
ADAPTIVE DATA STRUCTURES CTU IG 309810103

FOR VISIBILITY COMPUTING

Authors:1 Vlastimil Havran, Jiř́ı Bittner, Tomáš Kopal

Affiliation: Czech Technical University

Project Supervisor: Doc. Ing. Slav́ık, CSc.

Faculty of Electrical Engineering

Department of Computer Science and Engineering

Address: Karlovo nám. 13, Prague 12135, Czech Republic

E-mail: havran@fel.cvut.cz

Key words: computer graphics, spatial data structures, binary space parti-
tioning, ray shooting.

1 Introduction

Rendering technique for producing realistic images that simulates well specular
surfaces often use discrete sampling of space. The main drawback of these

techniques is its rather big computational complexity of this discrete sampling,
that disallows its interactive use.

The principal expense of ray tracing and other globall illumination methods
is the determination of the closest ray–object intersection for a given ray and

a set of objects. This problem is known as ray–shooting. The naive algorithm
solves the ray–shooting problem by testing all objects for intersection with a

given ray in O(N) time. Another related problem is determining if two points
in a scene are visible. Visibility of two points is used to determine shadows cast

by point light sources.
We deal with an unusual method of ray–shooting acceleration based onBSP

trees using modified surface area heuristics.

Related Work

The ray–shooting problem has been dealt by the researches in the field of com-
puter graphics and computational geometry. Techniques developed by these

two groups differ in approach used.
The first community mentioned is oriented to improve the average com-

plexity of ray–shooting. The algorithms developed are intended to be used in
practice, even for large scale scenes. They are mostly based on the observations

and heuristics. Recent comprehensive overview is presented in [Sim95].
The computational geometry community solves the problem more theoret-

ically focusing on worst–case complexity. In order to obtain mathematically
provable results the scene description is usually restricted to polygons. A recent

1This research was also partially supported by Grant Agency of the Ministry of Education
of the Czech Republic number 1252/1998.

algorithm published [dB93] reaches the time complexity O(logn) with O(n4+ǫ)

preprocessing time and O(n4+ǫ) storage, where ǫ is an arbitrarily small posi-
tive constant, and n is a number of polygons. The preprocessing and storage

complexities restrict their practical use.

2 Binary Space Partitioning

A Binary Space Partitioning tree (abbr. BSP tree or BSPT) is a variant of

binary search tree, but it organizes n–dimensional data (n > 1). A BSPT for a
set S of objects in ℜn is a binary tree defined as follows: Each node v in BSPT

represents a non–empty box (rectangular parallelepiped) Rv and set of objects
Sv that intersects Rv. Leaf is such a node for which the number of objects |Sv|

belonging to v is smaller than a specific constant or the depth of v in BSPT is
equal to maximal depth allowed. The box associated with the root of BSPT
is ℜn itself. Each interior node of BSPT is assigned cutting plane Hv, that

intersects Rv into two boxes. If we let H+
v be the positive halfspace and H−

v

the negative halfspace bounded by Hv , the boxes associated with the left and

right children of v are Rv ∩H+
v and Rv ∩H−

v respectively. The left subtree of v
is a BSPT for the set of objects S−

v = {s∩H−

v |s ∈ Sv}, right subtree is defined

similarly. Let size of BSPT be the number of interior nodes and the number
of references to objects in all its leaves.

A BSPT is constructed hierarchically step by step until termination criteria
given for leaf are reached. The cutting plane H is for ease of computing range

search queries including ray–shooting perpendicular to one of coordinate axes
(orthogonal cutting). The leaves of the BSPT are either occupied by objects or
vacant. The example of BSP for two–dimensional space is depicted in Fig. 1.

Figure 1: An example of constructing two dimensional BSPT .

3 Surface Area Heuristics

It is advantageous to devote a greater effort to create an efficient BSPT , under
the assumption, that the extra time would be recovered during ray–traversal.

In [MB90] a simple heuristics for finding the optimal position of a splitting
plane is used. The plane position is determined by minimizing a cost function.

The cost function is based on the probability that a ray hits an object placed
inside a certain volume once it passes through that volume as shown in Fig. 2.
Suppose that both object B and a enclosing object A are of convex shape. Then

the conditional probability Pr(B|A) is expressed as a ratio of the surface area
of the object B to the surface area of the volume A (see [AK89]): Pr(B|A) =
SB

SA
= 2(xB.yB+xB.zB+yB .zB)

2(xA.yA+xA.zA+yA .zA)

volume A

volume B

arbitrary
ray

H

Figure 2: Surface area heuristics Figure 2: Empty space

culling

During the building of a BSPT the cost function helps to decide when and

where to split a certain cell, i.e., to replace a leaf node by a new interior node
with two children (sub–cells).

Let us assume the situation at the beginning of a tree construction. One
node contains n objects, the intersection test for i–th object takes computation

time Ti. The cost for such non–subdivided node is fM =
∑n

i=1 Ti.
Let Av, A

−

v , and A+
v is the surface area of Rv, R

−

v , and R+
v respectively.

The selection of cutting plane for BSPT proposed in [MB90] is proceeded by
maximizing the measure fM = A−

v /Av .|S
−

v |+A+
v /Av .|S

+
v | for each constructed

cutting plane H .

The recursive ray traversal algorithm through BSPT deserves a special
attention, but it is out of scope of this paper.

4 Modified Surface Area Heuristics

It is also possible to modify the surface area heuristics for a restricted set of rays.

This restriction fixes either origin of rays (perspective projection or direction of
rays (parallel projection). The above formula are modified in the probability
term, which is computed as the projected surface of child node to the surface

area of the node being subdivided.
The probability that a ray hits the box B representing a node of BSPT can

then be expressed using a surface area of the projection of the B clipped to the
viewport. The corresponding geometry is depicted in Fig 4.

We compute the projected area SAPER(B) of the box B clipped to the
viewing frustum. Again, the conditional probability, that a ray from RPERW

Figure 3: Parallel projection of box B

hits the box B once it passes through BSC can be expressed as:

p(B) =
SAPER(B)

SAPER(BSC)
(1)

5 Results

The tests were performed by rendering Standard Procedural Database scenes

introduced by Haines in [Hai87]. We used the experimental measure < Λ,∆ >
to compare the efficiency of spatial subdivisions given in [H97b] for presentation

of our results, that are published in [H98b].
All images were rendered in 513×513 resolution. The maximal ray–recursion

depth was set to 4. All BSP trees were constructed with following termination
criteria: maximal depth was 18 and the number of primitives for a node to

become a leaf was 2.
In order to decrease further the time complexity of ray–shooting the concept

of mailboxes was used for testing of all acceleration methods.
The results show that the BSPT built up using the surface area heuristics

is always quicker than Kaplan’s BSPT (constructed by splitting in the spatial

median and with regular change of splitting planes orientation). This difference
can be very significant, when the objects are non–uniformly distributed in the

scene (scene balls and tree) (up to 97% of rendering time can be saved for scene
tree).

We have evaluated the BSPT construction for preferred ray sets induced
by the parallel projection (PAR) and the perspective projection (PER). The

ordinary surface area heuristics (SAH) was used as a reference. Table 1 gives
several results using modified surface area heuristics.

Fig. 5 depicts visualisation of BSP trees for normal and modified surface
area heuristics.

Figure 4: The perspective projection of box B.

6 Conclusion and Future Work

The combination of normal construction techniques using surface area heuristics

presented here decreases computational complexity by 20-38% in comparison
with [MB90]. The size of BSPT is also reduced in dependence of input scene.

Modified surface area heuristics also decresases computation cost up to 50%.
The robust optimal traversal algorithm [H98b] keeps number of intersection

tests, but traversal of data structure is decreased also by 30–50%. Combinining
techniques, the reduction of computation time is thus significant.

It remains open problem how to estimate the total cost fC(Sv) of node
Rv containing N objects assuming Rv is to be refined by constructing its
BSP . Solving the problem should further improve performance of BSP for

ray–tracing.

References

[AK89]J. Arvo and D. Kirk. A survey of ray tracing acceleration techniques,
pages 201–262. In Book An Introdution to Ray Tracing, A. S. Glassner editor,

Academic Press, 1989.

[dB93]M. de Berg. Ray Shooting, Depth Orders and Hidden Surface Removal,
volume 703 of Lecture Notes Comput. Sci. Springer-Verlag, Berlin, Germany,

1993.

[Hai87]E. A. Haines. A proposal for standard graphics environments. IEEE

Computer Graphics and Applications, 7(11):3–5, November 1987. also in

Scene fluid lattice rings tree

ScnCov[%] 100 99.24 100 64.6

#rays[×104] 26.3 26.3 26.3 26.3

leaves of BSPT

SAH 1532 15722 11845 2750

PER 3132 13247 16322 3992

intersection tests per ray

SAH 8.79 11.9 11.1 10.1

PER 5.32 9.13 9.15 6.39

traversal steps per ray

SAH 19.6 44.9 40.9 23.1

PER 18.4 29.7 38.1 19.0

Table 1: BSPT for perspective projection

SIGGRAPH ’87, ’88, ’89 Introduction to Ray Tracing course notes, code
available via FTP from princeton.edu:/pub/Graphics.

[H97a]Havran V. Cache Sensitive Representation for the BSP tree. In Pro-
ceedings of Compugraphics’97, pages 369–376, International Conference on

Computer Graphics, Algarve, 1997.

[H97b]Havran V. Spatial data structures for visibility computation, Postgrad-
uate Study Report, 34 pages, May 1997.

[H98b]Havran V., Bittner J., and Žára J. Ray tracing with rope trees. In
Proceedings of 13th Spring School on Computer Graphics, pages 130–139,

Budmerice, April 1998.

[H98b]V. Havran, T. Kopal, J. Bittner, and J. Žára. Fast robust bsp tree
traversal algorithm for ray tracing In Journal of Graphics Tools, AK Peters

Ltd., No.4, Vol.2, pages 15–22, December 1998.

[MB90]J. D. MacDonald and K. S. Booth. Heuristics for ray tracing using

space subdivision. Visual Computer, 6(6):153–65, 1990.

[Sim95]G. Simiakakis. Accelerating raytracing with directional subdivision and
parallel processing, PhD thesis, University of East Anglia, October 1995.

[SS92]Kelvin Sung and Peter Shirley. Ray tracing with the BSP tree. In David
Kirk, editor, Graphics Gems III, pages 271–274. Academic Press, San Diego,

1992.

(a)

(b)

Figure 5: Visualization of the BSPT . Fig. (a) depicts a BSPT built using the

ordinary surface area heuristics (SAH). Fig.(b) show a BSPT constructed for
parallel projection(PAR). For sake of the visual clarity the maximum depth of

the tree was set to 10.

