curves + parallel boxing
8-KC+E kd-tree on curves + empty space cutting off
9-KC+RB kd-tree on curves + refinement in leaves + parallel boxing
10-KC+RE kd-tree on curves + refinement in leaves + empty space cutting off
11-KC+BE kd-tree on curves + parallel boxing + empty space cutting off
12-KC+RBE kd-tree on curves + refinement in leaves + parallel boxing + empty space cutting off
13-KCS[SF19] kd-tree on curvesets according to [SF19]
14-KCS kd-tree on curvesets
15-KCS+R kd-tree on curvesets + refinement in leaves
16-KCS+B kd-tree on curvesets + parallel boxing
17-KCS+E kd-tree on curvesets + empty space cutting off
18-KCS+M kd-tree on curvesets + overlap minimization
19-KCS+RB kd-tree on curvesets + refinement in leaves + parallel boxing
20-KCS+RE kd-tree on curvesets + refinement in leaves + empty space cutting off
21-KCS+RM kd-tree on curvesets + refinement in leaves + overlap minimization
22-KCS+BE kd-tree on curvesets + parallel boxing + empty space cutting off
23-KCS+BM kd-tree on curvesets + parallel boxing + overlap minimization
24-KCS+EM kd-tree on curvesets + empty space cutting off + overlap minimization
25-KCS+RBE kd-tree on curvesets + refinement in leaves + parallel boxing + empty space cutting off
26-KCS+RBM kd-tree on curvesets + refinement in leaves + parallel boxing + overlap minimization
27-KCS+REM kd-tree on curvesets + refinement in leaves + empty space cutting off + overlap minimization
28-KCS+BEM kd-tree on curvesets + parallel boxing + empty space cutting off + overlap minimization
29-KCS+RBEM kd-tree on curvesets + refinement in leaves + parallel boxing + empty space cutting off + overlap minimization

Table 8: Legend to the methods reported in other tables reporting quantitative results.

Preproc.time Robot Bike Eiffel Egoist Tank Engine Nissan Lego LegoX22 IS4X8 AVG
[msec]
Abs/Relative 0.304 1.766 1.045 3.014 2.226 3.993 7.136 7.943 96.169 102.530 22.613
1-LC 65.46 48.75 49.86 78.67 73.54 73.73 56.68 71.07 71.96 70.23 66.00
2-LC+B 70.39 55.89 54.07 81.65 76.10 78.86 61.28 76.53 77.16 75.55 70.75
3-HS[SF09] 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
4-HS+B 107.89 113.19 111.96 105.64 105.12 109.97 112.88 108.74 112.97 110.97 109.93
5-KC 92.11 96.32 83.73 100.66 89.98 102.30 107.37 96.64 96.81 90.92 95.68
6-KC+R 150.33 101.36 139.33 113.77 129.25 126.02 119.39 115.88 116.55 97.99 120.99
7-KC+B 94.41 101.47 84.40 104.25 91.73 107.79 113.30 100.42 100.13 96.03 99.39
8-KC+E 100.99 99.04 96.75 104.41 93.89 107.09 115.51 103.30 103.65 93.53 101.82
9-KC+RB 141.78 104.64 108.80 111.94 113.84 126.02 121.16 118.49 119.85 103.26 116.98
10-KC+RE 268.42 114.38 235.89 136.73 176.50 165.54 146.03 165.87 164.91 113.25 168.75
11-KC+BE 103.95 103.17 97.42 106.14 95.10 111.22 120.71 106.48 106.79 99.17 105.02
12-KC+RBE 256.25 118.23 186.51 134.31 156.65 163.81 148.18 169.16 167.17 118.74 161.90
13-KCS[SF19] 96.38 173.73 104.98 101.92 93.58 96.77 140.77 114.83 115.95 86.41 112.53
14-KCS 85.53 58.32 72.92 87.69 87.83 84.32 72.02 88.15 88.01 79.51 80.43
15-KCS+R 121.38 58.83 100.29 94.86 96.18 97.37 80.03 93.54 93.10 82.40 91.80
16-KCS+B 93.09 68.97 77.99 92.00 94.03 92.89 80.69 95.71 96.00 88.78 88.02
17-KCS+E 94.41 59.29 85.07 90.84 90.39 87.40 76.82 93.13 94.25 82.70 85.43
18-KCS+M 96.71 161.66 101.91 100.96 94.65 95.17 137.64 115.06 116.08 85.65 110.55
19-KCS+RB 119.41 70.27 98.56 97.08 98.79 101.45 86.41 100.48 101.12 90.96 96.45
20-KCS+RE 239.47 61.66 208.33 111.08 115.59 126.52 104.47 116.82 115.41 93.39 129.27
21-KCS+RM 129.61 164.89 118.47 105.37 102.25 106.16 143.26 120.03 119.15 88.67 119.79
22-KCS+BE 101.97 70.16 89.19 95.09 95.33 94.84 85.16 101.37 101.07 90.97 92.52
23-KCS+BM 110.20 189.41 110.91 115.39 102.20 107.81 114.14 115.03 115.07 97.23 117.74
24-KCS+EM 104.93 164.16 116.46 103.05 96.72 98.60 143.34 122.52 120.38 88.98 115.91
25-KCS+RBE 216.12 72.88 192.15 108.26 112.94 127.20 108.44 122.36 120.66 100.95 128.20
26-KCS+RBM 132.89 190.60 124.40 119.31 105.48 113.97 118.40 120.03 117.80 97.99 124.09
27-KCS+REM 235.53 164.33 190.81 119.77 116.17 131.18 157.76 140.69 138.07 96.19 149.05
28-KCS+BEM 117.43 190.71 121.24 117.72 104.63 108.92 119.38 123.38 119.63 100.25 122.33
29-KCS+RBEM 228.29 194.05 198.95 132.68 121.52 139.99 136.65 139.97 139.68 105.89 153.77

Table 9: Preprocessing time in seconds. The first line with numbers shows absolute values for reference method(row 3-HS[SF09] - 100%).
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Speed Robot Bike Eiffel Egoist Tank Engine Nissan Lego LegoX22 IS4X8 AVG
[Mrays/sec]
Abs/Relative 637.21 311.60 843.55 189.91 569.55 250.80 145.57 201.17 71.90 318.37 353.96
SCOV [%] 51.51 22.77 20.82 18.48 47.52 37.30 56.75 33.59 46.47 43.42 37.86
1-LC 85.86 89.16 59.75 92.30 87.02 90.79 55.92 87.28 77.87 71.15 79.71
2-LC+B 90.06 90.16 67.63 93.72 91.97 93.84 58.32 89.08 80.78 74.46 83.00
3-HS[SF09] 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
4-HS+B 104.56 101.51 109.18 100.87 103.32 101.59 102.75 101.56 101.68 102.53 102.95
5-KC 100.53 101.00 96.78 100.73 100.41 100.47 100.88 100.04 101.40 102.38 100.46
6-KC+R 103.90 101.24 101.37 101.07 103.50 101.90 103.02 100.92 102.66 103.13 102.27
7-KC+B 105.05 101.82 111.32 101.90 104.94 102.38 104.71 101.82 103.62 106.59 104.42
8-KC+E 101.80 101.46 98.19 100.98 100.84 100.83 101.57 100.68 101.84 102.86 101.10
9-KC+RB 106.75 102.16 111.86 101.86 104.92 102.37 105.48 102.22 103.78 106.32 104.77
10-KC+RE 106.06 101.11 104.03 101.53 104.03 102.61 104.11 102.04 104.19 104.50 103.42
11-KC+BE 105.68 101.87 111.74 101.78 105.15 102.61 104.97 102.15 104.17 106.19 104.63
12-KC+RBE 107.51 101.49 113.37 102.09 106.26 103.48 106.03 102.54 104.59 106.71 105.41
13-KCS[SF19] 100.68 100.95 95.72 100.43 99.64 99.95 100.30 99.31 100.47 101.96 99.94
14-KCS 100.82 101.68 94.38 100.34 99.14 100.14 100.29 99.37 100.79 101.66 99.86
15-KCS+R 103.30 101.88 99.10 100.56 101.81 100.85 102.23 100.11 101.71 103.02 101.46
16-KCS+B 105.47 101.97 110.58 101.75 103.71 102.76 104.42 101.72 103.30 105.09 104.08
17-KCS+E 101.00 101.58 95.84 100.44 100.02 100.41 101.22 99.65 100.90 102.15 100.32
18-KCS+M 100.40 100.46 95.94 99.99 99.91 100.26 101.10 99.54 101.00 102.24 100.08
19-KCS+RB 106.31 102.01 111.53 101.86 105.43 102.82 105.01 102.12 103.78 106.25 104.71
20-KCS+RE 104.89 101.92 102.56 101.25 103.36 102.27 103.46 101.04 102.99 104.11 102.78
21-KCS+RM 103.43 100.79 99.62 101.35 102.05 100.86 102.36 100.32 101.89 102.80 101.55
22-KCS+BE 105.72 102.18 111.12 101.89 104.21 102.93 104.25 102.03 103.88 106.17 104.44
23-KCS+BM 105.36 101.37 111.60 101.64 103.55 102.68 104.42 101.91 103.70 106.03 104.23
24-KCS+EM 100.73 101.38 97.84 100.79 100.42 100.72 100.96 100.07 101.38 102.63 100.69
25-KCS+RBE 107.01 101.80 112.14 101.51 106.35 103.17 105.41 102.46 104.35 105.43 104.96
26-KCS+RBM 106.57 101.30 112.21 101.48 105.04 102.86 105.18 102.07 104.09 105.96 104.68
27-KCS+REM 104.93 101.77 102.52 100.98 103.55 101.77 103.90 101.14 103.12 103.65 102.73
28-KCS+BEM 105.82 101.41 112.26 101.70 104.82 102.89 104.66 102.23 103.81 106.14 104.57
29-KCS+RBEM 107.09 101.81 112.06 101.71 105.79 103.36 105.67 102.66 104.30 106.54 105.10

Table 10: Performance MRays/sec for primary rays for NVIDIA RTX 3090 for rays setting (b). The first line with numbers shows absolute
values for reference method (row 3-HS[SF09]), other rows are relative values in percents, the higher the better. The value SCOV is the screen
coverage (the ratio of rays hitting surface to all rays).

Speed Robot Bike Eiffel Egoist Tank Engine Nissan Lego LegoX22 IS4X8 AVG
[Mrays/sec]
Abs/Relative 429.74 217.21 499.78 138.94 372.57 181.05 95.82 138.43 48.88 222.80 234.52
SCOV [%] 51.51 22.77 20.82 18.48 47.52 37.30 56.75 33.59 46.47 43.42 37.86
1-LC 81.55 86.04 61.79 88.12 81.86 84.25 56.85 80.38 74.88 70.53 76.62
2-LC+B 92.50 89.04 76.45 92.45 93.37 92.99 61.38 89.51 82.43 65.96 83.61
3-HS[SF09] 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
4-HS+B 109.51 100.81 121.92 101.51 108.50 103.84 106.60 104.04 103.21 96.05 105.60
5-KC 98.53 100.80 94.69 99.62 98.45 98.53 99.08 97.72 100.16 100.99 98.86
6-KC+R 106.15 100.69 101.73 100.58 104.02 101.60 103.69 99.93 102.99 104.68 102.61
7-KC+B 108.64 101.51 122.21 101.41 108.76 104.01 107.49 102.96 105.87 96.93 105.98
8-KC+E 99.27 100.74 97.35 99.67 99.25 99.80 100.16 98.37 101.72 102.43 99.88
9-KC+RB 111.50 101.26 124.39 101.60 110.98 105.11 109.01 103.49 106.65 97.63 107.16
10-KC+RE 109.06 101.05 106.96 101.05 107.92 103.04 106.30 101.98 106.12 105.60 104.91
11-KC+BE 108.89 101.31 123.63 101.31 109.13 104.15 107.95 102.89 106.06 97.50 106.28
12-KC+RBE 112.85 101.59 126.51 101.60 112.02 105.28 110.27 104.41 107.75 98.20 108.05
13-KCS[SF19] 99.83 100.64 95.23 100.40 100.36 100.41 99.54 99.74 101.74 100.64 99.85
14-KCS 99.55 100.89 92.84 100.33 100.50 100.19 99.25 99.86 101.55 101.99 99.70
15-KCS+R 104.27 101.16 98.86 100.83 104.64 101.73 103.22 101.34 103.72 103.98 102.38
16-KCS+B 105.31 101.27 117.12 101.12 106.36 103.34 104.89 101.78 104.54 105.51 105.12
17-KCS+E 100.19 100.97 95.58 100.56 101.05 101.40 99.97 100.30 102.17 99.58 100.18
18-KCS+M 99.72 100.49 95.88 100.30 101.18 100.70 100.65 100.06 101.96 102.50 100.34
19-KCS+RB 108.55 101.14 120.13 101.49 111.74 103.71 106.99 102.50 105.77 106.29 106.83
20-KCS+RE 107.78 101.05 106.37 100.99 106.83 103.35 105.74 102.56 105.79 102.99 104.34
21-KCS+RM 104.38 101.09 100.80 100.84 105.61 101.92 103.84 101.17 104.15 101.28 102.51
22-KCS+BE 105.72 101.56 118.89 101.01 106.76 103.86 105.58 102.25 105.20 107.62 105.84
23-KCS+BM 105.45 101.59 120.03 101.32 106.93 103.61 105.40 102.07 105.26 105.66 105.73
24-KCS+EM 101.56 101.18 98.68 100.55 102.00 101.77 101.50 100.87 103.38 100.27 101.18
25-KCS+RBE 109.75 101.79 124.38 101.62 110.71 104.72 108.77 103.50 106.85 107.11 107.92
26-KCS+RBM 107.99 101.45 122.37 101.37 109.20 104.04 107.46 103.03 106.04 108.48 107.14
27-KCS+REM 107.41 101.61 106.22 101.29 107.19 103.12 106.08 102.61 105.81 102.46 104.38
28-KCS+BEM 105.32 101.61 121.69 101.09 107.61 103.93 106.29 102.56 105.50 106.40 106.20
29-KCS+RBEM 109.22 101.36 124.89 101.65 110.63 104.87 109.15 103.45 107.00 106.66 107.89

Table 11: Performance MRays/sec for primary rays as for Table 10 but for NVIDIA RTX 2080 Ti.
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Speed Robot Bike Eiffel Egoist Tank Engine Nissan Lego LegoX22 IS4X8 AVG
[Mrays/sec]
Abs/Relative 584.64 56.26 462.79 34.84 142.41 53.23 49.16 52.92 35.37 104.54 157.62
SCOV [%] 20.73 10.90 12.47 11.09 22.41 25.36 24.12 13.77 17.07 22.39 18.03
1-LC 92.79 90.22 75.99 94.98 82.51 87.41 61.66 88.45 87.84 62.91 82.48
2-LC+B 93.97 90.99 79.40 95.49 86.31 89.27 63.63 89.53 88.95 64.94 84.25
3-HS[SF09] 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
4-HS+B 100.88 100.44 101.04 100.75 102.28 101.35 101.26 100.94 100.76 101.34 101.10
5-KC 100.74 100.53 99.17 100.80 102.03 101.43 102.07 100.28 101.10 102.92 101.11
6-KC+R 101.39 100.68 102.14 100.92 105.26 102.67 102.99 100.77 101.58 104.07 102.25
7-KC+B 101.81 101.28 104.59 101.29 106.22 103.40 104.66 101.27 101.95 105.68 103.22
8-KC+E 100.83 100.66 101.71 100.89 103.00 101.93 102.58 100.68 101.36 103.71 101.73
9-KC+RB 101.90 101.33 104.88 101.26 107.34 103.68 104.74 101.36 102.04 105.99 103.45
10-KC+RE 101.70 100.82 104.04 101.09 107.50 103.68 104.17 101.44 101.78 105.31 103.15
11-KC+BE 101.75 101.26 104.63 101.26 106.77 103.78 104.84 101.47 101.92 105.82 103.35
12-KC+RBE 101.50 101.24 104.98 101.41 108.18 104.19 105.04 102.17 102.06 106.29 103.71
13-KCS[SF19] 100.08 100.91 98.43 100.86 101.52 100.75 101.75 100.40 100.99 102.40 100.81
14-KCS 100.08 100.85 98.87 100.80 101.07 100.81 101.65 100.57 100.85 102.00 100.75
15-KCS+R 99.92 100.89 100.32 100.89 103.46 101.69 102.75 100.72 101.33 102.86 101.48
16-KCS+B 101.22 101.24 103.08 101.52 105.87 103.68 104.58 101.42 102.12 104.84 102.96
17-KCS+E 100.24 101.35 99.52 100.80 102.12 101.45 102.26 100.66 101.02 102.55 101.20
18-KCS+M 100.10 101.26 99.48 100.77 101.70 100.79 102.18 100.23 100.85 102.60 101.00
19-KCS+RB 100.65 101.58 104.47 101.49 106.91 103.78 104.76 101.64 102.18 105.15 103.26
20-KCS+RE 100.32 101.48 103.48 100.98 105.73 102.86 103.50 100.98 101.61 104.15 102.51
21-KCS+RM 100.70 101.60 101.14 100.86 104.02 101.63 102.62 100.64 101.27 103.03 101.75
22-KCS+BE 101.23 101.39 104.38 101.55 106.57 103.76 104.33 101.46 102.06 105.08 103.18
23-KCS+BM 101.17 101.62 104.34 101.44 106.60 103.72 104.58 101.61 102.12 105.36 103.26
24-KCS+EM 100.22 101.28 100.98 100.83 102.58 101.69 102.64 100.57 101.22 103.35 101.54
25-KCS+RBE 101.44 101.39 104.78 101.52 108.02 104.17 104.54 101.89 102.29 105.74 103.58
26-KCS+RBM 100.56 101.42 104.41 101.41 107.27 103.93 104.68 101.68 102.09 105.67 103.31
27-KCS+REM 100.27 101.32 102.97 101.03 105.91 103.06 103.60 101.13 101.64 104.48 102.54
28-KCS+BEM 100.48 101.40 104.70 101.66 106.71 104.08 104.62 101.64 102.09 105.70 103.31
29-KCS+RBEM 101.92 101.49 104.20 101.58 107.91 104.30 104.88 102.08 102.26 106.10 103.67

Table 12: Performance MRays/sec for random rays on a GPU, for NVIDIA RTX 3090 for rays setting (c). The first line with numbers shows
absolute values for reference method (row 3-HS[SF09]), other rows are relative values, the higher the better. The value SCOV gives the ratio
of rays hitting surface to all rays.

Speed Robot Bike Eiffel Egoist Tank Engine Nissan Lego LegoX22 IS4X8 AVG
[Mrays/sec]
Abs/Relative 435.91 40.05 329.10 25.20 93.10 37.57 34.20 37.40 24.82 66.86 112.42
SCOV [%] 20.73 10.90 12.47 11.09 22.41 25.36 24.12 13.77 17.07 22.39 18.03
1-LC 91.00 90.51 73.26 93.33 78.85 81.21 60.82 84.87 86.74 67.54 80.81
2-LC+B 94.81 91.11 80.07 94.60 87.69 89.01 64.06 89.49 89.77 60.56 84.12
3-HS[SF09] 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
4-HS+B 102.30 99.90 104.36 100.24 106.17 102.53 102.31 101.20 101.05 91.15 101.12
5-KC 100.39 100.65 96.21 100.12 100.30 99.57 100.99 100.51 100.93 104.67 100.43
6-KC+R 102.62 100.67 101.94 100.48 107.95 102.66 103.57 101.55 101.81 105.64 102.89
7-KC+B 102.46 100.77 107.65 100.79 110.18 104.76 105.67 102.59 102.50 96.86 103.42
8-KC+E 100.00 100.62 100.12 100.24 101.86 100.88 102.25 101.20 101.41 105.62 101.42
9-KC+RB 102.74 100.75 108.21 100.71 111.97 105.06 106.23 102.78 102.58 97.05 103.81
10-KC+RE 102.51 101.02 106.21 100.60 111.54 104.34 105.09 102.65 102.74 107.24 104.39
11-KC+BE 102.52 100.90 108.31 100.83 110.97 104.92 106.05 102.91 102.90 97.04 103.73
12-KC+RBE 102.97 100.77 109.06 100.71 113.60 105.86 106.78 103.58 103.22 97.44 104.40
13-KCS[SF19] 100.13 100.62 96.97 100.36 101.60 100.72 101.05 101.31 101.45 103.51 100.77
14-KCS 100.06 100.37 96.12 100.28 101.32 100.45 100.41 100.86 101.37 103.02 100.43
15-KCS+R 101.66 100.50 99.14 100.52 106.29 102.32 102.54 101.74 101.85 104.29 102.09
16-KCS+B 102.25 100.27 106.49 100.56 108.67 104.18 104.65 102.54 102.46 106.00 103.81
17-KCS+E 100.35 100.57 99.05 100.40 102.21 101.84 101.55 101.66 101.65 103.54 101.28
18-KCS+M 100.13 100.87 97.56 100.48 101.65 100.93 101.49 101.44 101.37 103.59 100.95
19-KCS+RB 102.52 100.50 107.19 100.79 110.61 104.60 105.23 102.62 102.54 106.36 104.30
20-KCS+RE 102.34 100.37 105.60 100.83 109.76 104.18 104.42 102.59 102.54 105.53 103.82
21-KCS+RM 101.67 100.60 100.09 100.75 106.33 102.13 103.07 101.93 101.89 104.46 102.29
22-KCS+BE 102.28 100.45 107.53 100.79 109.15 104.55 104.97 102.67 102.38 106.24 104.10
23-KCS+BM 102.19 100.77 107.37 101.15 109.08 104.42 105.03 102.62 102.54 106.46 104.16
24-KCS+EM 100.45 100.85 100.63 100.67 103.20 102.18 102.60 101.90 102.22 104.50 101.92
25-KCS+RBE 102.79 100.60 108.70 101.27 112.90 105.32 106.02 103.02 102.86 106.94 105.04
26-KCS+RBM 102.57 100.80 107.83 101.19 111.39 104.74 105.79 102.86 102.90 106.79 104.69
27-KCS+REM 101.97 100.82 105.32 101.31 110.15 104.21 104.71 102.83 102.94 105.77 104.00
28-KCS+BEM 102.37 100.80 108.25 101.11 110.09 104.71 105.47 102.75 102.82 106.78 104.52
29-KCS+RBEM 102.83 100.95 108.87 101.23 112.74 105.32 106.35 103.26 103.06 107.21 105.18

Table 13: Performance MRays/sec for random rays as for Table 12 but for NVIDIA RTX 2080 Ti.
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Memory Robot Bike Eiffel Egoist Tank Engine Nissan Lego LegoX22 IS4X8 AVG
[MBytes]
Abs/Relative 9 76 35 84 64 128 343 255 3062 7676 1174
1-LC 56.38 58.20 36.77 72.42 64.93 63.93 63.98 66.05 66.06 80.73 62.95
2-LC+B 56.38 58.20 36.77 72.42 64.93 63.93 63.98 66.05 66.06 80.73 62.95
3-HS[SF09] 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
4-HS+B 108.58 106.62 110.89 104.94 107.12 106.61 105.52 107.02 107.04 102.91 106.72
5-KC 60.01 62.91 40.46 76.81 64.13 67.88 67.52 68.26 68.13 83.87 66.00
6-KC+R 96.49 65.61 79.63 88.21 96.97 82.13 73.18 83.73 83.61 86.08 83.56
7-KC+B 59.64 62.41 40.19 76.60 63.88 67.72 67.33 68.05 67.92 83.74 65.75
8-KC+E 61.81 63.20 43.81 77.43 64.94 68.53 68.03 69.47 69.33 84.15 67.07
9-KC+RB 88.21 64.89 57.01 83.50 81.80 79.32 71.76 82.41 82.36 85.88 77.71
10-KC+RE 104.66 66.10 83.70 88.87 93.57 83.75 73.82 84.66 84.54 86.29 85.00
11-KC+BE 61.35 62.65 43.40 77.18 64.63 68.34 67.78 69.23 69.09 83.99 66.76
12-KC+RBE 98.18 65.36 68.04 85.03 82.57 81.38 72.62 83.54 83.38 86.07 80.62
13-KCS[SF19] 62.69 59.14 44.06 75.30 66.32 65.26 66.84 70.40 70.23 83.29 66.35
14-KCS 60.97 56.59 44.54 74.21 65.75 64.32 65.99 69.00 68.85 82.65 65.29
15-KCS+R 78.17 56.82 62.66 79.54 71.72 70.91 69.32 71.75 71.44 83.22 71.55
16-KCS+B 60.69 56.47 44.18 74.04 65.54 64.17 65.87 68.58 68.43 82.53 65.05
17-KCS+E 62.60 56.74 47.49 74.74 66.48 64.90 66.44 69.98 69.82 82.89 66.21
18-KCS+M 62.47 58.84 43.96 75.23 66.31 65.21 66.73 70.11 69.95 83.27 66.21
19-KCS+RB 76.75 56.69 61.80 77.08 69.10 69.42 68.91 71.25 70.98 83.10 70.51
20-KCS+RE 94.79 57.15 83.87 82.47 75.60 75.43 71.88 75.29 74.93 83.98 77.54
21-KCS+RM 78.64 58.97 53.20 79.79 71.56 70.59 68.46 72.00 71.76 83.60 70.86
22-KCS+BE 62.24 56.62 47.02 74.53 66.30 64.72 66.28 69.53 69.37 82.74 65.94
23-KCS+BM 61.30 57.18 43.46 74.28 65.84 64.44 66.09 69.08 68.95 82.76 65.34
24-KCS+EM 64.30 59.04 47.30 75.84 67.08 65.83 67.22 71.31 71.14 83.53 67.26
25-KCS+RBE 93.17 57.03 82.86 79.98 73.07 73.89 71.46 74.75 74.43 83.84 76.45
26-KCS+RBM 76.50 57.36 56.50 76.87 69.09 69.07 68.56 71.19 70.98 83.15 69.93
27-KCS+REM 94.04 59.24 67.25 82.33 74.74 74.34 69.93 75.24 74.93 84.20 75.62
28-KCS+BEM 62.98 57.37 46.36 74.81 66.57 65.05 66.53 70.18 70.04 82.98 66.29
29-KCS+RBEM 92.29 57.72 73.56 79.58 72.73 73.24 70.78 74.44 74.18 83.74 75.23

Table 14: Total memory consumption in MBytes. The first row with numbers shows absolute values in MBytes for reference method(row
3-HS[SF09] - 100%), values in other rows are relative in percents.

Memory for Trimming Robot Bike Eiffel Egoist Tank Engine Nissan Lego LegoX22 IS4X8 AVG
[MBytes]
Abs/Relative 2.6 15.1 9.3 12.4 16.1 28.8 40.5 65.3 784.3 556.4 153.1
1-LC 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.00
2-LC+B 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.00
3-HS[SF09] 251.5 311.7 342.9 288.0 240.1 260.9 405.8 233.1 232.6 365.8 293.24
4-HS+B 281.3 345.2 384.8 321.7 268.6 290.4 452.6 260.6 260.0 406.0 327.12
5-KC 112.6 123.9 114.2 129.9 96.8 117.6 130.1 108.7 108.1 143.2 118.51
6-KC+R 239.3 137.6 264.7 207.6 228.0 181.2 178.2 169.3 168.6 173.8 194.83
7-KC+B 111.3 121.3 113.1 128.5 95.8 116.9 128.5 107.8 107.3 141.4 117.19
8-KC+E 118.9 125.3 127.0 134.1 100.0 120.5 134.4 113.4 112.8 147.2 123.36
9-KC+RB 210.5 133.9 177.8 175.6 167.4 168.7 166.1 164.1 163.7 171.1 169.89
10-KC+RE 267.7 140.0 280.3 212.2 214.4 188.4 183.5 172.9 172.2 176.7 200.83
11-KC+BE 117.2 122.6 125.5 132.4 98.8 119.7 132.3 112.4 111.8 144.9 121.76
12-KC+RBE 245.2 136.3 220.1 186.0 170.5 177.9 173.4 168.6 167.6 173.6 181.92
13-KCS[SF19] 121.9 104.8 128.0 119.6 105.6 105.9 124.3 117.0 116.3 135.3 117.87
14-KCS 115.9 91.9 129.9 112.2 103.3 101.8 117.1 111.6 110.9 126.5 112.11
15-KCS+R 175.7 93.0 199.5 148.6 127.2 131.1 145.3 122.3 121.0 134.3 139.80
16-KCS+B 115.0 91.3 128.5 111.0 102.5 101.1 116.1 109.9 109.3 124.8 110.95
17-KCS+E 121.6 92.6 141.2 115.8 106.2 104.4 120.9 115.4 114.7 129.7 116.25
18-KCS+M 121.2 103.3 127.6 119.2 105.5 105.7 123.4 115.9 115.2 135.0 117.20
19-KCS+RB 170.7 92.4 196.2 131.8 116.7 124.5 141.9 120.4 119.2 132.6 134.64
20-KCS+RE 233.4 94.7 281.0 168.5 142.6 151.3 167.1 136.2 134.6 144.8 165.42
21-KCS+RM 177.3 103.9 163.1 150.2 126.5 129.7 138.1 123.3 122.3 139.6 137.40
22-KCS+BE 120.3 92.0 139.4 114.4 105.5 103.5 119.6 113.6 112.9 127.7 114.89
23-KCS+BM 117.1 94.8 125.7 112.7 103.6 102.3 118.0 111.9 111.3 128.0 112.54
24-KCS+EM 127.5 104.3 140.4 123.3 108.6 108.5 127.5 120.6 119.8 138.6 121.91
25-KCS+RBE 227.8 94.1 277.1 151.5 132.5 144.5 163.5 134.1 132.7 142.8 160.06
26-KCS+RBM 169.9 95.8 175.8 130.3 116.6 122.9 138.9 120.1 119.2 133.3 132.28
27-KCS+REM 230.8 105.3 217.1 167.5 139.2 146.5 150.6 136.0 134.7 147.8 157.55
28-KCS+BEM 122.9 95.8 136.8 116.3 106.6 105.0 121.7 116.2 115.6 131.0 116.79
29-KCS+RBEM 224.7 97.6 241.4 148.8 131.2 141.5 157.7 132.9 131.7 141.5 154.90

Table 15: Memory consumption for trimming only in MBytes. The first row with numbers show the absolute values in MBytes for reference
method(row 1-LC - 100%), other values are relative in percents.
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Odd-Even Tests/Hit Robot Bike Eiffel Egoist Tank Engine Nissan Lego LegoX22 IS4X8 AVG
[−]
Abs/Relative 0.357 0.039 0.260 0.047 0.191 0.182 0.160 0.137 0.174 0.131 0.168
1-LC 123.44 186.93 245.49 188.34 143.79 175.67 172.39 185.72 200.34 155.50 177.76
2-LC+B 28.89 29.86 6.66 24.92 28.66 25.02 31.51 44.00 50.64 23.75 29.39
3-HS[SF09] 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
4-HS+B 22.42 11.32 1.45 16.86 16.37 14.52 16.72 21.47 22.93 12.44 15.65
5-KC 122.67 172.96 230.26 175.35 138.19 167.73 160.74 168.12 177.98 150.96 166.50
6-KC+R 32.01 99.50 82.97 78.26 51.24 65.06 66.25 88.89 92.93 71.73 72.88
7-KC+B 28.86 28.92 6.65 24.68 28.15 24.82 30.51 43.08 48.57 23.28 28.75
8-KC+E 110.48 139.97 168.42 136.42 118.61 129.16 128.89 127.27 133.74 123.68 131.66
9-KC+RB 15.15 22.29 3.73 17.00 16.28 16.88 16.17 33.20 36.37 15.09 19.22
10-KC+RE 14.78 48.61 36.25 38.75 21.23 30.72 32.29 35.44 34.74 36.54 32.94
11-KC+BE 27.83 26.58 3.84 23.19 25.64 23.04 27.13 38.20 42.04 20.96 25.84
12-KC+RBE 9.09 13.69 1.81 11.10 8.55 9.90 9.29 17.89 18.96 7.91 10.82
13-KCS[SF19] 123.44 186.98 245.50 188.56 143.97 175.81 172.38 184.60 200.71 157.05 177.90
14-KCS 122.80 178.26 233.50 178.58 140.38 171.02 163.28 172.21 190.32 153.69 170.40
15-KCS+R 61.03 138.45 146.70 110.54 81.74 114.75 96.00 133.30 130.57 113.86 112.69
16-KCS+B 28.76 27.65 6.63 24.66 28.04 24.56 30.11 43.35 49.89 22.87 28.65
17-KCS+E 112.05 155.65 184.75 144.65 126.24 135.49 140.50 139.33 157.64 137.02 143.33
18-KCS+M 122.67 172.94 230.36 175.97 138.30 167.92 160.05 168.46 178.46 151.02 166.62
19-KCS+RB 17.77 23.46 6.11 18.73 18.12 20.04 18.13 36.93 40.45 16.98 21.67
20-KCS+RE 31.54 93.50 47.57 57.56 48.20 58.64 50.36 74.86 65.82 79.08 60.71
21-KCS+RM 61.26 139.10 147.54 112.45 84.69 120.41 101.24 133.69 131.71 118.77 115.09
22-KCS+BE 27.83 26.16 4.21 23.46 26.95 22.99 27.71 40.58 46.47 21.87 26.82
23-KCS+BM 28.84 28.32 6.63 24.77 28.05 24.71 30.43 43.15 48.74 23.06 28.67
24-KCS+EM 110.60 141.37 168.53 138.09 118.72 128.99 129.27 127.80 134.76 126.98 132.51
25-KCS+RBE 12.69 17.89 2.38 14.09 11.60 15.46 10.70 27.24 28.31 10.37 15.07
26-KCS+RBM 17.80 24.24 6.06 18.68 18.96 20.27 18.48 37.08 40.45 17.69 21.97
27-KCS+REM 31.87 95.39 55.45 59.55 49.79 61.05 53.60 70.82 59.65 81.34 61.85
28-KCS+BEM 27.81 25.85 3.80 23.30 25.54 22.91 27.38 38.62 42.75 20.78 25.87
29-KCS+RBEM 12.71 18.22 2.45 13.98 11.83 15.70 10.89 26.22 26.76 10.68 14.94

Table 16: The number of odd-even tests per trim tests (how much the real tests of ray against curve or curveset must be executed). The first
line with numbers shows absolute values for reference method(row 3-HS[SF09]), other rows are relative values.

Odd-Even Tests/Hit Robot Bike Eiffel Egoist Tank Engine Nissan Lego LegoX22 IS4X8 AVG
[−]
1-LC 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2-LC+B 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
3-HS[SF09] 1.71 1.36 2.06 0.84 1.49 1.66 1.67 1.57 1.72 1.59 1.57
4-HS+B 1.71 1.36 2.06 0.84 1.49 1.66 1.67 1.57 1.72 1.59 1.57
5-KC 3.59 2.81 4.88 2.20 3.09 3.54 3.91 3.07 3.38 4.57 3.50
6-KC+R 4.66 3.43 5.98 2.40 3.77 4.21 4.46 3.49 3.85 4.99 4.12
7-KC+B 3.59 2.78 4.82 2.12 3.06 3.49 3.90 3.03 3.33 4.45 3.46
8-KC+E 3.67 2.92 5.13 2.24 3.18 3.66 4.01 3.18 3.51 4.63 3.61
9-KC+RB 4.53 2.90 5.57 2.25 3.50 3.99 4.34 3.37 3.77 4.72 3.89
10-KC+RE 4.62 3.03 6.00 2.40 3.74 4.21 4.45 3.52 3.92 4.97 4.09
11-KC+BE 3.67 2.89 5.06 2.16 3.15 3.62 4.00 3.14 3.47 4.51 3.57
12-KC+RBE 4.54 2.99 5.84 2.29 3.58 4.09 4.38 3.44 3.86 4.74 3.98
13-KCS[SF19] 3.48 2.81 4.84 2.12 3.04 3.47 3.72 3.00 3.32 4.10 3.39
14-KCS 3.41 2.66 4.52 2.03 2.95 3.30 3.47 2.94 3.22 3.92 3.24
15-KCS+R 4.07 2.96 5.33 2.17 3.36 3.67 3.99 3.08 3.47 4.13 3.62
16-KCS+B 3.40 2.59 4.46 1.96 2.91 3.27 3.45 2.89 3.18 3.81 3.19
17-KCS+E 3.51 2.72 4.83 2.11 3.03 3.50 3.63 3.06 3.36 4.11 3.39
18-KCS+M 3.48 2.80 4.85 2.12 3.04 3.47 3.72 3.00 3.32 4.10 3.39
19-KCS+RB 4.05 2.90 5.27 2.09 3.29 3.62 3.97 3.04 3.43 4.02 3.57
20-KCS+RE 4.26 3.05 5.90 2.27 3.51 3.94 4.24 3.26 3.70 4.37 3.85
21-KCS+RM 4.10 2.84 5.36 2.22 3.36 3.73 3.99 3.10 3.48 4.20 3.64
22-KCS+BE 3.49 2.65 4.77 2.04 2.99 3.47 3.61 3.02 3.32 3.99 3.33
23-KCS+BM 3.45 2.68 4.64 1.99 2.96 3.34 3.62 2.94 3.27 3.85 3.27
24-KCS+EM 3.57 2.85 5.10 2.16 3.12 3.61 3.84 3.11 3.46 4.22 3.50
25-KCS+RBE 4.24 2.99 5.85 2.19 3.45 3.89 4.22 3.22 3.67 4.26 3.80
26-KCS+RBM 4.07 2.76 5.31 2.10 3.26 3.62 3.97 3.05 3.45 3.97 3.56
27-KCS+REM 4.27 2.89 5.76 2.28 3.49 3.93 4.15 3.26 3.69 4.35 3.81
28-KCS+BEM 3.53 2.74 4.92 2.07 3.04 3.49 3.76 3.05 3.41 4.00 3.40
29-KCS+RBEM 4.25 2.83 5.78 2.20 3.41 3.84 4.19 3.21 3.66 4.17 3.75

Table 17: The number of traversal steps through trimming data structure per trim tests, such as kd-tree traversal steps or binary search steps
for horizontal slabs. The values are given absolutely. For LC method value 1.00 corresponds to visiting a degenerate kd-tree with a single
leaf.
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Primary/random Robot Bike Eiffel Egoist Tank Engine Nissan Lego LegoX22 IS4X8 AVG
Primary rays performance on GPU

[Mrays/sec] 637.21 311.60 843.55 189.91 569.55 250.80 145.57 201.17 71.90 318.37 353.96
SCOV [%] 51.51 22.77 20.82 18.48 47.52 37.30 56.75 33.59 46.47 43.42 37.86

Random rays perfomance on GPU
[Mrays/sec] 584.64 56.26 462.79 34.84 142.41 53.23 49.16 52.92 35.37 104.54 157.62
SCOV [%] 20.73 10.90 12.47 11.09 22.41 25.36 24.12 13.77 17.07 22.39 18.03
SpeedupU 0.917 0.181 0.549 0.183 0.250 0.212 0.338 0.263 0.492 0.328 0.445
SpeedupNORM 0.369 0.086 0.329 0.110 0.118 0.144 0.144 0.108 0.181 0.169 0.212

Table 18: Comparing GPU for coherence and primary rays for the reference method (row 3-HS[SF09]) measured on NVIDIA RTX 3090.
The ratio of rays hitting the surfaces to all rays is reported in both cases, Sp

COV [%] for primary rays and SR
COV [%] for random rays. The ratio

of GPU performance for primary rays and the performance for random rays is given as SU . The speedup SpeedupNORM computed with the
normalization by SP

COV [%]/SR
COV [%] is shown on the last line.

Primary/random Robot Bike Eiffel Egoist Tank Engine Nissan Lego LegoX22 IS4X8 AVG
Primary rays performance on GPU

[Mrays/sec] 458.93 222.96 507.48 138.47 376.63 179.60 94.13 140.45 49.34 229.73 239.77
SCOV [%] 51.51 22.77 20.82 18.48 47.52 37.30 56.75 33.59 46.47 43.42 37.86

Random rays perfomance on GPU
[Mrays/sec] 441.04 40.31 337.24 25.07 93.02 36.88 34.17 37.59 24.88 66.81 113.70
SCOV [%] 20.73 10.90 12.47 11.09 22.41 25.36 24.12 13.77 17.07 22.39 18.03
SpeedupU 0.961 0.181 0.665 0.181 0.247 0.205 0.363 0.268 0.504 0.291 0.387
SpeedupNORM 0.387 0.087 0.398 0.109 0.116 0.140 0.154 0.110 0.185 0.150 0.184

Table 19: Comparing GPU for coherence and primary rays for the reference method (row 3-HS[SF09]) measured on NVIDIA RTX 2080 Ti.
The ratio of rays hitting the surfaces to all rays is reported in both cases, Sp

COV [%] for primary rays and SR
COV [%] for random rays. The ratio

of GPU performance for primary rays and the performance for random rays is given as SU . The speedup SpeedupNORM computed with the
normalization by SP

COV [%]/SR
COV [%] is shown on the last line.
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Speed Robot Bike Eiffel Egoist Tank Engine Nissan Lego LegoX22 IS4X8 AVG
[Mrays/sec]
Abs/Relative 5348.62 8498.27 5172.05 11228.00 6861.04 6964.08 7097.69 5188.93 4878.86 5906.15 6714.38
SCOV [%] 51.51 22.77 20.82 18.48 47.52 37.30 56.75 33.59 46.47 43.42 37.86
1-LC 48.51 16.74 24.45 24.10 37.44 34.66 9.43 39.48 23.53 18.90 27.72
2-LC+B 57.81 17.37 28.56 24.71 45.28 46.49 9.37 45.05 26.44 22.70 32.38
3-HS[SF09] 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
4-HS+B 130.65 115.50 160.23 118.70 128.81 126.90 96.69 119.53 111.37 148.70 125.71
5-KC 107.44 128.97 78.51 98.45 91.44 94.08 97.16 91.11 76.20 94.63 95.80
6-KC+R 137.53 133.69 107.18 123.00 119.26 116.30 126.56 108.90 92.19 108.35 117.30
7-KC+B 133.09 179.56 179.73 139.94 133.55 138.68 147.33 114.70 93.19 146.55 140.63
8-KC+E 97.47 132.97 84.16 101.88 93.92 97.60 75.07 94.14 78.03 103.30 95.85
9-KC+RB 162.40 179.56 199.74 153.63 149.72 147.81 126.61 127.62 106.47 153.88 150.74
10-KC+RE 158.98 148.19 121.91 136.56 138.63 131.48 106.34 122.89 103.09 123.51 129.16
11-KC+BE 134.21 181.97 190.88 142.70 136.17 141.10 141.90 116.45 94.27 148.85 142.85
12-KC+RBE 178.70 187.57 214.99 162.83 164.82 160.72 139.66 138.91 147.60 163.64 165.94
13-KCS[SF19] 101.05 120.53 74.64 91.02 84.25 88.46 85.01 86.53 72.16 89.59 89.32
14-KCS 91.93 115.43 68.45 92.44 85.94 88.44 89.39 86.73 90.57 87.40 89.67
15-KCS+R 124.06 121.78 92.35 115.52 109.36 103.96 82.89 102.94 87.91 99.57 104.03
16-KCS+B 123.83 153.48 157.18 129.62 122.54 127.25 99.10 102.81 81.95 130.64 122.84
17-KCS+E 94.05 117.95 73.19 95.14 87.84 91.98 93.63 89.18 72.55 89.25 90.48
18-KCS+M 93.28 122.74 76.73 95.62 88.72 91.38 69.81 88.76 74.08 91.09 89.22
19-KCS+RB 149.87 154.72 171.70 142.71 138.01 134.81 113.24 115.51 96.10 139.47 135.61
20-KCS+RE 137.39 127.45 111.18 126.38 120.06 113.32 101.50 109.40 92.74 112.57 115.20
21-KCS+RM 125.05 128.01 97.83 117.39 110.61 106.11 84.89 103.62 88.84 101.07 106.34
22-KCS+BE 124.97 154.66 167.52 131.51 124.16 130.21 101.06 104.03 82.71 131.71 125.25
23-KCS+BM 125.48 157.69 175.93 131.17 126.82 131.66 122.50 106.45 86.38 134.76 129.88
24-KCS+EM 95.11 125.51 82.24 99.42 91.07 94.89 72.65 91.64 75.69 93.50 92.17
25-KCS+RBE 158.32 158.04 194.21 149.52 148.80 141.49 123.71 119.92 99.70 162.55 145.63
26-KCS+RBM 151.74 160.52 184.46 144.28 141.95 138.72 116.02 119.27 99.95 143.21 140.01
27-KCS+REM 137.44 132.33 113.82 127.89 120.82 114.89 106.66 110.77 94.40 106.30 116.53
28-KCS+BEM 126.24 159.79 187.48 133.53 129.15 133.62 103.77 107.67 87.35 136.80 130.54
29-KCS+RBEM 159.73 163.51 204.39 151.50 151.09 144.51 126.22 123.58 103.73 148.35 147.66

Table 20: Performance in Mtrims/sec (trimming operations per second) for primary rays for NVIDIA RTX 2080 Ti for rays setting (b) when
ray traversal through BVH and intersection with base NURBS surfaces is excluded. The first line with figures shows absolute values for the
reference method (row 3-HS[SF09]). Other rows are relative values in percents; the higher the value, the better.

Speed Robot Bike Eiffel Egoist Tank Engine Nissan Lego LegoX22 IS4X8 AVG
[Mrays/sec]
Abs/Relative 2556.39 3202.19 2225.08 4477.11 2791.76 3005.48 2236.07 1206.54 513.47 747.53 2296.17
SCOV [%] 20.73 10.90 12.47 11.09 22.41 25.36 24.12 13.77 17.07 22.39 18.03
1-LC 37.80 8.69 16.14 15.70 33.42 29.38 9.68 36.64 45.16 34.68 26.73
2-LC+B 35.28 7.48 16.88 22.81 43.81 31.37 10.13 43.55 48.61 38.50 29.84
3-HS[SF09] 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
4-HS+B 122.98 110.37 125.90 114.56 114.56 113.28 113.32 100.67 98.42 97.55 111.16
5-KC 103.98 139.91 98.06 113.23 99.86 109.88 123.92 184.50 234.83 228.15 143.63
6-KC+R 141.46 156.79 123.93 141.27 137.98 139.54 162.05 191.16 242.19 225.11 166.15
7-KC+B 143.25 207.84 179.40 164.59 145.64 148.47 186.56 232.68 268.69 266.73 194.38
8-KC+E 105.75 147.37 100.87 117.56 101.31 112.04 159.24 188.69 243.16 231.60 150.76
9-KC+RB 168.65 212.83 197.55 179.04 166.93 164.20 207.71 218.79 258.28 252.65 202.66
10-KC+RE 162.46 187.46 137.51 162.82 160.88 155.64 166.90 219.63 268.45 243.07 186.48
11-KC+BE 145.26 212.86 192.48 167.68 147.65 151.16 191.19 231.16 266.21 265.87 197.15
12-KC+RBE 188.17 234.36 212.97 195.77 186.40 181.84 224.92 236.37 274.49 263.23 219.85
13-KCS[SF19] 97.87 130.71 91.60 103.77 92.09 101.03 113.35 159.74 209.07 206.14 130.54
14-KCS 98.73 120.77 81.20 104.11 93.02 102.15 139.15 160.79 209.23 199.01 130.82
15-KCS+R 129.96 131.28 107.66 127.86 129.20 128.78 138.68 179.92 221.87 206.59 150.18
16-KCS+B 131.23 180.12 149.41 151.72 132.61 135.02 163.49 210.14 255.77 257.55 176.71
17-KCS+E 100.55 123.78 84.33 107.39 94.32 104.75 123.26 166.31 218.15 206.13 132.90
18-KCS+M 101.02 132.52 94.12 108.23 96.20 105.51 118.15 166.33 214.67 208.42 134.52
19-KCS+RB 153.31 181.71 160.35 163.02 155.99 149.35 185.05 224.71 259.27 252.15 188.49
20-KCS+RE 140.49 140.00 121.11 140.70 136.99 136.86 146.52 199.09 246.98 222.17 163.09
21-KCS+RM 131.34 144.72 118.36 132.28 130.82 131.52 141.23 184.12 227.65 212.92 155.50
22-KCS+BE 133.36 181.77 164.02 152.43 134.10 137.22 167.11 209.71 255.82 259.17 179.47
23-KCS+BM 136.86 188.48 175.28 154.71 139.30 140.75 171.93 217.14 259.40 263.75 184.76
24-KCS+EM 102.73 137.86 97.39 111.49 97.58 107.85 121.41 171.88 226.41 216.64 139.12
25-KCS+RBE 162.27 187.64 184.20 170.67 167.93 156.47 198.23 230.09 270.02 256.18 198.37
26-KCS+RBM 157.93 193.51 179.73 167.29 160.97 154.57 193.00 229.30 266.08 260.59 196.30
27-KCS+REM 140.70 155.84 128.49 144.14 138.45 139.01 150.22 205.17 254.18 230.77 168.70
28-KCS+BEM 138.00 191.04 190.03 155.93 140.94 142.20 175.23 217.07 262.33 263.96 187.67
29-KCS+RBEM 165.20 202.27 198.20 175.05 170.42 160.48 205.00 234.02 272.94 262.99 204.66

Table 21: As the Table 20 but for queries induced by random rays.
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10. Visualization of Three Simple 2D Curve Shapes
The algorithms for trimming described in the paper as rows 1 to 29
are used here. The algorithm outputs are depicted on three curves
of different complexity for all 29 methods in Figure 5 to Figure 91.
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Figure 5: Visualization for method 1-LC example shape 1.

Figure 6: Visualization for method 2-LC+B example shape 1.

Figure 7: Visualization for method 3-HS[SF09] example shape 1.

Figure 8: Visualization for method 4-HS+B example shape 1.
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Figure 9: Visualization for method 5-KC example shape 1.

Figure 10: Visualization for method 6-KC+R example shape 1.

Figure 11: Visualization for method 7-KC+B example shape 1.

Figure 12: Visualization for method 8-KC+E example shape 1.
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Figure 13: Visualization for method 9-KC+RB example shape 1.

Figure 14: Visualization for method 10-KC+RE example shape 1.

Figure 15: Visualization for method 11-KC+BE example shape 1.

Figure 16: Visualization for method 12-KC+RBE example shape 1.
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Figure 17: Visualization for method 13-KCS[SF19] example shape
1.

Figure 18: Visualization for method 14-KCS example shape 1.

Figure 19: Visualization for method 15-KCS+R example shape 1.

Figure 20: Visualization for method 16-KCS+B example shape 1.
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Figure 21: Visualization for method 17-KCS+E example shape 1.

Figure 22: Visualization for method 18-KCS+M example shape 1.

Figure 23: Visualization for method 19-KCS+RB example shape 1.

Figure 24: Visualization for method 20-KCS+RE example shape 1.
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Figure 25: Visualization for method 21-KCS+RM example shape 1.

Figure 26: Visualization for method 22-KCS+BE example shape 1.

Figure 27: Visualization for method 23-KCS+BM example shape 1.

Figure 28: Visualization for method 24-KCS+EM example shape 1.
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Figure 29: Visualization for method 25-KCS+RBE example shape
1.

Figure 30: Visualization for method 26-KCS+RBM example shape
1.

Figure 31: Visualization for method 27-KCS+REM example shape
1.

Figure 32: Visualization for method 28-KCS+BEM example shape
1.
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Figure 33: Visualization for method 29-KCS+RBEM example
shape 1.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.



J. Sloup & V. Havran / Optimizing Ray Tracing of Trimmed NURBS Surfaces on the GPU – supplementary

Figure 34: Visualization for method 1-LC example shape 2.

Figure 35: Visualization for method 2-LC+B example shape 2.

Figure 36: Visualization for method 3-HS[SF09] example shape 2.

Figure 37: Visualization for method 4-HS+B example shape 2.
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Figure 38: Visualization for method 5-KC example shape 2.

Figure 39: Visualization for method 6-KC+R example shape 2.

Figure 40: Visualization for method 7-KC+B example shape 2.

Figure 41: Visualization for method 8-KC+E example shape 2.
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Figure 42: Visualization for method 9-KC+RB example shape 2.

Figure 43: Visualization for method 10-KC+RE example shape 2.

Figure 44: Visualization for method 11-KC+BE example shape 2.

Figure 45: Visualization for method 12-KC+RBE example shape 2.
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Figure 46: Visualization for method 13-KCS[SF19] example shape
2.

Figure 47: Visualization for method 14-KCS example shape 2.

Figure 48: Visualization for method 15-KCS+R example shape 2.

Figure 49: Visualization for method 16-KCS+B example shape 2.
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Figure 50: Visualization for method 17-KCS+E example shape 2.

Figure 51: Visualization for method 18-KCS+M example shape 2.

Figure 52: Visualization for method 19-KCS+RB example shape 2.

Figure 53: Visualization for method 20-KCS+RE example shape 2.
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Figure 54: Visualization for method 21-KCS+RM example shape 2.

Figure 55: Visualization for method 22-KCS+BE example shape 2.

Figure 56: Visualization for method 23-KCS+BM example shape 2.

Figure 57: Visualization for method 24-KCS+EM example shape 2.
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Figure 58: Visualization for method 25-KCS+RBE example shape
2.

Figure 59: Visualization for method 26-KCS+RBM example shape
2.

Figure 60: Visualization for method 27-KCS+REM example shape
2.

Figure 61: Visualization for method 28-KCS+BEM example shape
2.
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Figure 62: Visualization for method 29-KCS+RBEM example
shape 2.
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Figure 63: Visualization for method 1-LC example shape 3.

Figure 64: Visualization for method 2-LC+B example shape 3.

Figure 65: Visualization for method 3-HS[SF09] example shape 3.

Figure 66: Visualization for method 4-HS+B example shape 3.
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Figure 67: Visualization for method 5-KC example shape 3.

Figure 68: Visualization for method 6-KC+R example shape 3.

Figure 69: Visualization for method 7-KC+B example shape 3.

Figure 70: Visualization for method 8-KC+E example shape 3.
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Figure 71: Visualization for method 9-KC+RB example shape 3.

Figure 72: Visualization for method 10-KC+RE example shape 3.

Figure 73: Visualization for method 11-KC+BE example shape 3.

Figure 74: Visualization for method 12-KC+RBE example shape 3.
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Figure 75: Visualization for method 13-KCS[SF19] example shape
3.

Figure 76: Visualization for method 14-KCS example shape 3.

Figure 77: Visualization for method 15-KCS+R example shape 3.

Figure 78: Visualization for method 16-KCS+B example shape 3.
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Figure 79: Visualization for method 17-KCS+E example shape 3.

Figure 80: Visualization for method 18-KCS+M example shape 3.

Figure 81: Visualization for method 19-KCS+RB example shape 3.

Figure 82: Visualization for method 20-KCS+RE example shape 3.
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Figure 83: Visualization for method 21-KCS+RM example shape 3.

Figure 84: Visualization for method 22-KCS+BE example shape 3.

Figure 85: Visualization for method 23-KCS+BM example shape 3.

Figure 86: Visualization for method 24-KCS+EM example shape 3.
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Figure 87: Visualization for method 25-KCS+RBE example shape
3.

Figure 88: Visualization for method 26-KCS+RBM example shape
3.

Figure 89: Visualization for method 27-KCS+REM example shape
3.

Figure 90: Visualization for method 28-KCS+BEM example shape
3.
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Figure 91: Visualization for method 29-KCS+RBEM example
shape 3.
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11. Visualization of Odd-Even Test Reduction
The following images in 29 figures show on the scene Nissan
the pseudo-color visualization of computing the exact test of ray
against the boundary by shooting horizontal ray.

The pseudo-color mapping in Figure 92 is used for all the images
with the same scale 0 to 20 odd-even tests.
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Figure 92: Pseudo-color palette used for visualization, 0 odd-even tests per ray are in black, 20 and more odd-even tests per ray are in red.

Figure 93: Pseudo-color visualization of odd-even tests for method
1-LC for Nissan scene.

Figure 94: Pseudo-color visualization of odd-even tests for method
2-LC+B for Nissan scene.

Figure 95: Pseudo-color visualization of odd-even tests for method
3-HS[SF09] for Nissan scene.

Figure 96: Pseudo-color visualization of odd-even tests for method
4-HS+B for Nissan scene.

Figure 97: Pseudo-color visualization of odd-even tests for method
5-KC for Nissan scene.

Figure 98: Pseudo-color visualization of odd-even tests for method
6-KC+R for Nissan scene.
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Figure 99: Pseudo-color visualization of odd-even tests for method
7-KC+B for Nissan scene.

Figure 100: Pseudo-color visualization of odd-even tests for
method 8-KC+E for Nissan scene.

Figure 101: Pseudo-color visualization of odd-even tests for
method 9-KC+RB for Nissan scene.

Figure 102: Pseudo-color visualization of odd-even tests for
method 10-KC+RE for Nissan scene.

Figure 103: Pseudo-color visualization of odd-even tests for
method 11-KC+BE for Nissan scene.

Figure 104: Pseudo-color visualization of odd-even tests for
method 12-KC+RBE for Nissan scene.
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Figure 105: Pseudo-color visualization of odd-even tests for
method 13-KCS[SF19] for Nissan scene.

Figure 106: Pseudo-color visualization of odd-even tests for
method 14-KCS for Nissan scene.

Figure 107: Pseudo-color visualization of odd-even tests for
method 15-KCS+R for Nissan scene.

Figure 108: Pseudo-color visualization of odd-even tests for
method 16-KCS+B for Nissan scene.

Figure 109: Pseudo-color visualization of odd-even tests for
method 17-KCS+E for Nissan scene.

Figure 110: Pseudo-color visualization of odd-even tests for
method 18-KCS+M for Nissan scene.
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Figure 111: Pseudo-color visualization of odd-even tests for
method 19-KCS+RB for Nissan scene.

Figure 112: Pseudo-color visualization of odd-even tests for
method 20-KCS+RE for Nissan scene.

Figure 113: Pseudo-color visualization of odd-even tests for
method 21-KCS+RM for Nissan scene.

Figure 114: Pseudo-color visualization of odd-even tests for
method 22-KCS+BE for Nissan scene.

Figure 115: Pseudo-color visualization of odd-even tests for
method 23-KCS+BM for Nissan scene.

Figure 116: Pseudo-color visualization of odd-even tests for
method 24-KCS+EM for Nissan scene.
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Figure 117: Pseudo-color visualization of odd-even tests for
method 25-KCS+RBE for Nissan scene.

Figure 118: Pseudo-color visualization of odd-even tests for
method 26-KCS+RBM for Nissan scene.

Figure 119: Pseudo-color visualization of odd-even tests for
method 27-KCS+REM for Nissan scene.

Figure 120: Pseudo-color visualization of odd-even tests for
method 28-KCS+BEM for Nissan scene.

Figure 121: Pseudo-color visualization of odd-even tests for
method 29-KCS+RBEM for Nissan scene.
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