
Czech Technical University in Prague

Faculty of Electrical Engineering

Bachelor thesis

Generation of planetary models by means of fractal
algorithms

Ondřej Linda

Thesis supervisor: Ing. Jaroslav Sloup

Study program: Electrical Engineering and Informational Sciences

Specialization: Computer Science

August 2007

 ii

 iii

Acknowledgments:

 Mainly I would like to thank to main supervisor Ing. Jaroslav Sloup who offered me this topic
for a thesis and thus evoked my interest in fractal algorithms and terrain generation. He also helped me
and gave me a lot of valuable advices during our consultations. Also I would like to thanks to
Associate Professor William Henry Hsu who was supervising me on this project during my stay at
Kansas State University and gave me a lot of good references to litereture.

 iv

 v

Prohlá�ení

Prohla�uji, �e jsem svou Bakalářskou práci vypracoval samostatně a pou�il jsem pouze
podklady uvedené v přilo�eném seznamu.
Nemám záva�ný důvod proti u�ití tohoto �kolního díla ve smyslu § 60 Zákona c.121/2000Sb.,
o právu autorském, o právech souvisejících s právem autorským a o změně některých zákonů
(autorský zákon).

V Praze dne 20. srpna 2007 ..

 vi

 vii

Abstract

The goal of this bachelor thesis was to investigate existing fractal algorithms for generation of a
complex planetary model. That means algorithms for terrain generation and algorithms for terrain
coloring.
 In order to further investigate the capabilities of these algorithms we created a testing
application with user interface. This application enables a user to investigate both the differences
among different algorithms and the influence of some key parameters on the planetary model.
 For overall optimization of the application and for the ability to explore the planetary model in
a higher detail, we implemented a data structure and an algorithm for dynamic level of detail.

Abstrakt

Cílem této bakalářské práce je prostudovat existující fraktální algoritmy vhodné pro generovaní
komplexního planetárního modelu. Jedná se tedy o algoritmy vytvářející povrch planety a algoritmy
vytvařející obarvení daného terénu.

Za účelem bli��ího prozkoumání mo�ností daných algoritmů, jsme vytvořili testovací aplikaci
s u�ivatelským rozhraním, která umo�ní prostudovat jak rozdíl mezi pou�itými algoritmy, tak i vliv
klíčových parametrů na výsledný planetární model.

Pro optimalizaci celé aplikace a mo�nost detailněj�ího prozkoumaní vygenerovaného terénu
jsme vytvořili datovou strukturu a algoritmus umo�nující dynamickou úroveň detailu.

 viii

 ix

Contents

 LIST OF FIGURES�����������������������������. - xii -

 LIST OF TABLES�����������������������������. - xiv -

1 INTRODUCTION ... 1
1.1 Generation of Planetary Models ...1
1.2 Existing Applications ..1
1.3 Goals of Our Work..3

2 SURVEY OF EXISTING ALGORITHMS ... 4
2.1 Inspiration by Real World ..4

2.1.1 High Scale Features ...4
2.1.2 Low Scale Features ..5

2.2 Introduction to Fractal Algorithms ..6
2.2.1 What Is a Fractal? ..6
2.2.2 Perlin Noise Algorithm ..7
2.2.3 What Is a Multifractal?...10

2.3 Algorithms for Terrain Generation..10
2.3.1 Random Faults ...11
2.3.2 Mid-Point Displacement...11
2.3.3 Mid-Point Displacement Multifractal ...13
2.3.4 Perlin Noise ...14
2.3.5 Perlin Noise Multifractal ..15
2.3.6 Perlin Noise Ridged ...16
2.3.7 Perlin Noise Ridged Multifractal ..18

2.4 Algorithms for Terrain Coloring..18
2.4.1 Linear Interpolation..18
2.4.2 Spline Function..20
2.4.3 Perlin Noise ...21
2.4.4 Perlin Noise Variations ..22
2.4.5 Perturbation ...23

3 ANALYSES ... 24
3.1 Planet Structure ..24

3.1.1 Dynamic Structure ...24
3.1.2 Hierarchical Structure ..24
3.1.3 Linked List Data Structure ...24

3.2 Dynamic Level of Detail ..25
3.2.1 Level of Detail of Perlin Noise Algorithm ..25
3.2.2 Only What We Can See Matters...25
3.2.3 Efficient Dynamic Level of Detail..26

3.3 Analyses of the Application Architecture...26
3.3.1 Modules...26
3.3.2 Application Architecture ..27

4 IMPLEMENTATION .. 28
4.1 Development Framework..28
4.2 Used External Libraries..28
4.3 System Architecture..28
4.4 Mesh Data Structure...29

4.4.1 Planet Representation...29

 x

4.4.2 Data Structure ..31
4.5 Dynamic Level of Detail ..33

4.5.1 Testing Triangles ...33
4.5.2 Updating Mesh...36
4.5.3 Problems and Known Issues...38

4.6 Terrain Generation ...39
4.6.1 Water Layer ...39
4.6.2 Craters Implementation ..40

4.7 Terrain Coloring ...42
4.7.1 Altitude Based Coloring...42
4.7.2 Altitude Based Coloring with Perturbation ...42
4.7.3 Perlin Noise Coloring...42
4.7.4 Altitude Based + Perlin Noise Coloring..43
4.7.5 Turbulence Coloring ..43
4.7.6 Earth-like Coloring ..43
4.7.7 Gradient Based Coloring ..43
4.7.8 Moon-like Coloring..43

4.8 Graphical User Interface ..45

5 COMPARISON OF ALGORITHMS... 46
5.1 Comparison of Terrain Colorings ..46

5.1.1 Coloring of Low Scale Features ...46
5.1.2 Parametric Control of Coloring Algorithms ..48

5.2 Comparison of Generated Terrains..49
5.2.1 Differences between Planets...50
5.2.2 Differences in Low Scale Features ...52
5.2.3 Parametric Control of Terrain Generation Algorithms ..54
5.2.4 The Moon ..57

5.3 Comparison of Static and Dynamic Level of Detail ...58
5.3.1 Visual Comparison...58
5.3.2 Quantitative comparison...59

6 CONCLUSION AND FUTURE WORK.. 62
6.1 Conclusion ...62
6.2 Extensions to the Current Application ...62
6.3 Future Development..63

7 REFERENCES .. 64

A USER MANUAL.. 67
A.1 Hardware Requirements..67
A.2 Installation of the Application ...67
A.3 Operating Manual ..67

A.3.1 Opening Screen...67
A.3.2 Change Shape ...68
A.3.3 Random Faults ..68
A.3.4 Planet Coloring ...68
A.3.5 Method of Iteration ...69
A.3.6 Perlin Noise ..69
A.3.7 Dynamic Level of Detail ...69
A.3.8 Craters ..70
A.3.9 Water Level ..70
A.3.10 Others ...70
A.3.11 Additional Control ..70

 xi

A.3.12 Keyboard Control..71

B CONTENT OF THE ENCLOSED CD.. 72

 xii

 List of Figures

1.0 Terragen�s workspace�����������������������.�����.- 2 -
1.1 Images from Terragen ...2
1.2 Images from TerraJ ...3
2.0 Examples of planets�����������������������������.- 4 -
2.1 Earth�s vegetation zones..5
2.2 Terrain formations on Earth...5
2.3 Examples of mountains ...6
2.4 Examples of fractals..6
2.5 The basis function of the Perlin Noise function..7
2.6 Basis function at different scales ...8
2.7 The Perlin Noise function..8
2.8 2D Perlin Noise function ...9
2.9 Terrain generated with a multifractal function ...10
2.10 Terrain generation with Random Faults algorithm ...11
2.11 Increasing the resolution of a triangle. ...12
2.12 Terrain generation with Mid-Point Displacement algorithm...13
2.13 Interpolating methods..15
2.14 Smoothing of the function ...15
2.15 Perlin Noise Ridged function...17
2.16 Comparison of planets generated with normal and Ridged Perlin Noise18
2.17 RGB color space ...19
2.18 Coloring using linear interpolation ..20
2.19 Spline function..20
2.20 Coloring using the Spline function ..21
2.21 Coloring using Perlin Noise function. ..22
2.22 Coloring using Turbulence. ...23
2.23 Coloring using Spline function with Perturbation...24
3.0 The architecture of the system������������������������...- 27 -
4.0 Octahedron as a starting object for sphere generation���������������...- 30 -
4.1 Iterative generation of sphere ..30
4.2 Two neighboring triangles sharing an edge..30
4.3 The hierarchy of triangles and points ...31
4.4 Implementation of linked lists holding the mesh structure..32
4.5 Four planes bounding our view..34
4.6 Triangles in our view...34
4.7 Examples of front and back side decision rule. ..35
4.8 Thresholds for the level of detail. ..36
4.9 Splitting triangles causing crack to occur ...37
4.10 Comparison of terrain patches with and without cracks..38
4.11 Adding water layer into the model...40
4.12 Examples of moon craters ...40
4.13 Schema of different zones inside the crater. ...41
4.14 The same planet colored with different coloring algorithms ...44
4.15 Planet colored with Moon-like coloring. ..44
4.16 Example of the appliacation�s work space ...45
5.1 The same terrain patch colored with different coloring models ..47
5.2 Altitude based coloring with perturbation ..48
5.3 Different values of lambda for the Perlin Noise function..49
5.4 The dependency of the coloring on the amplitude of the perturbation function49
5.5 Planets generated with different algorithms ...50
5.6 Terrain patches generated with different algorithms...53
5.7 The size and distribution of continents of Mid-Point Displacement algorithm54
5.8 Different values of lambda and the number octaves of Perlin Noise algorithm56

 xiii

5.9 Number of octaves of multifractal Perlin Noise algorithm..57
5.10 Moon-like planet. ..57
5.11 Comparison of static and dynamic level of detail. ..58
5.12 Zooming in with the Dynamic Level of Detail Algorithm. ...59
5.13 The dependency of the number of triangles in the mesh on the level of detail.............................60
5.14 The dependency of the number of triangles on our distance from the surface61

 xiv

List of Tables

Table 1: Random Faults Algorithm. ..11
Table 2: Mid-Point Displacement Algorithm...12
Table 3: Mid-Point Displacement Multifractal Algorithm..13
Table 4: Perlin Noise Algorithm..14
Table 5: Perlin Noise Multifractal Algorithm ..16
Table 6: Perlin Noise Ridged Algorithm..17
Table 7: Linear Interpolation of RGB color ...20
Table 8: Spline Function ...21
Table 9: Linear Interpolation using Perlin Noise..22
Table 10: Linear Interpolation with Perturbation ...23
Table 11: Dynamic Level of Detail Algorithm...33
Table 12: Split() and Reduce() functions ...37
Table 13: The number of triangles in the mesh structure with a certain level of detail.60

 1

1 Introduction

 This is an introduction chapter explaining the main principles and motivations of this work. It
describes the reasons why we have chosen a planetary model generation as a field of study and why
we are specializing in the fractal algorithms as the mean of their creation. It also presents a short study
of the state of the art in this area and lists the main goals of this thesis.

1.1 Generation of Planetary Models

Terrain generation is a very important part of computer graphics. For instance we can see
various terrain models in many computer games or computer animations. In the majority of these cases
a realistically looking model of terrain is the desired outcome. Obviously we can use real world height
maps or manually create the whole terrain model; however those approaches have many limitations.
Using real world height maps limits us in the number of different terrain models that we can create and
we must somehow obtain the real world data. Manual creation enables us to create unlimited number
of terrain models, but creating a realistically looking complex model of terrain would be very time
consuming if not impossible.

This is especially true if we are considering creating a complex terrain model for a whole
planet. In order for the planet to look realistically, we must take care of the right distribution of
continents and islands, the right distribution of jagged mountains and smooth lowlands, and emphasize
these features by the right coloring scheme. Fortunately procedural approach to terrain modeling and
using fractal algorithms in particular outcomes the mentioned problems and gives us complex terrain
models with the desired properties.

Procedural approach

In the procedural approach we do not have to specify and code all the details of the model. All
this knowledge is contained in a function or a procedure. Hence we can ask the procedure for some
output only where and when we need it. This provides us with a savings in memory space and
probably even more importantly, it requires the programmer only to write the procedure and then let
the computer power to evaluate the procedure and create the terrain model.

In addition, the result of the procedure�s evaluation is very easy to be influenced by adjusting
the input parameters. For instance by adjusting one single parameter we can control the size of the
continents or the roughness of the mountains. This helps us find the right settings for the algorithms
and create a terrain with a desired look and it also enables us to create all kinds of various terrain
models with a different features and properties.

Fractal algorithms

When we are looking at any photographs of some real world landscape, we can see that a real
natural world is characterized by a high complexity and randomness. These are exactly the same
properties that we request from our procedural algorithm for terrain generation. Up to this date fractal
algorithms seam to be the best known way for creating a complex terrain model that does contain
sufficient amount of randomness and a high complexity into some extent. Definitions and further
explanation of fractal algorithms will follow in Chapter 2.

1.2 Existing Applications

 There are a lot of commercial and non-commercial applications for terrain modeling. A good
source mapping the development of all kinds of software projects and resources in this area could be
found in [21]. Most of those software applications try to visualize the real world data, for example
Google Earth [22] or Earth3D [23]. But we are interested in artificially generating a realistically
looking terrain not based on the real world data. The majority of the other applications generate only a
small terrain patch on a 2-dimensional grid. Although these applications use in many cases very

 2

similar algorithms as the ones that we are interested in, we are more concerned about a creation of a
complex planetary model. Probably the most typical member of this group of software applications
and the most well known terrain modeling program is Terragen [24]. It enables the user to create a
terrain patch with several terrain generation algorithms and to control the terrain generation by
adjusting a big variety of parameters. We can freely explore the terrain and photo-realistically render
the selected view. Right now there is an ongoing development of Terragen 2, which is supposed to be
capable of creating a whole complex planetary model. A snapshot of the Terragen�s workspace is
shown in Figure 1.0.

Figure 1.0: The workspace of Terragen.

In order to see what Terragen�s rendering engine is really capable of we can see examples in
Figure 1.1. But here we must emphasize that the goal of this thesis is not to study various rendering
techniques and implementing them. We are more concerned about the terrain generation of the
planetary model itself. The rendering engine would be a topic for a whole different thesis.

Figure 1.1: Examples of terrains generated with the Terragen software. (Images taken from [24])

 There are several other applications that generate a whole planetary model. One representative
of this group is the TerraJ application[25]. Examples of planetary models generated with TerraJ
software are shown in Figure 1.2.

 3

Figure 1.2: Terrain generated with TerraJ software. (Images taken from [25])

1.3 Goals of Our Work

Our goal is to do a survey of fractal algorithms that could be used for terrain generation and
see how they could be applied to a generation of a complex planetary model. We want to create a
testing application that will let us observe the differences between various algorithms and that will
enable us to see the changes in the terrain caused by changing the values of some key parameters.
 Rather than generating a complex planetary model in a single step, we want to have a free
hand during the creation and to be able to combine different algorithms together. This way we want to
create a framework where a planet can be created with one algorithm and then used as an input for
another terrain generation algorithm.
 In order to see the true power of fractal algorithms we want to add the Dynamic Level of
Detail algorithm to allow the user not only to see the whole planet but also to zoom in and see a detail
of the terrain anywhere on the planet.

 4

2 Survey of Existing Algorithms

This chapter contains a description of the most important fractal algorithms for terrain
generation and for terrain coloring. Before we look at the actual algorithm we will analyze what we
are actually trying to create. We will look for typical terrain and coloring features on Earth and other
planets. Afterwards we will go over some basic definitions, principles and terminology related to
fractal algorithms, which is necessary for further understanding of the presented algorithms.

2.1 Inspiration by Real World

 When we are looking at different planets we can see that there are literally millions of
different terrain formations and different color combinations. We can just compare how different are
Earth, Moon and Mars looking in Figure 2.0.

 (a) (b) (c)

Figure 2.0: Planets. (a) Earth. (b) Moon. (c) Mars. (Image 2.0a taken from [14], Image 2.0b taken

from [15], Image 2.0c taken from [16])

 For our project we will mainly concentrate on generation of Earth-like looking planets. As
Figure 2.0a shows a very important feature of Earth is the atmosphere. We will omit this feature of the
planetary model in our implementation and leave it for a future work.
 What is so stunning and amazing about Earth and other planets is that they are so complex and
so complicated. We can look at Earth from a long distance and see its round shape with visible
continents and oceans. If we zoom closer we start seeing mountain ranges, deserts and lowlands. Once
we get close enough we can see that there are hills covered with forest and jagged mountains covered
with snow. We would like our model to have the same properties. We should not be just interested in a
high scale features like the distribution of continents and oceans. But we should also care about all
kinds of low scale features that become visible as we approach closer to the surface. Creating a
planetary model with both high and low scale features is the goal of our work. The complexity of the
model should be our main concern.

2.1.1 High Scale Features

 In Figure 2.1 we can clearly see the distribution of continents on Earth. We can notice what
the ratio between continents and water approximately is. Also we should note how diverse the
shoreline is. There are parts of the terrain where the shore is quite uniform like the coast of western
Africa. But we can find parts of the world like south-eastern Asia or northern Canada where the shore
is very wildly divided with many islands of different sizes along the coast. All of those features should
be incorporated into our planetary model.
 From the coloring point of view if we look at Figure 2.0a or at Figure 2.1, we can notice that
there is a certain vegetation profile. Because of the differences in the climate caused by different
intensity of the solar radiation and other climatic influences, there is a certain vegetation mixture
presented in each part of Earth�s surface. In addition we can see that this mixture is quite unique and
symbolic for certain latitude zones.

 5

Figure 2.1: Earth�s vegetation zones. (Image taken from [17])

 We can see that there is a zone of green rain forests around the equator. It is followed by zones
of deserts and plains with khaki�ochre color. Then we can see mild green forests that are slowly
changing into grayish tundra. The last part of Earth near the poles is heavily covered with white snow
and ice. This all shows us that a good coloring model will have to take into account the latitude of the
point on the surface of the planet.

2.1.2 Low Scale Features

 When we zoom closer to the surface, we can see all the different low scale features colored
with all kinds of different colors. This is the moment where the surface of Earth really becomes
diverse and we can see an unbelievable amount of different terrain formations. From all kinds of
different sharp mountains, through round shaped hills to wide opened flat plains, we can see almost
any shape somewhere on Earth. Just a little example of the diversity could be seen in Figure 2.2.

Figure 2.2: Terrain formations on Earth. (Images taken from [26], [27] and [28])

 Realistically no artificially created planetary model can get anywhere near any real planet. Our
model will always be just a very rough approximation. But our inspiration from the real world for the
terrain generation should be its diversity, complexity and randomness. Only planetary model with
those features could look at least a little bit naturally and realistically.

The diversity and randomness could be also seen in the coloring of the Earth�s surface. We can
find mountains and rocks of almost any color on Earth. Also there is a whole spectrum of green
forests. A big portion of Earth is covered with deserts, which can also maintain almost any color at
least a little bit similar to the color of sand or rock. Although this seems that the color of the Earth is
more or less random on different places on Earth, there are some basic principles and patterns. As well
as we described the latitude dependency of the vegetation zones, we can see an altitude dependency at
the smaller scale. This could be seen on the examples in Figure 2.3.

 6

 (a) (b)

Figure 2.3: Examples of mountains. We can easily see how the color is changing with the altitude.

(Image 2.3a taken from [18])

 Thrse two examples clearly show the dependency of the color on the elevation. It changes
from plains into mountain foothills covered with forests. As we go higher the forests are disappearing
and the mountains surface is more and more covered with snow. This observation suggests that our
coloring model should be somehow dependent on the elevation.
 Another thing that is apparent at a closer look is that the trees do not grow when the terrain is
too steep. The same works with the snow cover. The snow simply slides down from areas that are too
steep. This observation implies that the terrain color should be also dependent on the gradient of the
terrain.

2.2 Introduction to Fractal Algorithms

As it was mentioned in the introduction part, fractal algorithms are capable of creating a
terrain model with the desired properties of randomness and high complexity. They play very
important role in computer graphics and in computer animation. This section is a brief description of
what a fractal is and what its most important properties are.

2.2.1 What Is a Fractal?

According to [1] a fractal is: �a geometrically complex object, the complexity of which arises
through the repetition of form over some range of scale�. The best way to explain a fractal is to give an
example from a real world. If we look at a mountain from a long distance or if we hold a piece of its
rock in our hand, they both have very similar appearance. We can see the same features and the same
roughness of the surface, even though we look at them at a very different scale. This is exactly what a
fractal is. The fractal keeps its features over different scales; it is self similar. Some fractals could be
quite simple while others create very complex formations as shown in the Figure 2.4. For more
information about fractals see [2].

 (a) (b) (c)

Figure 2.4: Examples of fractals. (a) Sierpinski's Gasket (b) Mandelbrot�s set (c) Detail of

Mandelbrot�s set (Images taken from [10], [12] and [11]

 7

2.2.2 Perlin Noise Algorithm

One of the key fractal algorithms not only for terrain generation is the Perlin Noise algorithm.
It was first introduced by Ken Perlin in his paper [4] in 1985. Because this algorithm is considered to
be the most important one, we will look at it in this section about introduction to fractal algorithms and
it will be used for further explanation of some important terms and features of fractals. For simplicity
we will now describe only one dimensional version of this algorithm. More detailed description of
Perlin Noise algorithm could be found in [2].

Basic function

The most important thing that influences the final appearance of any fractal is its basic
function. It defines the basic element of fractal�s self similarity. The Perlin Noise algorithm uses a
seeded random number generator to create its basis function. Unlike most of random number
generators, this random number generator has to output a random value as a function of some input. In
other words for the same input the generator will always output the same value, unless different seed is
used. If we use this random number generator to generate values in some discrete equidistant points
we might get for example a response similar to the one shown in the Figure 2.5a.
 If we use some kind of interpolation technique between those values we will get a continuous
function that returns some real value for any input point from the chosen interval. This is the basic
function of the Perlin Noise algorithm. It is shown in Figure 2.5b.

 (a) (b)

Figure 2.5: The basis function of the Perlin Noise function. (a) Random output value for each discrete

point. (b) Smooth interpolation between the points. (Images taken from [3])

 For the purpose of terrain generation it is useful to scale the output of the seeded random
generator so that it produces values within the interval [-1 ; 1]; So from now on, we will assume that
the values are from this interval, unless specified differently.

Repetition over different scales

In the definition of a fractal it is said that there is a repetition of a form, which means the basis
function, over some range of scales. If we want to transfer the basis function into another scale we
have to appropriately scale its frequency and its amplitude. Although we can use different ratios for
scaling them, the most common way to obtain the basis function at a lower scale is to double the
frequency and to reduce the amplitude into one half. This way we can obtain a sequence of the same
basis function at different scales as shown in Figure 2.6.

 8

Figure 2.6: The same basis function at different scales. Every scaling the amplitude is reduced in half

and the frequency is doubled. (Images taken from [3])

In order to create one single function that will repeat the same form over different scales, we
simply add all these appropriately scaled basis functions together. The result of this superposition is
the Perlin Noise function. It is shown in Figure 2.7. We can clearly see how the function is self similar
and it repeats the same form over different scales.

Figure 2.7: The Perlin Noise function. (Image taken from [3])

Even from this simple example of one dimensional Perlin Noise function, we can see that it

satisfies our requirements that we have stated at the beginning. It contains a big portion of randomness
and also a high complexity at different scales. Hence it is perfect function for artificial creation of
naturally looking terrain models. In Figure 2.8 is the same principle demonstrated on 2-dimensional
Perlin Noise function. The output value of the Perlin Noise algorithm is interpreted as the mixing
coefficient between black and white colors. We can see that the higher scales significantly influence
the global appearance of the function, whereas the lower scales add detail and randomness to the
result.

 9

 (a) (b) (c)

 (d) (e) (f)

Figure 2.8: 2D Perlin Noise function. (a) � (e) octaves number 1 � 5. (f) The result of summing up all

the octaves. (Images taken from [13])

Important parameters

Defining some basic terms related to fractals is necessary for further explanation of fractal
algorithms. Frequency of the basic function refers to the distance between two neighboring points that
we use for the interpolation of the continuous function. The frequency could be sometimes substituted
by lambda, which is a wavelength of the function and it is 1/frequency. The amplitude is the height of
the function. We can see it as the range of possible values that we can assign to each point. Every
scaled basic function that is superposed in the final function is referred to as an octave. We can very
easily express the complexity of the fractal by specifying the number of octaves that we have used for
its generation.
 There are two basic terms that refer to the relationship of two consecutive octaves. Lacunarity
comes from a Latin word for �gap� and it specifies how the frequency of the current octave is related
to the previous one octave. In most cases the lacunarity is equal to 2, although for example in Chapter
3 of [1] we can find several examples of functions with different values of lacunarity. The scaling of
the amplitude controls an attribute called persistence. It determines how much will be the amplitude of
a consecutive octave reduced compared to the previous one. Smaller values result in a rough function,
while higher values produce smoother functions.
 In addition to those basic terms we should also define the fractal dimension. In contrast to the
Euclidian dimension the fractal dimension can be a non-integer value. The integer part specifies the
underlying Euclidian dimension and the decimal fraction is referred to as the fractal increment. The
0.0 value of the fractal increment means that the fractal only occupies its underlying Euclidian
dimension. When the value approaches 0.99 the fractal is more and more filling the higher dimension.
We can understand this as that the higher values of fractal increment will cause higher roughness of
the fractal, while lower values will results in a smoother fractal. For our purpose this is a sufficient
understanding of a fractal dimension. Further mathematical description of the fractal dimension could
be found in [5].

 10

 To be more precise using the terms that we have just defined, we can mathematically
formulate the Perlin Noise function as the following equation, where the vector x can stand for a point
in 1D, 2D or 3D space:

∑
−

=
=

1

0

)*(*)(
octaves

i
i

i

epersistenc
xlacunarityNoiseamplitudexePerlinNois
r

r

2.2.3 What Is a Multifractal?

As we can see in the Figure 2.7 or 2.8f a classical Perlin Noise function is a homogenous and
isotropic function. The fractal has the same roughness and the same appearance everywhere and in all
directions. Although we said that this fractal function is very useful for generation of naturally created
objects, we can usually see that real natural objects are far more complex. Their complexity comes
from their not being homogenous and isotropic. If we think about mountain range, we can see that it is
quite smooth at the foothills and as we proceed closer to the peaks the mountain becomes rougher and
jagged. It is therefore heterogeneous. A fractal that is heterogeneous is called a multifractal. In
particular multifractals are fractals with a different fractal dimension at different locations. They are
usually generated by a modification of a classical fractal algorithm, where we make the fractal
dimension of the terrain a function of some other attribute. For example the fractal dimension could be
a function of the elevation. Further explanation of the generation and features of multifractal terrain
could be found in section 2.3.3 for instance. An example of a terrain generated with multifractal
function could be seen in the Figure 2.9.

Figure 2.9: Terrain generated with a multifractal function. We can see that the roughness of the
terrain is a function of the altitude. (Image taken from [6])

2.3 Algorithms for Terrain Generation

This section contains and overview and a description of fractal algorithms that are commonly
used for terrain generation. The survey starts with a Random Faults algorithm, then we will describe
the principles of Mid-Point Displacement algorithm and we will finish with a description of several
modifications of the already mentioned Perlin Noise algorithm.
 In most cases when those algorithms are described in a literature, they are meant for
generation of a limited patch of a terrain like the one shown on Figure 2.9. This means that the mesh
grid usually is a 2-dimensional plane and the algorithms displace the vertexes in the 3rd dimension.
Because we are going to use these algorithms for generating a terrain on a planet, we are more
interested in the application of those algorithms on a sphere or some other kind of solid. However this
does not usually require major changes to the algorithms and we will point out any significant
differences.
 In this section our primary goal is to describe the principles of the algorithms. Therefore we
will abstract from any kind of implementation issues and problems. We will talk about these in the
following Chapter 3 about the analyses and in Chapter 4 about the implementation. For this reason we
will assume that the algorithms are working over some kind of a data structure. For now we will call
this data structure a mesh, without any further details about how it is actually implemented. The only
thing that is important now is that the mesh gives us access to all the information that we need.

 11

2.3.1 Random Faults

 Although the Random Faults algorithm is not usually considered to be a fractal algorithm it
could be found in the literature as one of the basic algorithm for terrain generation. On the other hand
for example in [2] it is classified as an algorithm capable of producing a terrain model with certain
fractal features. Table 1 shows the pseudo-code of the algorithm.

Table 1: Random Faults Algorithm.

 We can see that this algorithm does not create the terrain model in one single step. In every
iteration it adds more and more features into the model and the terrain becomes more and more
random looking. For that reason the number of iterations is very important parameter influencing the
final appearance of the terrain. Although we are using a flat plane to cut the sphere and the cut could
be seen as a straight line on the surface, after adding sufficient number of iterations together the
straight lines start disappearing as a result of random orientations of these cutting planes. This could
be seen in Figure 2.10.

 (a) (b) (c) (d)

Figure 2.10: Terrain generation with Random Faults algorithm. (a) Planet after 1 iteration. (b) Planet
after 10 iterations. We can clearly see straight lines. (c) After 100 iterations. Straight lines are
disappearing.. (d) After 1000 iterations. Regularities disappeared. The terrain has a random look.

2.3.2 Mid-Point Displacement

 Unlike the Random Faults algorithm, Mid-Point Displacement creates the terrain model
during the generation of the mesh structure. In every iteration it refines the resolution of the Mesh and
displaces the new points in the desired way. Table 2 summarizes the pseudo-code of the algorithm.

1 Random Faults
2 Input: N – number of iterations, Mesh – mesh structure
 Amp - amplitude
3 Output: Mesh – modified mesh structure

4 For (1 : N){
5 Find random plane cutting the Mesh;
6 R = random value from range 0 … Amp;
7 Split the Mesh by the cutting plane into two hemispheres;
8 Enlarge one hemisphere by R;
9 Reduce the other hemisphere by R;
10 }

 12

Table 2: Mid-Point Displacement Algorithm

Increasing the resolution of the polygonal mesh

 In Table 2 at line 5 we are increasing the resolution of every polygon in the mesh. There
are several ways of doing that. Primarily they depend on what we actually mean by polygon. Typically
the terrain model is represented as a mesh consisting of triangles or quadrangle. Because the most
usual and probably the easiest way how to represent a sphere as a mesh is using triangles, we are
interested in increasing the resolution of a triangular mesh. The way we refine the resolution of a
triangle is shown in Figure 2.11.

Figure 2.11: Increasing the resolution of a triangle. New points are marked with red dots.

Level of detail

 One of the input parameters of the algorithm is the level of detail of the current mesh. The
reason why we have to know it is that it is necessary for setting the right offset for displacing the new
points. If we think of the amplitude as the maximal elevation that we would like to have in the
generated terrain, then in every iteration of the Mid-Point displacement we have to appropriately scale
the amplitude of the displacement of the newly added points. If we did not do so then the terrain would
be just a set of points with completely random elevations and with no relation to one other. Because
every new point reduces the length of the edge of its parent in half, we also reduce the amplitude in
every iteration in half. Therefore in the Table 2 at line 8 we reduce the offset by 2 to the power of L,
where L is the level of detail.

Displacement of points

 The base for setting up the elevation of the new point is the average elevation of its
parents. By parents we mean the end points of the edge on which the new point was added. In addition
this point is displaced from this basic position by some random offset, which is a value from a range
appropriately scaled relatively to the level of detail as we described in the previous section. Because

1 Mid-Point Displacement
2 Input: Mesh – input mesh structure, Amp – amplitude,
 L – level of detail
3 Output: Mesh_Out – new Mesh with increased resolution

4 For (each polygon in Mesh){
5 Increase the resolution of the polygon by adding new

points and creating new polygons;
6 For (each new point){
7 Offset = random value from range -Amp … Amp;
8 Offset = Offset / 2^L;
9 point->height = average(parents) + Offset
10 }
11 }

 13

we are reducing the amplitude in each iteration, we can say that points created during the first few
iterations are responsible for a big features in the terrain like where will the mountains, islands or sea
be. On the other hand points generated in later iterations add more detail into the terrain but do not
really influence the global appearance of the terrain. This is illustrated in Figure 2.12 where we display
the planet after 1, 3, 5 and 7 iterations of the Mid-Point Displacement algorithm. We can see that
already the first iteration determines where the mountains will be, while the last iterations add only
detail to the terrain.

 (a) (b) (c) (d)

Figure 2.12: Terrain generation with Mid-Point Displacement algorithm. (a) After 1 iteration. (b)
After 3 iterations. (c) After 5 iterations. (d) After 7 iterations.

2.3.3 Mid-Point Displacement Multifractal

 The principle of this algorithm is identical to the classical Mid-Point Displacement
described in the section above. The classical Mid-Point Displacement creates a homogenous terrain
model that has the same properties everywhere. As we mentioned in section 2.2.3 a real terrain is
usually heterogeneous, in a way that the terrain properties like roughness or smoothness are different
at different places. Multifractal modification of the Mid-Point Displacement creates terrain with such
features.
 In order to make the terrain multifractal we have to vary the fractal dimension. One basic
way to do this is to make the fractal dimension a function of the elevation of the terrain. This comes
from a simple assumption that jagged mountains are situated usually in higher elevations, while
smooth lowlands will be near the sea level. The following Table 3 shows the pseudo-code of the
algorithm.

Table 3: Mid-Point Displacement Multifractal Algorithm

 The only difference compared to the classical Mid-Point Displacement is at line 9. Here we
scale the offset proportionally to the average elevation of the new point�s parents. If the point is

1 Mid-Point Displacement Multifractal
2 Input: Mesh – input mesh structure, Amp – amplitude,
 L – level of detail
3 Output: Mesh_Out – new Mesh with increased resolution

4 For (each polygon in Mesh){
5 Increase the resolution of the polygon by adding new

points and creating new polygons;
6 For (each new point){
7 Offset = random value from range -Amp … Amp;
8 Offset = Offset / 2^L;
9 Offset = Offset * average(parents) * k;
10 point->height = average(parents) + Offset
11 }
12 }

 14

located in lower elevation and its parent�s elevation are close to 0, then the offset will be significantly
reduced and the terrain will be smooth without any sharp edges or sudden changes. But if the point is
located in higher elevations then the offset will be multiplied by a bigger number, which will result in
the terrain�s being jagged and rough with a big elevation changes between neighboring points. The
constant k is just needed in order to appropriately scale the elevation. We can see the difference
between normal and multifractal version of the Mid-Point Displacement algorithm in Figure 5.6a and
5.6b.

2.3.4 Perlin Noise

 Perlin Noise is probably the most known fractal algorithm for terrain generation and for
texturing. Its use is not restricted only to those two areas. It is also commonly used in computer
animation for simulating a naturally looking movement, see [7], and pretty much anywhere where we
want anything to look like being created by nature.
 We have already described the basic principle of Perlin Noise algorithm in section 2.2.2. In
order to be able to use this algorithm for terrain generation we have to extend the described 1D version
into 2D and in our case of generating a planetary model, into 3D version. Although it would be
sufficient to create only 2D terrain mesh and then map it on a 3D sphere, creating a 3D Perlin Noise
function and then using it for determining the elevation of every point on the sphere is a better
solution. This way we do not have to take care of any issues like smoothly connecting the blocks of
mapped 2D terrain together.
 As we have explained earlier Perlin Noise function is a continuous function and therefore
the 3D version will map the terrain smoothly and continuously all over the planet. This brings another
advantage compared to Mid-Point Displacement. Perlin Noise takes as the input an already existing
sphere or other solid and only appropriately displaces the points. This means that the terrain model is
created in a single step, unlike Random Faults or Mid-Point Displacement, and we can use object of
any shape as the input for Perlin Noise. The pseudo-code of the algorithm is shown in Table 4.
Examples of a planet terrain generated with this algorithm could be seen in Figure 5.5d.

Table 4: Perlin Noise Algorithm.

Displacement of points

1 Perlin Noise
2 Input: Mesh – input mesh structure, oct – number of octaves,
 lambda – wavelength of the function, Amp – amplitude of
 the function
3 Output: Mesh – modified mesh structure

4 For (each point in Mesh){
5 Offset = PerlinNoise3D(point->x, point->y, point-z, oct,
 lambda, Amp);
6 Point->height += Offset;
7 }

8 PerlinNoise3D(x,y,z, octaves, lambda, Amplitude){
9 For (oct = 1 : octaves){
10 Amp = Amplitude / (2^oct);
11 Lam = lambda / (2^oct);
12 Sum += Interpolate(x/lam, y/lam, z/lam) * Amp;
13 }
14 Return Sum;
15 }

 15

 At line 4 starts the main cycle of the algorithm that goes through the whole mesh structure.
It assigns each point new increment of its elevation and displaces this point accordingly. Because we
are working with a 3D Perlin Noise function we evaluate the function in each point based on its x, y
and z coordinates. The final appearance of the function can be influenced by setting the number of
octaves, the wavelength of the function and its amplitude. The meaning of these parameters was
explained in section 2.2.2.

Evaluation of the Perlin Noise function

 At line 8 starts the PerlinNoise3D() function, which is responsible for the actual evaluation
of the function at the given point. Those few lines of code summarize what was explained and shown
in Figures in section 2.2.2. We evaluate each octave, which is the for-cycle starting at line 9, and then
add their contribution together in the variable Sum. Each consecutive octave has amplitude reduced in
half at line 10. Each consecutive octave has a doubled frequency, which is equivalent to reducing the
wavelength in half at line 11. At line 12 we evaluate the current octave for the given point�s
coordinates that are appropriately scaled according to the new wavelength. The result is scaled
according to the amplitude of the current octave.
 When we explained the principle of 1D Perlin Noise function in section 2.2.2, we were
interpolating only between two neighboring points of the current point. The only main difference
between 1D and 3D version of Perlin Noise function is, that we have to interpolate between
neighboring points in all three dimensions. We can imagine this as that the point in which we are
trying to evaluate the function is closed in a cube determined by 8 corner points with given values and
we have to interpolate among them.
 There are several ways how to interpolate between two points. The easiest way is a linear
interpolation, which does not produce quite smooth function. A little bit better result could be
achieved with cosine interpolation. But probably the best looking results are obtained when using the
cubic interpolation. Examples of these three interpolation technique are shown in Figure 2.13. Further
explanation of interpolation methods could be found in [3].

 (a) (b) (c)

Figure 2.13: Interpolating methods. (a) Linear Interpolation. (b) Cosine Interpolation. (c) Cubic

Interpolation. (Images taken from [3])

 In order to produce smoother, less random and less square output we should also apply
some smoothing function to the result of the interpolation. An example is shown in Figure 2.14.

Figure 2.14: Smoothing of the function. Light grey color marks the original function. Dark grey color
marks the result of the smoothing. (Image taken from [3])

2.3.5 Perlin Noise Multifractal

 16

 This is a multifractal variation of the classic Perlin Noise algorithm. The motivation for
this modification is the same as described in section 2.2.3 about Multifractals and in section 2.3.3
about multifractal variation of the Mid-Point Displacement algorithm. In order to produce more
realistically looking terrain we have to vary the fractal dimension. Again an obvious way to do this is
to make the fractal dimension a function of the elevation. Because the principle of this algorithm is
very similar to the classical Perlin Noise and the main cycle stays the same as in Table 4, I will show
here only the modified function PerlinNoise3DMultifractal() that evaluates the Perlin Noise function
at the given point. Table 5 shows the pseudo-code. Example of a planet generated with this algorithm
could be seen in Figure 5.5e.
 The principle is very similar to the multifractal version of the Mid-Point Displacement
algorithm. The main difference is at line 7. We used the elevation of the point, which is determined by
the sum of contributions of all octaves calculated so far, to scale the addition of the current octave. If
the elevation is close to 0, the terrain will look smoother, because the contribution of higher octaves is
reduced. On the other hand if the elevation of the point is higher, then the contribution of higher
octaves is emphasized and the terrain will look jagged and rough. The constant k is needed in order to
appropriately scale the range of the elevation.

Table 5: Perlin Noise Multifractal Algorithm

 The reason why we don�t vary the fractal dimension of the first octave, which is
caused by the If-statement at line 6, is that the first octave determines the basic elevation.
Consequently based on the elevation added by this first octave, the fractal dimension of the
consecutive octave could be influenced.

2.3.6 Perlin Noise Ridged

 This is a slight modification to the classical Perlin Noise algorithm. The main principle of
the algorithm stays the same. The only difference is in the way we use the output value generated by
the Perlin Noise function. Table 6 shows the modification.
 The If-statement starting at line 6 changes the Perlin Noise into a Perlin Noise Ridged. For
more explicitness Figure 2.15 shows the Perlin Noise Ridged function�s response as a function of the
response of the classical Perlin Noise function.

1 PerlinNoise3DMultifractal(x,y,z, octaves, lambda, Amplitude){

2 For (oct = 1 : octaves){
3 Amp = Amplitude / (2^oct);
4 Lam = lambda / (2^oct);
5 Add = Interpolate(x/lam, y/lam, z/lam) * Amp;
6 If (oct > 1){
7 Add *= k * Sum;
8 }
9 Sum += Add;
10 }
11 Return Sum;
12 }

 17

Table 6: Perlin Noise Ridged Algorithm

 The main difference in the terrain produced by classical Perlin Noise and by Perlin
Noise Ridged is that Perlin Noise Ridged tends to create long and narrow islands, peninsulas and
mountain ranges. This is quite reasonable considering what Perlin Noise Ridged is actually doing. If
we interpret the classical Perlin Noise from the terrain point of view, then the value -1 usually means
bottom of a sea and the value 1 means high mountain. Opposed to this, Perlin Noise Ridged interprets
both sides of the interval [-1 ; 1] as a bottom of a sea and only lifts the line between them as
mountains.

Figure 2.15: Perlin Noise Ridged. The Perlin Noise function is the Input and the Perlin Noise Ridged
is the Output. (Image taken from [8])

 This could be seen in Figure 2.16, where we have a planet generated with the same Perlin
Noise function. In 2.16a was used normal Perlin Noise algorithm and in 2.16b was used the Perlin
Noise Ridged algorithm. We can see that where there was a deep see or high mountains on the first
planet there is a deep see in the second planet. At the same time where there was a shoreline on the
first planet there are mountains in the second one. In order for the Ridged Perlin Noise algorithm to
produce more realistically looking terrains, we have to use bigger value of lambda for the Perlin Noise
function. We can see that the same value of lambda as the one used for the normal Perlin Noise
produces too many small islands and long ranges.

1 PerlinNoise3DRidged(x,y,z, octaves, lambda, Amplitude){

2 For (oct = 1 : octaves){
3 Amp = Amplitude / (2^oct);
4 Lam = lambda / (2^oct);
5 Add = Interpolate(x/lam, y/lam, z/lam);
6 If (Add > 0){
7 Add = (-Add) + 1;
8 }
9 Else {
10 Add = Add + 1;
11 }
12 Sum += Add * Amp;
13 }
14 Return Sum;
15 }

 18

(a) (b)

Figure 2.16: Comparison of planets generated with normal Perlin Noise (a) and with Ridged Perlin

Noise (b).

2.3.7 Perlin Noise Ridged Multifractal

 This modification of Perlin Noise Ridged algorithm creates more realistic terrain by
incorporating the multifractal principle of varying the fractal dimension. We are not going to explain
this version of Perlin Noise in much detail, because it is using principles that have already been
explained here. We calculate and modify the response of the Perlin Noise function as explained in
section 2.3.6 about Perlin Noise Ridged algorithm. Then we use the same principle to add the
multifractality into the terrain that has been already explained in section 2.3.5. That means that we
make the fractal dimension a function of the elevation. The algorithm will produce smooth lowlands
and coasts and rough and jagged mountains. An example of a planet created with this algorithm could
be seen in Figure 5.5g.

2.4 Algorithms for Terrain Coloring

 One part of generating realistically looking planetary models is the generation of the
terrain. But there is no doubt that any terrain model will never look realistically without a good
coloring of the surface. In the matter of fact in our case of generating planets, the coloring is very often
even more important than the terrain itself. This is especially true when we are looking at the planet
from a bigger distance. In this situation terrain features like mountains or valleys are not visible at all.
The only way how we can see them is if they are emphasized by a good coloring model.
 In this section we will describe some basic techniques and principles for coloring of the
planet�s surface. Some are only dependent on the terrain model that they are used on; others
incorporate fractal principles to add more randomness and more natural look. Rather then a description
of specific coloring algorithms and coloring schemes, this section will explain some of the most
commonly used techniques for coloring. In further chapters we will present our own coloring schemes
that we have created by using these techniques and combining them together.

2.4.1 Linear Interpolation

The color of a terrain usually changes slowly. For example if you imagine a border between
forests and rocky mountains we can see that usually it is not a sharp line. As we approach into higher
altitudes there is still less and less trees and the color slowly and continuously changes from tones of
green to some kind of a grey rocky color. We would like to achieve the same in our coloring model.
Instead of sharp transitions between two colors, we need to continuously change the tone of the color.
Linear interpolation is a basic technique for doing that.

 19

Color representation

Before we can start interpolating we have to know what kind of values we are actually using.
In our case we would like to interpolate between two colors. Obviously color is not an exact value that
could be used for interpolation, so we should know how the color is represented. There are several
different color representations used in computer graphics. Without any further arguing about
advantages or disadvantages of one or another, we will assume in further explanations that our color is
represented using the RGB system. Each color could be described as a weighted composition of three
basic colors: Red, Green and Blue. In Figure 2.17 is shown the color space. This is a usual
representation of color space that is used in many programming languages.

Figure 2.17: RGB color space. (Image taken from [9])

 When we represent the color as a composition of three RGB parts, we finally have our exact
values that we can use for interpolation. So if we want to interpolate between two colors, we have to
first interpolate between their appropriate RGB parts and then put those interpolated parts together to
receive the final color.

Interpolation function

There is nothing tricky about the linear interpolation. The reason why we are explaining this
method here is that it shows some basic principles and issues with coloring algorithms and it is a good
introduction to slightly more complicated coloring techniques.
 The principle of the interpolation is that the color is a function of some other variable and it is
changing according to this variable. At the beginning of this section we have described an example of
how color is changing when we go from hills covered with forests into rocky mountains tops covered
with nothing else but white snow. In this case our variable would be the altitude. For simplicity we
will assume now that we interpolate only between two colors in one direction. The x coordinate of a
point in the mesh is a variable that controls the interpolation. The pseudo-code is in Table 7.
 We can see at lines 5, 7 and 9 how each of RGB parts is interpolated separately based on the x
coordinate of the point. At the end at line 8, all those parts are combined together to determine the new
color of the point. An example of a linear interpolation could be seen on Figure 2.18.

 20

Table 7: Linear Interpolation of RGB color

Figure 2.18: Coloring using the linear interpolation applied to a sphere.

2.4.2 Spline Function

The linear interpolation is truly just a simple and basic coloring technique. In many situations
we need something more sophisticated. First of all in many cases we have more than just two colors to
interpolate between. Therefore it would be very useful to construct a function that will smoothly
spread all those colors along the interval and continuously interpolate between them. Second of all the
linear function does not always give us the best results. The transition would be nicer if we use some
more complicated function that will interpolate between the chosen colors. The Spline function solves
both of these problems.
 Spline function uses a cubic polynomial function to interpolate between all defined points. As
a result we can construct a nice looking and smooth interpolation function that continuously changes
the color based on some controlling variable going through all the predefined color points. The best
way to understand this is to see an example of a Spline function in Figure 2.19.

Figure 2.19: Spline function. The first and the last point only determine the derivates of the spline at

the end points. (Image taken from [1])

1 Linear Interpolation
2 Input: Color1, Color2, Mesh – structure containing points,

Interval – the length of the interval of interpolation
3 Output: Mesh – structure with colored points

4 For (each Point in Mesh){
5 offsetRed = Point->x * ((Color2->R – Color1->R) / Interval);
6 Red = Color1->R + offsetRed;
7 offsetGreen = Point->x * ((Color2->G – Color1->G) / Interval);
8 Green = Color1->G + offsetG;
9 offsetBlue = Point->x * ((Color2->B – Color1->B) / Interval);
10 Blue = Color->B + offsetB;
11 Point->Color = Color(Red, Green, Blue)
12 }

 21

Each point that we would like our spline function to go through is called a knot. The knot

could represent almost any value. Because we are using a cubic polynomial function for the
interpolation there must be at least 4 knots. The first and the last knot only determine the derivates of
the function at its endpoints.

Table 8: Spline Function

 Table 8 shows only a very rough pseudo-code of the Spline function. For more detailed
description and a complete source code see pages 30-31 in [1].
 First at line 4 we have to define the cubic polynomial coefficients that control the actual
appearance of the function. Then at line 5 based on the x coordinate, the length of the interval and the
number of knots we find the neighboring knots of the point. In the next step at line 6 we calculate the
cubic coefficients of the particular segment of the Spline function. The last thing to do at line 7 is to
use a Horner�s rule to evaluate the function using the calculated coefficients and the actual coordinate.
 As we already mentioned in section 2.4.1 in order to interpolate between two colors
represented in the RGB system, we have to interpolate each color part separately and then put them
together. The same principle has to be used for the Spline function. We have to use three separated
Spline function to interpolate each RGB part separately. This means that the knots for the Spline
function represent the values of the appropriate RGB part of the color. At the end we can mix those
three components together to obtain the final color as the result of the interpolation. An example of
sphere colored with a Spline function is shown in Figure 2.20.

Figure 2.20: Coloring using the Spline function applied to a sphere.

2.4.3 Perlin Noise

1 Spline Function
2 Input: x – Point->x coordinate of the point, knot[N] – an array

containing all the knots, N – number of knots,
Interval – the length of the interval of interpolation

3 Output: value – the interpolated output value of the function

4 Define cubic polynomial coefficients;
5 Based on x find the surroundings knots;
6 c0,c1,c2,c3 = Calculate the cubic coefficients using the

surroundings knots;
7 value = ((c3*x + c2)*x + c1)*x + c0;
8 return value;

 22

In the examples from the previous two sections we used the x coordinate of a point as a
variable that was controlling the interpolation. In the terrain coloring this variable might be for
example the elevation or the latitude. But sometimes this technique might give us only too
synthetically looking results. Sometimes we need to add some randomness to the coloring. What
would be a better way of doing that than incorporating Perlin Noise algorithm into the interpolation?
 We are still going to use the same interpolation techniques as before. The only difference is
that instead of using the x coordinate straight for the interpolation; we will first use the x coordinate as
an input value for the Perlin Noise function and then use the output of the Perlin Noise function as the
variable controlling the interpolation. An example of how the Perlin Noise function might be used
together with the linear interpolation is shown in Table 9. Because the majority of the algorithm is
similar to the Linear Interpolation shown in Table 7, I will only show the modified lines for one RGB
part as an example.

Table 9: Linear Interpolation using Perlin Noise

 We can see that at line 2 we use the coordinates of the point to calculate the response of the
Perlin Noise function and then this value is used to interpolate the color. Opposed to how we described
the output of the Perlin Noise function in section 2.2.2, here we need the response of the function to be
from the interval [0 ; 1]. So in this example the value 0 corresponds to Color1 and value 1 corresponds
to the Color2. Example of coloring based on this technique is shown in Figure 2.21.

Figure 2.21: Coloring using the Perlin Noise function applied to a sphere.

2.4.4 Perlin Noise Variations

In addition to just using the response of the Perlin Noise function as it is, we can use it as an
input for some other function and then use this value as the control variable for the interpolation. For
example we can use the Perlin Noise function response as an input argument for cosine or sine
function. Or we can simply take the absolute value from the response of the function.
 The second example is called a Turbulence function. As we have mentioned the only
difference is that we take the absolute value from the response of the Perlin Noise function. The
coloring done by this technique could be seen in Figure 2.22.

1 Linear Interpolation with Perlin Noise

2 Noise = PerlinNoise(point->coordinates, oct, lambda, Amp);
3 offsetRed = Point->Noise * (Color2->R – Color1->R);
4 Red = Color1->R + offsetRed;

 23

Figure 2.22: Coloring using the Turbulence function applied to a sphere.

2.4.5 Perturbation

 Another very useful technique for coloring is called Perturbation. This technique adds a
certain amount of noise and randomness into some other function. At the beginning of section 2.1.2
we have described an example of altitude dependent coloring when we the trees stop growing at some
certain altitude and further there are just rocks. In a real world this line is not always exactly at the
same elevation. It changes a little bit. Sometimes it is a little bit higher, sometimes a little bit lower.
Perturbation helps us create a similar effect of randomness.
 Again this technique could be used with any kind of interpolation. So for simplicity we will
only describe here the most important changes to the code that was already shown in previous
sections. The pseudo-code could be found in Table 10.

Table 10: Linear Interpolation with Perturbation

 The most important step is at line 3. We still use the coordinate for the interpolation, but we
add some noise to its value. If we imagine the coordinate x as the elevation of the point, then the noise
will add randomness into the pattern. Another obvious advantage of this approach is that the attributes
of the Perlin Noise function enable us very easily control the appearance of the final function. For
example by appropriately changing the amplitude we can control the amount of noise in the function.
An example of the Perturbation used together with the Spline function is shown in Figure 2.23.

1 Linear Interpolation with Perturbation
2 For (each Point in Mesh){
3 Pertrub = point->x + PerlinNoise(point->x, oct, lambda, Amp);
4 offsetRed = Pertrub * ((Color2->R – Color1->R) / Interval);
5 Red = Color1->R + offsetRed;

 24

Figure 2.23: Coloring using the Spline function with Perturbation applied to a sphere.

3 Analyses

 In order to examine the true capabilities of the terrain generation algorithms and algorithms for
terrain coloring there is no better way then writing our own testing application. We have mentioned
several commercial and non-commercial applications that are available and that let you experiment
with algorithms for terrain generation. But only writing our own program and implementing the
algorithms ourselves give us the opportunity to design the application in our way and really
concentrate on important aspects of the generation of planetary models that we are interested in.
 This application is not meant to be a final version of a fully functioning application for an end
user. Rather than that we wanted to create a testing application that will enable us to apply the
algorithms for terrain generation in praxis. Finishing this application and making it user friendly with
all the necessary features is a subject of future development.
 This section provides an analysis of the design of the application. Considering what algorithms
we want to implement and what all features we want to incorporate into the application we will
analyze what should be the right data structure and the framework for the application. We will look at
what should be the right architecture for the program and what performance issues and problems
might be.

3.1 Planet Structure

 Every algorithm that we have described in Chapter 2 was working over some data structure
that we were calling a mesh. Now it is time to look closer at this structure and think about what it
should actually consist of and how it should be designed. It is not only important so that the algorithms
work the right way, but we also have to think about many performance issues and optimizations that
could be done in order for the application to work effectively.

3.1.1 Dynamic Structure

 When we create a planetary model we usually start from a sphere, because it is a shape that
usually quite well approximates the planet�s shape. Afterwards we apply some algorithm to displace
the points on the surface and create the desired terrain model. But some terrain generation algorithms
work in a different way.

Random Faults algorithm and all variations of Perlin Noise algorithm work with an already
created sphere. They keep the resolution of the sphere and they only displace the points. In contrast to
that the Mid-Point Displacement algorithm generates the terrain during the creation of the solid itself.
This means that we have to be able to dynamically change the complexity of the structure. We must be
able to increase its resolution and add more points, more polygons and more detail into it. For that
reason the data structure will certainly have to be dynamic.

3.1.2 Hierarchical Structure

 All the algorithms that we have described needed a direct access to every point in the mesh, so
that they could displace it or change its color. On the other hand computer graphics libraries are
usually optimized to render the mesh from polygons. Polygons could have almost any shape but as we
have already mentioned in section 2.3.2, for the representation of a sphere or a planet the triangles will
be the most suitable ones. So it is clear that in our data structure we will need to have access to both.
Therefore we will need some kind of a hierarchical structure that consists of objects pointing to one
another. Each triangle should know where its points are.

3.1.3 Linked List Data Structure

 In order to render the planet, to generate its terrain or to color it, we will need to effectively
iterate through all the points and polygons in the mesh. An array structure would be very suitable for

 25

this. Not only it would let us iterate through all its members but we could also access any point or any
polygon at a constant time. However this is in conflict with our need for a dynamic structure that we
have explained in section 3.1.1. We need to be able to dynamically change the number of points and
polygons in the mesh. For this reason the linked list data structure will be the most suitable one for us.
Although this data structure is not really optimal if we want to find one particular point or polygon, it
is very effective for adding more members into it. With an array structure we would have to copy the
whole array into a bigger one and then add the new points. When we use the linked list we can simply
add the new members to the end of the list in a constant time.

3.2 Dynamic Level of Detail

 The fractal algorithms give us the great opportunity to create a planetary model with a high
level of detail and high complexity. But one of the most common issues in computer graphics and
especially when trying to represent some structure with a high resolution, is the size of the structure.
The structure is either too big and we are using too much memory space or it contains too many
members and it takes too much time to iterate through it and the rendering of the scene is not smooth.
So to be able to use the capabilities of fractal algorithms and to overcome those performance issues we
need to implement the Dynamic Level of Detail algorithm. Unlike the static level of detail, which
maintains the same resolution everywhere on the planet, the dynamic level of detail let us explore the
detail of the planet by increasing the resolution only where it is necessary and thus keeping the data
structure small.

3.2.1 The Level of Detail of Perlin Noise Algorithm

With fractal algorithms like Perlin Noise the level of detail is very easy to adjust. In the matter
of fact the highest possible level of detail of the terrain generated by Perlin Noise is only determined
by the highest octave. If we use 10 octaves instead of 8 we will generate terrain with a higher detail.
But this assumption only holds if the resolution of the mesh is capable of displaying such a high detail.
In other words if the side of the polygon in the mesh is greater than the lambda of the highest octave,
then adding this octave into the model will not give us any benefit of increasing the resolution,
because we are not able to see it. So in order to create the terrain with all the detail that Perlin Noise
algorithm can give us, we need to be able to effectively increase the resolution of the mesh.

3.2.2 Only What We Can See Matters

 Adding one more octave to the generation of Perlin Noise should not require too much extra
computational time. But increasing the resolution of the planet will certainly require a lot of extra
memory space. In Figure 2.11 we have shown what the best way of increasing the resolution of a
triangle is. From that picture it is clear that each triangle will be substituted by 4 new ones. So the
number of triangles as a function of the level of detail could be calculated as follows.

l
trisN 4=

Ntris means the number of triangles in the mesh and l stands for the level of detail of the whole

structure. So every time we increase the detail and we reduce the length of the side of one triangle in
half the data structure will four times increase its size. It is important to think about whether we really
need all the triangles to increase their resolution. It is useful to think about what is actually rendered
on the screen. We are certainly not able to see what is too small to be displayed on the screen. And we
are even more certainly not able to see what is outside of our view. That means what is figuratively
beyond the edges of the screen.

What is too small

 The resolution of the screen is given in pixels. Pixel is the smallest thing that could be
displayed on the screen. Therefore anything that is smaller the one pixel simply could never be visible,

 26

because the display is not capable of visualizing it. So if we are looking at a planet from a bigger
distance we cannot see each mountain top in a mountain range or every single hill or lake. Those
things are too small and un-displayable considering how far are we from the surface. But if we start
moving towards the planet and we are getting closer and closer to its surface, terrain features like
mountain tops and hills will become visible.
 So it is obvious that the level of detail of the planet should take into account our distance from
the planet. There is no need to have a huge data structure containing all the details of the whole planet
when we cannot even see it. Rather than that we should keep the data structure small and only add new
polygons when we are able to see the detail provided by them.

What is not in our view

 If we are looking at a planet from a bigger distance we can see the whole planet because it is
all in our view. But once we get close enough to the surface only a certain part of the planet stays in
our view. If we are getting closer smaller and smaller part of the planet is in our view. The static level
of detail maintains the same resolution everywhere on the planet. So if we want to see the part that we
have zoomed into with a higher detail and we increase the resolution, then the resolution of the whole
planet will be increased. But because we cannot see most of the surface, this is certainly a big waste of
memory space. It is much more reasonable to increase the resolution only in the area that we are
looking at and keep a low resolution in areas of the planet that are not visible. This would certainly
save us a lot of memory space and also computational time, because we are not wasting so much time
trying to render something that is not going to be on the screen anyways.

3.2.3 Efficient Dynamic Level of Detail

 It is for sure that dynamic level of detail will save us a lot of memory space. However we will
need to implement several efficient algorithms in order for it to work smoothly and save us
computational time as well. Unlike the static level of detail, the dynamic level of detail will need to do
a lot computation before rendering each frame. Based on our analyses in the previous section we will
need to check how far is each triangle from our position in order to not to have too small triangles in
the mesh. Before each rendering of the scene we will need to check what triangles are actually going
to be rendered on the screen so that we do not increase the detail of those which will not be visible.
And probably most importantly we will have to take care of effective adding and removing of the new
triangles into and out of the mesh.

3.3 Analyses of the Application Architecture

 We have analyzed so far what kind of a data structure should we use and how the dynamic
level of detail should work. In this section we will summarize are findings from previous sections and
reason about the architecture of the application. It is important to split the whole program into several
modules responsible for different actions and correctly connect those modules together.

3.3.1 Modules

 The module in this meaning does not have an exact definition. It could be an object holding
the mesh or it could be a group of algorithms responsible for example for the terrain coloring. We can
roughly split the whole system into several modules as follows.
 Probably the most important module will be an object holding the whole mesh structure. As
we explained in section 3.1 this module should encapsulate a hierarchical structure of linked lists
connected with each other by pointers. We have to be able to easily iterate through this structure and at
any time obtain all the information about the terrain that we need.
 Other two modules will group algorithms responsible for terrain generation and for terrain
coloring. They will consist of mostly stand alone procedures that will take the mesh structure as input
and based on some controlling parameters they will generate the terrain or change its color
accordingly. These modules perform their actions only when they are specifically called by the user.

 27

 Unlike the previous two modules the module responsible for the dynamic level of detail will
be running in the background all the time. Anytime we move the planet, rotate it or zoom into it, we
will have to calculate how the mesh changes. This module has to calculate what triangles will be
added to the mesh and which ones are to be removed. The computational time required for
computations done by this module will be critical for the overall performance of the whole system.
 Another module should take care of the rendering of the scene itself. It takes information from
the current mesh and renders the planet model onto the screen. This module will be realized by some
graphics library and we will only use its interface to pass it the necessary information.
 In order for us to be able to somehow interactively control the generation of the planetary
model, we will have to build a module taking care of some kind of a user interface. This way we are
able to adjust the values of important parameters for the terrain generation. This module will also be
realized by some library closely connected to the graphics library.

3.3.2 Application Architecture

 When we defined the modules from which should our application consist, we should also
design how will be those modules connected together. The following diagram shows the architecture
of the whole system.

Figure 3.0: The architecture of the system.

 The diagram in Figure 3.0 is just a summary of this whole chapter. As we said the
fundamental part of the system is the data structure holding the mesh. The main cycle in the bottom
part of the diagram is running in a loop. The rendering module takes the mesh and renders it on the
screen. Then the mesh is updated by the dynamic level of detail based on how the user changed our
position in the scene. If the user wants to use some algorithm either for terrain generation or for terrain
coloring, the algorithms module takes the values of control parameters from the user interface module
and updates the mesh accordingly. Afterwards we can see the changes in the terrain when the scene is
rendered next time.

 28

4 Implementation

 In this chapter we will describe the implementation of the application. First we will specify the
development framework and what external libraries did we use. We will continue by writing about
specific implementation of the architecture that we have analyzed and designed in the previous
chapter. Rather than a complete description of all details of the whole system, I we will concentrate on
the most interesting parts of the implementation. I we will describe the data structure that was used for
the representation of the mesh and how it is optimized for a better performance of the whole system.
Another interesting part is the actual implementation of the Dynamic Level of Detail algorithm and
several problems that we have encountered while implementing the algorithm. Then we will mention
several interesting things about the actual algorithms for terrain generation and terrain coloring. And
finally the last part of this chapter will be addressed to the graphical user interface and the way that
user can control the generation of the planetary model.

4.1 Development Framework

 Most of the application was developed under Microsoft Visual Studio 2003 running on
Microsoft Windows XP. The development was finished under Microsoft Visual Studio 2005 running
on Microsoft Windows Vista Business. The program is written in C++ programming language.

4.2 Used External Libraries

 In some aspects of this application we had to use some external libraries. This section specifies
what libraries we chose.

OpenGL

 OpenGL [30] stands for the �Open Graphics Library�. It is a software interface providing an
access to the graphical hardware. This interface consists of several hundred functions and procedures
that enable us to specify objects and operations for the graphical output. From the programmer�s point
of view, the OpenGL is a set of commands controlling the creation of 2D and 3D objects and the way
that they will be rendered on the screen.

Glut

 Glut [31] is a simple and platform independent program interface primarily designed for
creating a simple user interface for applications using the OpenGL. In addition to this, Glut library has
also a lot of other functions that extend the OpenGL library and that we are going to use in this
application.

Glui

 Glui [32] is a Glut-based user interface library. It provides some basic user control
mechanisms for OpenGL applications. It provides controls such as buttons, checkboxes, radio buttons,
spinners or list boxes. It fully relays on Glut to handle all system-dependent issues like window and
mouse management.

4.3 System Architecture

 The architecture of the program was implemented according to the diagram in Figure 3.0. This
section will briefly describe the organization of the whole source code before we will start explaining
the details of particular parts of the application.

 29

The main function is located in file Fractal.cpp. Besides that this file also embodies all the
important methods controlling the initialization and the life of an OpenGL application. All the
important global variables and also the GUI are defined here.
 All methods that together implement the dynamic level of detail could be found in file
Lod.cpp. Most importantly it contains the constructor and destructor of the whole data structure that
holds the planet. Further more there are methods dealing with the initialization of the planet, with
increasing and decreasing its resolution and also the actual drawing of the structure on the screen. All
other objects that together create the whole hierarchical data structure could be found in the following
files: point.cpp, pointNode.cpp, pointArray.cpp, triangle.cpp, meshNode.cpp and meshTrianlge.cpp.
 The algorithms for terrain generation are implemented in several files. Random faults could be
found in randomFaults.cpp, Mid-Point Displacement is implemented in midPointDisplacement.cpp
and all methods dealing with the generation and use of the Perlin Noise are in the file called
perlinNoise.cpp. The file planetShader.cpp holds all the methods implementing various coloring
schemes and additional methods for interpolation of the color.
 The last two files contain the implementation of some additional features of the application.
The craters.cpp implements the generation and adding of the craters on the surface of the planet and
the waterLevel.cpp takes care of coloring and initializing of the water layer.

4.4 Mesh Data Structure

 This section is divided into two parts. The first part will explain how the geometrical model of
the planet represented is and the second part will be dealing with the actual data structure that is
holding this representation.

4.4.1 Planet Representation

 As we have already mentioned in previous chapters most of the algorithms has to be applied to
an already existing object of some 3-Dimensional shape. Because we are generating a planetary
model, the most suitable shape for us is a sphere. It is a very good approximation to the shape of most
planets. In order to apply terrain generation and terrain coloring algorithms we need to have access to
every point in the sphere structure. This means that we have to find a way how to generate the sphere-
like shaped object and store its complete structure in a memory.
 It is obvious that our final object will only be an approximation to the real sphere. This is
mainly due to the fact that the mesh will consist of flat polygons. The smaller the polygons are the
closer to the exact shape of a sphere we are. But this is limited by several performance issues like
memory space usage as we discussed in section 3.2. So the final structure will be a compromise
between good approximation of sphere and good performance of the application.
 We have also already decided on the shape of the polygon in section 2.3.2. Our mesh will
consist of triangles, because it is the most suitable representation for many graphics libraries including
OpenGL, which is optimized for using triangles. Further in the section 2.3.2 we have shown a way
how to increase the resolution of a mesh consisting of triangles. If we apply this iterative algorithm for
increasing the resolution to a simple object consisting of triangles and roughly approximating the
sphere shape, we can generate our sphere structure.

Iterative sphere generation

 It is important to decide what our simple starting object will be. It has to consist of identical
triangles that will roughly approximate the shape of a sphere. The octahedron, which is shown in
Figure 4.0, does fulfill our needs.
 The octahedron has only 6 points and 8 triangles. Therefore it is quite easy to calculate the
coordinates of those 6 points manually based on the chosen diameter of the sphere. Placing the center
of the sphere into the [0; 0; 0] point of the coordinating system will make it even easier. After
specifying the points� coordinates we have to add the 8 triangles by saying which points are supposed
to be connected together.

 30

Figure 4.0: Octahedron as a starting object for sphere generation

 Now the iterative algorithm for generation of a sphere has to increase the resolution of each
triangle in the structure according to the rule shown in Figure 2.11. Each iteration will in sequence
remove each triangle and substitute it with 4 new ones. In order for the algorithm to work well, we
have to displace the new points so that they are located on the surface of the sphere. Figure 4.1 shows
the progress of sphere generation over the first 4 iteration.

Figure 4.1: Iterative generation of sphere. From left to right the sphere consists of 8, 32, 128, 512,
2048 triangles.

Sharing points

 In order to keep the mesh structure as small as possible we should take advantage of the fact
that neighboring triangles are sharing an edge. If we increase the resolution of both triangles that are
neighbors separately we will have two points located at the same edge and at the same position but
each belonging to different triangles. Figure 4.2 illustrates this situation.

 (a) (b) (c)

Figure 4.2: Two neighboring triangles sharing an edge during the iteration. The conflicting point is
marked with red circle on image (c).

 Image 4.2a shows the two neighboring triangles sharing an edge . In the next image 4.2b we
can see that the left triangle has split into four new ones and it has added new point to the conjunctive
edge. On the last image 4.2c we can see the problem that can happen if we split the second triangle the
same way as we did the first one. The second one will also add a new point to the conjunctive edge
and place it at the exact same position. In the red circle we see the conflict between the two triangles.
 First of all this will add nearly twice as many points into the mesh than it is necessary.
Another problem is that in the matter of fact the mesh is not interconnected together. The triangles are

 31

not sharing points together. The whole mesh would be just a set of separate triangles, which might
cause unnecessary artifacts during the terrain generation.
 The solution to this problem is that each triangle must be aware of its neighbors. Before it is
supposed to split it has to check if its neighbors have been split already and eventually share the point
instead of adding a new one. The exact algorithm will be described in section 4.5 about the Dynamic
Level of Detail.

4.4.2 Data Structure

 The data structure holding the mesh is implemented as a set of linked lists containing
hierarchical structure of objects. The linked lists ensure that we can easily iterate through the whole
structure. The hierarchy of objects is needed for us to be able to work with the structure the right way
and to be able to find out how the objects are connected together. Figure 4.3 shows the whole
hierarchy of triangles and points.

Figure 4.3: The hierarchy of triangles and points. The arrows symbolize pointers to other objects.

Triangle � Points hierarchy

 The OpenGL needs to know the information about all triangles in the scene. But in order to
specify the triangle exactly we have to know the coordinates of its corner points. For that reason each
triangle in the structure has pointers to its three corner points.

Parent � Children hierarchy

 In order for the dynamic level of detail to work well, we have to be able to dynamically
increase and eventually decrease the resolution of the mesh. This means that later we might need to
put back the original triangle that we have removed from the structure when we increased its
resolution. Therefore each triangle has four pointers to its eventual children and each triangle also has
a pointer to its parent triangle from which it originated.

 32

Figure 4.4: Implementation of linked lists holding the mesh structure and the implementation of
objects holding triangles and points.

pointArray * myPoints

pointNode * head pointNode * last

next

prev

item

next

prev

item

next

prev

item

next

prev

item

float coord[3]

float normal[3]

float color[3]

pointNode * myNode

float height

pointNode * waterPoint

bool craterAdded

Point *

meshTriangles * mesh

meshNode * head meshNode * last

next

prev

item

next

prev

item

next

prev

item

next

prev

item

Point * p[3]

meshNode * edges[3]

meshNode* parent

meshNode * child[4]

float normals[3]

float midPoint[3]

int level

bool mid

bool up

Triangle *

 33

Neighbors structure

 In section 4.4.1 we said that each triangle must know about its neighbors in the mesh. This is
necessary in order for each triangle to know whether it is supposed to create a new point or share point
that was already created by neighboring triangle when it split.

Linked lists hierarchy

 The whole mesh is encapsulated in one single object. This object contains two main linked
lists. One consists of all triangles in the mesh and the other one consists of all points in the mesh. The
whole linked list is also implemented as an object consisting of pointers to its head and to its end.
Particular members are created as nodes holding the actual triangles or points and then accompanied
by pointers to the previous and to the next item in the linked list. The structure of both linked lists and
the exact representation of objects holding a triangle and a point are shown in Figure 4.4.

4.5 Dynamic Level of Detail

 From section 3.2 in the analysis of the application we know that the Dynamic Level of Detail
algorithm will have to take care of several things. It has to find all triangles that are located in our
view. Then it has to calculate which of these are supposed to change their level of detail based on the
distance from our viewpoint. And finally it has to take care of successful adding and removing items
into and out of the mesh while keeping it consistent. Table 11 summarizes the pseudo code of the
whole algorithm. In the following sections we will discuss implementation of particular steps and sub
functions of the algorithm. Our own implementation of this algorithm was inspired by [19].

Table 11: Dynamic Level of Detail Algorithm

4.5.1 Testing Triangles

 If we want to find out whether the current triangle is supposed to change its level of detail, we
have to perform several tests. First thing to do is to determine what part of the whole scene, where the
planetary model is placed, is located in our view. This is dependent on the current position of the
camera, on the direction and the way we are looking at the scene and finally at the position of the

1 Dynamic Level of Detail Algorithm
2 Input: Mesh – structure holding the mesh
3 Output: Mesh – updated mesh structure

4 While (main cycle){
5 For (each triangle in the Mesh){
6 If (triangle in our view){
7 Dist = distance(triangle, viewpoint);
8 Level = levelOfDetail(triangle);
9 Threshold = lookUpThresh(Level);
10 If (Dist < Thresh) && (fineToSplit(triangle)){
11 Split(triangle);
12 }
13 Else If (Dist > Thresh) && (fineToReduce(triangle)){
14 Reduce(triangle);
15 }
16 }
17 }
18 }

 34

triangle itself. Once we know that the triangle will be in our view, we have to find out whether it is
eligible for updating its resolution. This is dependent again on the current position of the camera, on
the distance between us and the triangle, the level of detail of the triangle and some arbitrary threshold
for the distance.

Determining the camera view

 Our view is bounded by the edges of the screen or the window into which we render the scene.
So we can imagine each side of our view as a plane that cuts through the whole space. These four
planes together determine what will be visible and what will not. What is in between the planes will be
rendered what is outside will be hidden to our eyes.

Figure 4.5: Four planes bounding our view. (Image taken from [20])

 In OpenGL when we define the perspective projection we specify the aspect ratio of the screen
and an angle under which we see the scene. Illustration of this is in Figure 4.5. Therefore because we
can calculate the coordinates of the camera in the scene and we can infer the angle of the planes
bounding our view from the way we specified the perspective projection, we can calculate an analytic
equation in space for each of the four planes. The rest is a just a simple analytical geometry. We have
the coordinates of the triangle and we test it with all four equations for each plane. This way we find
out whether the triangle is located in our view or not. Other more sophisticated and methods with
better performance could be found in [35] or [36].

Back face culling

 Actually to be absolutely correct in the previous section we did not find everything that is
going to be rendered on the screen but everything that is located in the area that is determined by our
four clipping planes. Thus we also found triangles that are not going be rendered on the screen either
because they are covered by other objects in the scene or because they might even be located on the
other side of the planet. This is scenario is shown in Figure 4.6.

Figure 4.6: Triangles in our view located on the front and back side of the planet. Triangles on the

back side are not going to be visible.

Especially for this second reason I tried to implement the Back Face Culling algorithm. It is
mainly because I wanted to determine whether the triangle is located on the side of the planet towards
the camera or on the other side. The Back Face Culling algorithm calculates the vector product
between the vector connecting the camera position with the given triangle and the normal vector of the
triangle itself. So it is an easy way to determine whether the triangle is facing us or not. Consequently

 35

we are going to exclude all triangles that are not facing us from the dynamic level of detail, because
they are not going to be visible in the scene. However this had a negative impact on the final look of
the displayed terrain. If we are looking at a mountain then the Back Face Culling algorithm will
exclude its back side from increasing its resolution. But this will also be apparent from the front side,
because the lower resolution on the back side will affect the edges of the mountain visible from the
front.

For this reason we gave up using the Back Face Culling algorithm and we only implemented a
simple rule that decides whether the triangle is on the front or on the back side of the planet. The
vector connecting our viewpoint with the center of the planet is a normal vector to a plane that cuts the
planet in half. Everything in the front of this plane will be eligible for the dynamic level of detail and
everything behind it will not, because it is on the other side of the planet. Figure 4.7 shows two
examples of what part of the planet will be affected by the dynamic level of detail.

Figure 4.7: Two examples of how the implementation of front/back side decision works. The part of
the surface where dynamic level of detail is applied is marked with blue color. Red color means
triangles that are inside the four planes clipping our view but are excluded from the dynamic level of
detail because they are on the back side. Blue color marks triangles that are eligible for the dynamic
level of detail.

Distance threshold look-up table

 Once we have decided about the triangle�s being in our view, we need to know if it is time for
it to change its resolution or not. This depends mainly on our distance from the triangle. That is
calculated easily as the Euclidian distance between the camera position and the position of the triangle.
Now we need to test whether the distance of the triangle is too big or too small. This is done by
comparison to some arbitrarily set threshold. Logically for triangles with different level of detail this
threshold will be also different. If we are far away from the planet, the triangles are relatively big.
Therefore the distance threshold for those triangles also has to be relatively far from the planet�s
surface. As we proceed closer to the surface the triangles are getting smaller and smaller and again so
is the distance threshold for splitting. We implemented this as a Look-Up Table. This table is
represented as an array. The index to this array is the level of detail of the triangle. The value in the
array is the actual threshold for the distance. We can see that in Table 11 at line 9 where we have to
look up the right threshold for the triangle based on its level of detail. This threshold is then at line 10
and 13 compared to our distance from the point.
 If we are zooming into the scene then whenever the threshold is bigger than the distance we
split the triangle and increase its resolution. On the other hand if we are zooming out from the scene
we want to reduce the resolution. So when we test that the distance is bigger than the threshold, we
have to reduce its resolution. Because during each splitting the triangle reduces the length of its edge
by half, we also set each threshold as the half distance of the previous threshold. This way we manage
to still keep more or less the same resolution of the planet model in the scene rendered on screen. An
illustration of the thresholds is shown in Figure 4.8.
 This implementation allows a triangle to change its level of detail by 1 in one iteration. If we
eventually have a triangle that has to change its resolution by more than 1, then this is possible, but it
will happen in the next few cycles of the dynamic level of detail. In other words, during the first
iteration a triangle with insufficient level of detail is detected and its resolution is increased. After this

 36

the scene is rendered on the screen. In the next iteration this triangle is detected again and its
resolution is again increased. This goes untill the resolution of the triangle is sufficient.

Figure 4.8: Thresholds for the level of detail of the planet�s surface. Each threshold is placed in the

middle of the distance of the previous one from the surface.

 The look-up table presents a quite easy way how to adjust the performance of the whole
application. We have to realize that these values of distance thresholds influence the number of
triangles and points in the planetary model that we can see. As we said before if the model is too big it
might require too much memory space or be too complicated to be rendered smoothly in real time. But
the term �too big� mainly depends on the hardware specification of the computer that we are working
with. So in order to adjust the application to work well on the given computer, we can increase or
decrease the thresholds in the table. If we increase them then the resolution of the planet will increase
when we are further away and we can see a bigger part of the surface. Therefore the structure will
contain more triangles. If we reduce the thresholds, the resolution will increase later and there will be
fewer triangles in the structure, because just a smaller part of the planet is visible.

4.5.2 Updating Mesh

 Once we have a triangle, resolution of which we want to change, we have to make sure that we
will do it the right way. The first issue is keeping track of parent triangles that are being removed from
the mesh because they are substituted by their children when the resolution is increased. Later on if we
want to reduce the resolution of the mesh again, we must recall this parent triangle from memory and
place it back into the scene instead of its children. The second problem is that increasing the resolution
of one triangle affects also its neighborhood. Without taking into account the level of detail of
neighboring triangles, unwanted artifacts like cracks and various terrain distortions may occur.

Parents list

 Our need to remember all parent triangles that were removed from the mesh, results in our
having additional linked list in the mesh data structure. This list is called the Parents List and its
implementation is identical to the list of all triangles in the scene shown in Figure 4.4. Triangles from
this list are not used for the rendering of the scene. They are only stored in the memory for the case
that we need to recall them and add them back into the scene. In Table 12 is a detailed description of
methods Split() and Reduce() from lines 11 and 14 in Table 11.
 The pseudo code in Table 12 should be more or less self explanatory. When we split the
triangle, we have to create 4 children triangles and place them into the mesh. Afterwards we remove
the parent triangle and we store it in the Parents List. When we reduce the resolution we are doing
inverse procedure to splitting. We take all 4 children and recall their parent triangle from the Parents
List. We place it into the mesh and we delete all 4 children.

 37

Table 12: Split() and Reduce() functions

 Perhaps one quite interesting part is at lines 8 and 9 when we have to find all 4 children
triangles. The input for the Reduce() function is one single triangle that was chosen for a reduction of
resolution. But in order for us to do that we must know where all 4 children are and not just the one
triangle that we know about. So we recall the parent triangle and we find the other 3 children based on
its children pointers. This way we can find all 4 children triangles in a constant time if only one them
is given.

No cracks

 When we use dynamic level of detail, we have a model of a planet detail of which varies in
different location. We can see that there are areas with higher detail, which means smaller triangles
and areas with lower detail, which means triangles of a bigger size. The border between those areas
where triangles of different sizes meet represents a problem for smooth connection of the triangles
together without any artifacts.
 The problem is with the point that two neighboring triangles share. This was already discussed
in section 4.4.1, where we wanted the neighboring triangles to share this point. Now we have a
problem with the point�s displacement. If one of neighboring triangles increases its resolution it adds a
new point to the conjunctive edge. In order for us to increase the resolution of the terrain we have to
displace this new point to the elevation that it is supposed to be at, based on the terrain generating
algorithm. However if we do this before the neighboring triangle increases its level of detail to the
same level, a crack will occur. This is shown in Figure 4.9.

 (a) (b) (c)

Figure 4.9: Splitting triangles causing crack to occur. (a) Two adjacent triangles. (b) The right

triangle increases the resolution. (c) Crack occurs after displacing the new point.

 To avoid the cracks from occurring, we have to first follow one simple rule. The difference in
the level of detail of two adjacent triangles must be never bigger than 1. This is hidden at lines 10 and
13 in Table 11 in functions fineToSplit() and fineToReduce(). Before we increase the resolution of the
triangle we have to look at the adjacent triangles and check if their resolution is not smaller then ours.

1 Split (triangle T){
2 Children = Create 4 children triangles of T;
3 Remove T from Mesh;
4 Add 4 Children into the Mesh;
5 Add T into the Parents List;
6 }

7 Reduce (triangle T){
8 Parent = Recall parent of T from Parents List;
9 Children = All children of Parent; /* including T */
10 Delete Children;
11 Add Parent into the Mesh;
12 Remove Parent from the Parents List;
13 }

 38

If it is then we cannot split, because splitting would result in having two neighboring triangles with the
difference of the level of detail of 2. We have to watch this as well when we reduce the resolution.
 Once we make sure that this condition is fulfilled, it is quite easy not to generate cracks. If the
neighbor has the same level of detail as the splitting triangle, than the new point that is created is not
displaced but left on the conjunctive edge. But if our neighbor has a higher level of detail, we share the
point on the conjunctive edge and displace it accordingly. In other words the point on the conjunctive
edge is only displaced if triangles on both sides of this edge have the same level of detail. If either of
them has a lower level of detail then we cannot displace this point, because doing so would create a
crack in the mesh. Figure 4.10 shows a comparison of two terrain patches, where one was created
without taking care of the cracks and the other does take care of them. More detailed work on other
methods of crack avoiding could be found [37] or in [38].

 (a) (b)

Figure 4.10: Comparison of terrain patches with and without cracks. (a) Terrain patch generated
WITHOUT taking care of the cracks. (b) Terrain patch generated WITH taking care of the cracks.

4.5.3 Problems and Known Issues

 Although the Dynamic Level of Detail algorithm, in the way that we have implemented it, is
working considerably well and certainly improves the performance of the application, there are still
several problems that need to be solved. Despite the fact that we have not come up with a solution yet,
we will mention here these problems. Modifying the algorithm and taking care of those issues is a
subject of future development.

Update of colors and normals

 When the level of detail generates new triangles it adds new points to the mesh. In order for
OpenGL to render the terrain the right way we have to specify what the normal of the surface in the
point is and also what its color is. To do this we would have to calculate this for all new points during
every iteration of the dynamic level of detail. However this would require significant amount of
computational time and really slows down the whole rendering process. Especially when using some
kind of a Perlin Noise algorithm for the coloring the computation might be quite costly. For the
normals, we have to realize that adding new triangle into the mesh might change the position of
several neighboring triangles. Therefore normals of all of those triangles would have to be
recalculated. With the data structure that we have designed it is impossible to keep track of all
triangles that might be affected by adding a new one. So the only option would be to calculate the
normals of all points in each iteration, which requires too much computational time.
 Our temporal solution to this issue is that the user can manually say when the normals and
colors are supposed to be calculated. During the generation of the new points we assign them only the
average color of their parent points and we assign them some default normal. This way user can quite

 39

smoothly explore the planet surface and when he desires he can manually choose to calculate the
proper colors and normals for the given view.

Improved back face culling

 In section 4.5.1 we have explained why a classical Back Face Culling algorithm is not suitable
for our purpose. Leaving out all triangles that were facing away from us from the dynamic level of
detail had a negative impact on the look of the terrain. In the same section we proposed a simple
technique for determining which triangles are on the front and what are on the back side of the planet.
However this method still involves too many triangles into the dynamic level of detail and thus the
resulting mesh structure is too big. This means that unnecessary too much computational time is
needed for the rendering and other operations with the mesh, although it does not provide us with any
improvement of the detail of the generated terrain. Hence a better algorithm for deciding which
triangles will be actually rendered on the screen is needed in order for a better performance of the
whole application.

4.6 Terrain Generation

 The implementation of the terrain generation algorithms is quite straight forward. It follows
the pseudo codes presented in section 2.3. The most important part of the implementation was to make
sure that the algorithms will have a direct access to all triangles and points as they required. This was
ensured by the data structure that we have designed and described in section 4.4. The displacement
rules for particular points follow the principles described in section 2.3 without any major
modifications. So instead of repeating here what was already explained once in the survey part of this
work, we will mention here couple of things that we consider to be quite interesting and that have not
been discussed yet. In this section we will describe the implementation of the water layer and the
implementation of the crater generation algorithm.

4.6.1 Water Layer

 An important part of the planetary model is the water layer. Especially on earth-like planets
the water covers up to 2/3 of the whole surface. One way to implement this is to override the terrain
generation algorithm everywhere where the altitude is lower than some arbitrarily chosen water level
and leave these points at the water level. This approach brings several difficulties like problems with
coloring of the sea shore or problems with changing the water level. In this application we have
implemented a different approach that requires more memory space but is certainly easier to
implement and also overcomes both above mentioned problems.
 In my implementation the water layer is represented as another sphere. This sphere is
completely separated from the mesh structure holding the planet model. So we could actually see it as
another planet. This sphere is placed at the same center point as the planet itself. The desired water
level at the planet is equal to the diameter of this sphere. When OpenGL renders the scene, all surface
that is under the water layer will be covered by the water sphere, and thus it creates an effect of water
on the planet. We can quite easily change the height of the water level by enlarging or reducing the
water sphere�s diameter.
 One issue connected with creating the water layer this way is its coloring. We have
implemented a simple coloring of the water based on the linear interpolation of tones of blue color
based on the depth of the see. But in order to do that we have to know what point on the see bottom
matches with appropriate point on the water layer. This is not quite easy task because there is no way
how to find the appropriate points in the linked list that was created with the iterative algorithm that
was described in section 4.4.1.

My solution to this problem was inspired by a simple assumption that if we generate two
identical sphere structures with the iterative algorithm then the ordering of the points and triangles will
be the same in both linked lists. Also another thing to realize is that the water layer is not going to be
represented by a mesh with such a big resolution as the resolution of the planet itself. This is because it
does not need to display so much detail as the planet�s surface. So during the initialization of the

 40

application when we are creating the planetary model, we create both the planet and the water layer to
a certain level of detail. Then we iterate simultaneously through both linked list containing all points
in the planet and water mesh and we set a pointer from each point in the water layer to the appropriate
point in the planet mesh. Once this is done, we can further increase the resolution of the planet, but the
points in the water layer will keep track of where the appropriate point on the sea bottom underneath
them is located and they can set their color accordingly. For this purpose there is a pointer called
waterPoint in the Point object shown in Figure 4.4. It is used only for the water layer. For the terrain
mesh this pointer is set to null and not used.

In Figure 4.11 we can see an illustration of how the water layer works. We can see on the left
picture of a terrain generated with Perlin Noise algorithm. The right picture displays the same terrain
after adding the water layer. We can see how all points on the planet under the water layer are covered
by the water sphere. Also it is apparent how the water layer is colored based on the depth of the sea.

Figure 4.11: Adding water layer into the model.

4.6.2 Craters Implementation

 In addition to the fractal generation algorithms that generate the whole surface of the planet we
have also implemented an algorithm for adding craters onto the surface of the planet. This is mainly
for the purpose of creating a Moon-like looking planet. The generation of craters has two main parts.
One part is creating the actual crater. We have to displace the terrain around some previously chosen
mid-point and create the right shape of the crater. The second and also very important part of the
algorithm is a function that will distribute the craters randomly over the planet�s surface.

Modeling of a crater

 If we want to model the shape of a real crater we have to keep in mind its regular round shape
but also its randomness, which is caused by different angle of impact or by erosion that took place
after the crater was created. Figure 4.12 shows examples of real Moon craters. We can compare those
to the craters generated by this application in Figure 5.10.

Figure 4.12: Moon craters. (Images taken from [33] and [34])

 41

 The regular shape could be implemented as a several concentric circles that separate different
zones in the crater. The middle quite flat area of the crater is ended by the inner rim. From this point
the crater is raising till it reaches the maximum at a certain distance from the mid-point that we can
call the outer rim. Now the crater is steeply declining down until it reaches its end, which is at a
distance that could be called the size of the crater. Figure 4.13 shows a schema of the zones inside the
crater.
 The actual algorithm is implemented as a set of different displacement functions. First we find
in which zone the current point lies based on its distance from the mid-point. Consequently we
displace the point based on its position within the zone. The smooth rising and declining of the edge
rim of the crater is approximated by a smooth step function that uses a cubic interpolation between
two defined elevations.

Figure 4.13: Schema of different zones inside the crater.

 The randomness is implemented by incorporating the perturbation function that was described
in section 2.4.5. We used one perturbation function to perturb the elevation displacement of the crater.
This causes that the rim is not lifted into the same elevation everywhere. Further more we used another
noise function to perturb the distance of the different zones from the mid-point. This resulted in the
craters not regular round shape everywhere but instead in a certain amount of randomness in the
model.
 There are several ways how to control the final appearance of the crater. The most important
ones are the size of the crater and the distances of different zones in the crater from the mid-point. In
addition to this we can also control how big will be the vertical displacement relatively to the size of
the crater and also different parameters of the perturbation functions will affect the final look of the
crater. An example of the crater is shown in Figure 5.10.

Distributing function

 It is completely random where the meteorite hit the planet�s surface and creates the crater. We
would like to have the same distribution of craters in our model. In order to that we had to come up
with a function that will return a random point on the planet�s surface that will be used as the center
point of the crater.
 We have tried several ways of distributing the craters randomly over the planet including
constructing random vectors starting at the center point of the planet and then finding the point in the
mesh that was the closest one to this vector. But all of those methods were either too computationally
demanding or the distribution of the craters was not uniform and the algorithm tended to place more
craters into the same areas. Finally we used a very simple algorithm that takes advantage of the linked
list data structure that holds all the points in the mesh.
 Because we know the number of points in the mesh, we can simply generate random integer
number from 1 to the number of points. Then we iterate through the linked list holding all the points
and we output the point that is at a position with ordinal number equal to the random number that we

 42

have generated. This simple algorithm works fast and it randomly and uniformly distributes the craters
all over the planet.

4.7 Terrain Coloring

 In this section we will describe my actual implementation of the coloring algorithms for the
planet. In section 2.4 we have talked about basic techniques for color interpolation and for
incorporating fractal algorithms into the coloring. Here we will explain how were these techniques
used and combined together in order to create various coloring schemes. In this section we are only
going to describe our motivations for creating that particular coloring scheme. Comparison and some
evaluation of presented techniques will be a subject of the following chapter.
 One important thing to understand here is that the final look of any coloring model will highly
depend on the actual color tones that we use for the interpolation. Not even the best coloring
algorithms cannot create anywhere near realistically looking planet if we are not using the right color
palette. During our work on this project we have found out that choosing the right color palette is a
very difficult task and it takes a lot of time to pick the really good and realistically looking colors. So
far we have not included an option into the GUI for creating user�s own color palette. However this
would enable the user to adjust the colors so that they fit the desired look and it is certainly a feature
that we are planning on including into the application in the future.

4.7.1 Altitude Based Coloring

 This coloring model was inspired by a simple assumption explained in section 2.1.2 that the
color of terrain is in many cases dependent on the elevation. We have used linear interpolation
between three predefined colors. First green color symbolizes lower altitudes, mainly flat parts of the
planet. Hills stretching to little bit higher altitudes are marked with brown color. The last section of
mountain tops is colored with white color to symbolize snow cover. The control variable for the
interpolation is the elevation of the point on the surface. Therefore all the points on the planet with the
same altitude have the same color. For example the water layer is using this kind of a coloring scheme
as well. In that case the water is colored based on the depth of the sea bottom underneath. Example of
planet colored with this coloring model is in Figure 4.14a.

4.7.2 Altitude Based Coloring with Perturbation

 This coloring model is very similar to the previous one. The only difference is that we perturb
the altitude value that controls the interpolation according to the principle described in section 2.4.5.
The motivation for this is that with a simple altitude based coloring all points with the same altitude
have the same color. This might create unnaturally looking coloring in some cases. Therefore we
perturb the altitude by adding some noise to it. This way the altitude zones are not constant but they
vary based on the perturbation.
 Because altitude zones are a low scale feature and adding the perturbation does not change the
appearance of the whole planet from a bigger distance, we did not include an image of a planet with
this coloring into Figure 4.14. At this scale the planet would be almost identical to the planet in Figure
4.14a.

4.7.3 Perlin Noise Coloring

 In this case we wanted to color the terrain with a completely random pattern using the fractal
algorithms. This coloring uses the 3-dimensional Perlin Noise function for coloring of the planet�s
surface. We use the coordinate of each point in the 3-dimensional space as the input for the Perlin
Noise function. The response of the Perlin Noise function in each point controls the linear
interpolation between two colors. In this particular case we have chosen green and brown color.
Because we are using 3-dimensional function the coloring is smoothly distributed everywhere on the
planet and there are no artifacts caused by connecting different 2-dimensional textures together. An
example of planet colored with this coloring model is in Figure 4.14b.

 43

4.7.4 Altitude Based + Perlin Noise Coloring

 This coloring is a mixture of the previous methods. The main motivation for this one is to
incorporate some randomness into the quite regular coloring pattern created by simple altitude based
coloring. We have achieved this by using the linear interpolation controlled by the altitude in two sets
of four colors. In each set there is a color for lowlands, one for highlands, one for mountains and one
for snowy mountain tops. The coefficient of blending those two sets together is determined by the
Perlin Noise function. For this purpose we are using 3-dimensional Perlin Noise function, which
response is calculated based on the point�s coordinates. This way we can see an altitude dependency of
the color but the coloring also appears to be quite random and has more natural look. Example of
planet colored with this coloring model is in Figure 4.14c.

4.7.5 Turbulence Coloring

 In section 2.4.4 we have described how we can modify the output of the Perlin Noise
algorithm to create more interesting coloring patterns. The turbulence function interpolates between
two colors based on the absolute value of the response of the Perlin Noise function. Because this
modification is often used for creation of fire-like textures we have used black and red color for the
interpolation. Example of a planet colored with this coloring model is in Figure 4.14d.

4.7.6 Earth-like Coloring

 This coloring is a mixture of several principles described in section 2.4. The motivation for it
is to create an Earth-like looking planet. We tried to create several vegetations zones that depend on
the latitude of the point as shown in Figure 2.1. We also wanted to add certain amount of randomness
by incorporating the Perlin Noise function into the model. And finally also the altitude dependency of
the color was our goal.
 We used the spline function to create several vegetation zones based on the latitude of the
point on the planet. In order for these zones not to be just straight stripes we perturb the latitude by
adding certain amount of noise to the latitude. Another step was to add randomness and detail by
incorporating Perlin Noise algorithm. We created another spline function determining another set of
vegetation zones but with a little bit different colors for each zone than the first spline. A 3-
dimensional Perlin Noise function was used to specify how the colors from these two splines are
blended together. Last thing to do was to add the altitude dependency. In order to do that we have
created another pair of spline functions that specify the color of the mountain tops. These two were
also blended together based on the 3-dimensional Perlin Noise function. The final color of the point
was obtained by linear a interpolation based on the altitude of the point between the results of the
blending between the two pairs of spline functions. Example of planet colored with this coloring
model is in Figure 4.14e.

4.7.7 Gradient Based Coloring

 This coloring model is inspired by the dependency of the terrain color on the gradient of the
surface. On steep hill-sides there are no trees but only rocks. We can see the same thing on the
mountains where the snow slides down from areas that are too steep. In this coloring scheme the color
is linearly interpolated between two colors based on the normal to the surface in the given point.
Example of a planet colored with this coloring model is in Figure 4.14f.

4.7.8 Moon-like Coloring

 In order to create an impression of a Moon-like looking planet we have designed a special
coloring model that was inspired by terrain features and color tones that could be seen in Figure 2.0b.
This coloring model does not only color the terrain but also changes the color of the water layer to.

 44

In the real photographs of the Moon we can see that it has big areas of darker grey color that
are called seas (for example Mara Tranquillitatis, Mare Imbrium or Oceanus Procellarum). According
to [29] these are not seas filled with water but they used to be big pools of lava. So in order to create
those lunar seas we simply used the water layer. We colored it with a dark grey tone and for a little bit
more realistic impression we used a Perlin Noise function to blend two dark grey tones together.

The rest of the planet is a quite random and rough terrain with a lot of craters and other terrain
formation. This area is represented by the surface of the planet that is above the sea level. It is colored
in brighter tones of grey and we used a simple altitude based coloring to emphasize the terrain
differences. The craters are added later into the model by applying the craters generation algorithm
that was described earlier in section 4.6.2. The complete Moon planet model is shown in the
comparison chapter in Figure 5.10. An example of the Moon-like coloring is shown in Figure 4.15.

 (a) (b) (c)

 (d) (e) (f)

Figure 4.14: The same planet model colored with different coloring algorithms. (a) Altitude
dependent. (b) Perlin Noise. (c) Altitude dependent + Perlin Noise. (d) Turbulence. (e) Earth-like. (f)
Gradient dependent.

Figure 4.15: Planet colored with Moon-like coloring.

 45

4.8 Graphical User Interface

 We have used the glui library to create a simple graphical user interface for this application.
The main purpose of this GUI is to give the user an access to some key parameters that are used for
controlling of the terrain generation. We can also choose the terrain generation algorithm that will be
used for the creation of the planetary model. Consequently one of several coloring schemes could be
chosen and applied to the surface. Furthermore the model could be enhanced by several additional
effects like adding the water layer, displaying the sky or adding craters to the surface. Another
important option is to choose the terrain generation algorithm that will be used for the dynamic level
of detail and whether to turn it on or not. The GUI also displays some important characteristics of the
geometrical model of the planet. For example it shows the maximal dynamic level of detail in the
scene or the overall number of triangles in the mesh. An example of the GUI is shown in Figure 4.16.

Figure 4.16: Example of the work space. On the left is the graphical user interface. The right window
displays the rendered terrain.

 In addition to the control features of the GUI, user can use the mouse and several key buttons
to freely explore the planet�s surface. Complete description of all control blocks and available
keyboard control could be found in the User Manual in Appendix A.

 46

5 Comparison of Algorithms

 This chapter is supposed to be sort of an experimental results chapter. Although it is
sometimes very hard to compare different terrain models and evaluate them based on how realistic
they look, I will try to do that here and draw some conclusion about what algorithms for terrain
generation and for terrain coloring are the most suitable ones for creating a planetary model. Because
everyone has a subjective opinion about which planet or mountain range looks better or more realistic
we will also look at the technical aspects of the algorithms. We will compare them according to how
the results could be influenced by different parameters. This is a very desired property that enables us
to quite easily influence the final look of the terrain.
 First we will look at what coloring models produce the best looking coloring of the surface
and how some of the models could be modified by adjusting some parameters. Then we will follow by
probably the most important part of this chapter, the comparison of terrain generation algorithms. We
will present several examples and explain how the generated terrain satisfies our demands that we
have stated in section 2.1. Also we will show how the look of the generated terrain is dependent on
different values of the input parameters. The last part of this chapter will deal with a qualitative and
quantitative comparison of the static and dynamic level of detail. We will show examples of what the
limits of static level of detail are and how dynamic level of detail overcomes these problems and
significantly improves the performance of the whole application and gives us a better opportunity to
study the generated terrain.

5.1 Comparison of Terrain Colorings

 In Figure 4.14 we could see views of the whole planet colored with different coloring models.
These images give us an idea of how the coloring is suitable for high scale planetary features. In this
section we will add similar figure showing the same coloring models at low scale planetary features.
Furthermore we will look at the most important parameters of the terrain coloring algorithms and how
they control the final look of the coloring.

5.1.1 Coloring of Low Scale Features

 In this section we will look at how particular coloring models perform on low scale terrain
features. This means that we are interested in whether the coloring distinguishes between mountains
and lowlands, whether it adds sufficient amount of detail to the terrain model or whether it emphasizes
the plasticity of the terrain or not.
 For this comparison we will use the same terrain patch for all coloring models. We have
chosen a specific part of the terrain where we can find quite flat areas but also high mountains. This
way we can observe all aspects of the coloring in one view. Figure 5.1 shows the rendered views.

 (a) (b) (c)

 47

 (d) (e) (f)

Figure 5.1: The same terrain patch colored with different coloring models. (a) Altitude dependent. (b)
Perlin Noise. (c) Altitude dependent + Perlin Noise. (d) Turbulence. (e) Earth-like. (f) Gradient
dependent.

Emphasizing plasticity of the terrain

 From Figure 5.1 we can see that some colorings are better in emphasizing the 3-
dimensionality of the model and thus creating a better impression of the terrain. Perlin Noise and
Turbulence coloring in Figure 5.1b and 5.1d do not emphasize the plasticity at all. This is because they
are not altitude dependent models. We can see that other 4 models are quite good in this regard,
because we can easily distinguish between different altitude zones. However simple Altitude
dependent coloring in Figure 5.1a produces quite unnaturally looking coloring because the altitude
zones are too visible. The best sense of plasticity probably gives us the Gradient based model in Figure
5.1f, because it emphasizes every change in elevation by changes in the color tone. The Perlin Noise +
Altitude dependent and the Earth-like model in Figure 5.1c and 5.1e give quite good impression of the
plasticity by interpolating the color based on the altitude.

Adding additional detail

 The coloring can improve the final impression by adding additional detail into the model. We
can see that Altitude dependent model does not add much additional detail, because it does not
incorporate Perlin Noise at all. Gradient based coloring does not use Perlin Noise as well but it adds
additional detail because it emphasizes every little curve in the terrain that would not be visible
without the coloring. The remaining four models incorporate Perlin Noise algorithm and thus add
quite big amount of additional detail into the model. However we can see that plain Perlin Noise and
Turbulence coloring add the detail in a quite unnatural way. This might be due to the too contrasting
color tones used for the interpolation. The best and the most realistically looking addition of additional
detail is provided by the Perlin Noise + Altitude dependent and the Earth-like models. They add
sufficient amount of detail that does not distract the eye from other terrain features. The Earth-like
model adds additional diversity into the model, by having different vegetation zones based on the
latitude. This is certainly a better property compared to the same color tone of Perlin Noise + Altitude
dependent coloring all over the planet.

Conclusion about coloring models

 From Figure 5.1 it is clear that the right planet coloring must add additional detail and must
emphasize the plasticity of the terrain. Perlin Noise, Turbulence and Altitude dependent colorings
have only one of those properties and thus do not produce such a good results. The Gradient based
coloring has quite good results, however it should be combined together with some other techniques to
produce more complex coloring model. The best results were achieved with Perlin Noise + Altitude
dependent coloring and with Earth-like coloring. We can see in Figure 4.14 that these two models

 48

created quite realistically looking planets even at a high scale. Producing good coloring at different
scales was our main goal.

5.1.2 Parametric Control of Coloring Algorithms

 One of the most important properties of fractal algorithms is their ability to be easily
controlled by adjusting some key parameters. In this section we will look at how the coloring could be
adjusted by this parametric control. Because there are many parameters and even more combinations
of their values we have chosen only the most important cases or parameters that we have already
mentioned in the previous text. We will look at how the perturbation of the altitude zones changes the
coloring, how the lambda of the Perlin Noise changes the amount of additional detail added to the
model and how the amplitude of perturbation function effectively influences the lay-out of vegetation
zones in the Earth-like coloring.

Perturbation of altitude zones

 In section 2.4.5 where we were describing the principles of perturbation technique, we
mentioned that this technique might be used for modifying the altitude zones, so that they are not
located at exactly the same elevations. This way we wanted to create more realistic look of the colored
terrain. In Figure 5.1a we can see that the altitude zones seem quite narrow. For this reason we have
implemented Altitude based coloring with Perturbation that adds some noise to the altitude of the
point. Figure 5.2 shows examples of the same terrain with different perturbation functions.

Figure 5.2: Altitude based coloring with perturbation. The same terrain patch with different
perturbation functions.

We can see from the examples in Figure 5.2 how the perturbation influences the snow line on

the mountain. However we can not really say that this much contributes to the coloring being more
realistic compared to the classical Altitude based coloring in Figure 5.1a. On the other hand various
altitude of the snow line on different mountains on the planet contributes at least a little bit to the
complexity and randomness of the overall model.

Perlin Noise lambda

 Although it might not seam quite obvious at the first glance, the lambda parameter of the
Perlin Noise function is the key parameter controlling the amount of additional color detail added to
the model. It determines the size of the features created by blending the colors together according to
the Perlin Noise function. The smaller lambda we are using the smaller is the size of those color
features and consequently the higher is the amount of the optical detail added. If we use too big
lambda then the features will be too big and the terrain coloring will not look natural. Figure 5.3 shows
that there is a certain optimal value for the lambda of the Perlin Noise function.

 49

Figure 5.3: Different values of lambda for the Perlin Noise function used in Perlin Noise + Altitude
dependent coloring. From left to right lambda = 0.001, 0.01, 0.05.

 From Figure 5.3 we can see that the value 0.01 for lambda produces the color features of the
optimal size. Value 0.001 adds too much additional detail while value 0.05 produces too big features.
But we should keep in mind that those features look too big or too small relatively to the other terrain
features. This means that if we are looking at the planet from a long distance the lambda value might
be just right. But when we zoom in and we get close enough to the surface the lambda becomes too
big for the size of the terrain features. Hence it is sometimes a problem to set the right value if we
want to produce not too small color features at high scale but not too big color features at low scale.

Perturbation of vegetation zones

 In order to create an Earth-like coloring of the planet, we have implemented several vegetation
zones that are dependent on the latitude of the point as described in section 4.7.6. So as to add some
randomness into the overall lay-out of those zones we have perturbed the latitude of the point by
adding some noise to it. In the following Figure 5.4 we can see that very important parameter of the
perturbation is the amplitude.

Figure 5.4: The dependency of the perturbation of the lay-out of vegetation zones on the amplitude of
the perturbation function. From left to right Amplitude = 0.1, 0.3, 0.5, 0.7, 0.9.

 The higher the value of the amplitude is the more scattered the lay-out is. Also here we can see
that in order for the planet to look realistic there is a certain optimal value for the amplitude. Value 0.1
does not perturb the altitude enough, while values 0.7 and 0.9 add too much noise to it. The optimal
are values between 0.3 and 0.5, which produce quite realistically looking lay-out of vegetation zones.

5.2 Comparison of Generated Terrains

 In this section we will look at the differences between terrains generated by different terrain
generation algorithms. We will describe the differences between high scale features, for example the
distribution of continents, and low scale features, for example the look of the mountains. We will also
look closer at the differences between homogenous fractal terrain and terrain with multifractal
properties. Similarly to the previous section we will also look at the most important parameters and
how they control the look of the generated terrain.

 50

5.2.1 Differences between Planets

 If we are looking at a planet from a bigger distance we are concerned about the high scale
features like the size and distribution of whole continents, peninsulas and islands. Each algorithm that
we have implemented produces planets with a little bit different look. Sometimes the differences are
just subtle, sometimes they are more apparent. Figure 5.5 shows typical planets produced by different
algorithms.

 (a) (b) (c)

 (d) (e) (f)

(g)

Figure 5.5: Planets generated with different algorithms. (a) Random Faults. (b) Mid-Point
Displacement. (c) Mid-Point Displacement Multifractal. (d) Perlin Noise. (e) Perlin Noise
Multifractal. (f) Perlin Noise Ridged. (g) Perlin Noise Ridged Multifractal.

Because the coloring has a quite big influence on the overall impression of the planet, we will
use the Perlin Noise + Altitude dependent coloring for all terrains compared in this section. The reason
for this is that this coloring produces quite nice looking terrains and unlike the Earh-like coloring it
uses the same color tones all over the planet. Therefore no matter from what view we are looking at

 51

the planet, the difference in the impression should be only caused by the differences in the terrain and
not for example by different distribution of the vegetation zones, as it would be if we used the Earth-
like coloring.

Another thing to note is that as we will explain further in this section, the look of the generated
terrain is very dependent on the actual values of some parameters. However we cannot just use one
identical setting of parameters for all algorithms. The same value of lambda will produce terrains with
very different size of continents for the classical Perlin Noise and for the Ridged Perlin Noise
algorithm. Or the same value of amplitude will result in terrains with quite different maximal altitude
for non-multifractal and for multifractal algorithm. This is mostly due to the way the algorithms are
implemented and the way each algorithm interprets and uses the parameters. We have tried to adjust
these values for each algorithm to produce terrain with approximately the same features like the size of
continents or the elevation differences on the planet.

Random Faults algorithm

 In Figure 5.5a we can see a planet generated by Random Faults algorithm. As we have shown
in Figure 2.10 the look of the terrain depends on the number of iterations of the algorithm. This
particular planet was generated by applying 1500 iterations to a regular sphere. This is a sufficient
number of iteration for any regularity to disappear. Compared to the other planets the terrain looks
very broken and there are many small islands and peninsulas. In the matter of fact it might sometimes
look too random. Although it is not the case of this particular planet, the algorithm often tends to
create one big continent and one big ocean.
 The Random Faults algorithm cannot be controlled by many parameters. The only attribute of
the terrain that we can set is the amplitude of the displacement of the hemisphere. But even this does
not ensure the final maximal altitude on the planet, because the displacements are randomly added
together and the higher the number of iterations is the bigger is the maximal altitude on the planet.

Mid-Point Displacement algorithm

 In Figure 5.5b and 5.5c is a planet generated with Mid-Point Displacement algorithm and
Multifractal Mid-Point Displacement respectively. We can see that compared to the other planets this
algorithm generates rather bigger compact continents with not many smaller islands or jagged
coastline. If we look carefully at the coastline or some other terrain features emphasized by the
coloring we can see some regularities and too synthetically looking formations. Sometimes the
coastline is running straight forward without any random curving and so is revealing the underlying
mesh structure.
 The classical Mid-Point Displacement also produces unnaturally looking mountains, which
look more like a one big plateau than jagged mountains. The Multifractal Mid-Point displacement has
better results in this regard. Because there are much bigger differences in altitudes due to the higher
elevations being rougher, the mountains colored with the altitude based coloring look more
realistically. However this is still far away from the ideal planet model and from the mountains
produced by some variation of Perlin Noise algorithm.
 Also the Mid-Point Displacement algorithm is quite hard to control with parameters. We can
quite easily control the maximal elevation of the terrain by setting the appropriate value of the
amplitude. The size of the continents could not be adjusted by any parameter of the algorithm,
however in section 5.2.3 we will show an easy way how to do this by combining the Mid-Point
Displacement algorithm with the iterative sphere generating algorithm.

Perlin Noise algorithm

 Figures 5.5d and 5.5e show planets generated with the classical Perlin Noise algorithm and
with Multifractal Perlin Noise algorithm. We can see on these planets that Perlin Noise produces quite
nice looking terrain with the right distribution of continents that have adequately forked coastline. The
terrain is not too wildly jagged like in the case of Random Faults nor does it show any regular artifacts
like in the case of Mid-Point Displacement.

 52

 Again we can clearly see the difference between non-multifractal and multifractal terrain. The
classical Perlin Noise produces not so naturally looking mountains, which are nothing more than one
big elevated area. The multifractal modification of the algorithm produces just smaller and randomly
curved mountain ranges. Also on these two planets we can see one artifact of the altitude based
coloring. The planet created with multifractal Perlin Noise has a little bit different tone of the color
than the other planet. This is because there is a big altitude difference between the rather smooth
lowlands covering most of the planet and the mountains reaching higher altitudes. In the case of the
non-mutlifractal planet, the points are evenly distributed in all elevations and therefore the color is
interpolated in a different way.
 The reason why the planets generated with Perlin Noise show good characteristics is that the
Perlin Noise algorithm can be controlled by parameters in many ways. We can easily adjust the size
and distribution of continents by choosing different value of lambda for the Perlin Noise function or
adjust the smoothness of the terrain by choosing the number of octaves to be included in the model.
More detailed comparison of the influence of different parameters on the generated terrain is in section
5.3.2.

Perlin Noise Ridged algorithm

 In Figures 5.5f and 5.5g are examples of planets generated with non-multifractal and
multifractal Ridged Perlin Noise. We can see that the typical terrain features produced by those
algorithms are long and quite narrow continents and peninsulas and round shaped and sometimes
closed bays or seas.
 Also as in the two previous cases the multifractality of the planet model affects the shape and
the appearance of the mountain ranges. Due to the higher differences in elevation and the terrain being
rougher the mountains have more realistic look.
 The way of controlling the Ridged Perlin Noise is identical to the way we can control the
classical Perlin Noise algorithm. We can adjust the distribution and size continents by appropriately
setting the lambda parameter or set amplitude of the Perlin Noise function to determine the maximal
altitude of the terrain on the planet.

5.2.2 Differences in Low Scale Features

 As we have already said several times before it is important for the planetary model to be
complex and look realistic at different scales. Section 5.2.1 compared the characteristics of whole
planets. This section will look at the differences between terrain patches on the planet in a higher
detail. We will be mostly interested in the properties of the terrain like the right shape of mountains or
the coastline, the difference in the roughness between lowlands and mountains and also any artifacts
that should not be in the model. Figure 5.6 shows typical examples of terrain patches created by
different algorithms at the same level of detail.
 In order to see a high-detailed view of the terrain the Dynamic Level of Detail algorithm will
be used to generated additional points in the mesh. We will use the same algorithm for generating the
new points as we used for the generating the whole planet. Although this might seem obvious, we
have also some other possibilities. The architecture of this application enables us to for example create
the planetary model with certain detail with Perlin Noise and then use Mid-Point Displacement
algorithm to displace the new points added by the Dynamic Level of Detail. In this section we will not
consider any such a combination of terrain generating algorithm, even though the user of the
application has a chance to experiment with this and observe the difference in the generated terrain.
 Because of the reasons described in the previous paragraph we will exclude Random Faults
algorithm from the comparison of the low scale features. This algorithm is only applied to a solid with
a certain resolution. Once we finish iterating the algorithm and we want to explore the terrain in a
higher detail, there is no way how the Random Faults can generate additional points into the model.
We don�t have any track of how would be that particular point displaced by the faults. So in order to
apply the Dynamic Level of Detail algorithm, we will have to use some Mid-Point Displacement
algorithm to generate the new points. But the Mid-Point Displacement and its parameters like the
amplitude of the displacements influence the final look of the terrain at the lower scale so much that is
a question whether it should be any longer considered as a terrain created by Random Faults.

 53

Therefore we will leave the Random Faults algorithm as an algorithm for creating a planetary model at
higher scale and not as a suitable one for high detailed terrain model.

 (a) (b) (c)

 (d) (e) (f)

Figure 5.6: Terrain patches generated with different algorithms. (a) Mid-Point Displacement. (b)
Multifractal Mid-Point Displacement. (c) Perlin Noise. (d) Multifractal Perlin Noise. (e) Ridged
Perlin Noise. (f) Multifractal Ridged Perlin Noise.

Mid-Point Displacement algorithm

 We can see in Figure 5.6a and 5.6b that non-multifractal and multifractal Mid-Point
Displacement algorithms do not generate terrain with much detail at the higher level of detail. We
could achieve rougher terrain by increasing the amplitude but then the differences in the altitude would
look unrealistically too big relatively to the size of the planet.
 Also the terrain looks a little bit too synthetically, especially in Figure 5.6a are still visible
some straight lines revealing the underlying mesh. Similarly there is not much detail at the coastline
and it looks rather straight than randomly curved.
 One obvious thing is how the shape of the mountains is influenced by the multifractality of the
algorithm. The skyline in Figure 5.6b much more resembles the skyline of real mountains. However
there is still not much distinction between the lowlands and the mountains.

Perlin Noise algorithm

 In Figure 5.6c and 5.6d are terrain patches created with classical and multifractal Perlin Noise
algorithm. Compared to Mid-Point Displacement there is much more detail and randomness in the
terrain. Also all terrain formations are nicely curved without any regularities or artifacts.
 One obvious drawback of the model created with plain Perlin Noise algorithm is its
homogeneity and the lack of any distinction between supposedly smooth lowlands and rough
mountains. This is added to the model by incorporating the multifractal principles. In Figure 5.6d we
can finally see a complex planetary model that contains smooth lowlands along the coastline and as we

 54

proceed into higher elevation the terrain becomes rougher and jagged. Although a real terrain has
much more complicated and detailed features, we can see that the mutlifractal Perlin Noise algorithm
produces quite nice and realistic looking approximation of it.

Ridged Perlin Noise algorithm

 The differences between classic and Ridged Perlin Noise mainly affects the high scale features
like the distribution and the shape of the continents. Therefore in Figure 5.6e and 5.6f are terrain
patches that have similar if not identical properties with the terrains shown in Figure 5.6c and 5.6d.
For these terrain patches is more or less everything valid that we have said about terrain produced by
classical Perlin Noise algorithm including the differences between non-multifractal and multifractal
variation of the algorithm.

5.2.3 Parametric Control of Terrain Generation Algorithms

 In this section we will look at how the output of the terrain generation algorithms can be
influenced by setting different values for various parameters. There are not many options for the
Random Faults and for the Mid-Point Displacement algorithms, but there is a huge variety of different
settings of parameters for some variation of the Perlin Noise algorithm. This section is not supposed to
be a complete list of all possibilities how to control the terrain generation. Rather than that we are only
going to write about three main ways how to control the generated terrain. We will look at a little bit
tricky way how to control the size and distribution of continents generated by the Mid-Point
Displacement algorithm, how the look of the whole planet is influenced by different values of lambda
and the number of octaves of the Perlin Noise algorithm and also how the number of octaves
influences the amount of detail when we generate a terrain with multifractal Perlin Noise.

The distribution of continents of Mid-Point Displacement algorithm

 In section 5.2.1 where we were comparing the planet generated with Mid-Point Displacement
algorithm with planets generated by other algorithms, we have said that there is no parameter of the
Mid-Point Displacement that would enable us to control the size and the distribution of the continents
on the planet. However there is a way how we can do that if we combine the generating of the planet�s
terrain with the algorithm for iterative creation of a sphere.
 Figure 4.1 shows the stages of the creation of a sphere. When we create the whole planet with
the Mid-Point Displacement algorithm we substitute these regular iterations by displacing the new
points according to the algorithm. Because in every iteration of the algorithm the amplitude is reduced
in half, we can say that mainly the first couple iterations are responsible for the size and the
distribution of the continents. Roughly speaking the size of the triangles in the mesh at the beginning
of the algorithm approximately determines the size of the continents created by the algorithm.
Therefore if we first increase the resolution of the starting octahedron with the iterative sphere
generation algorithm and then start applying the Mid-Point Displacement, we will create terrain with
smaller continents and they will be more randomly distributed over the planet�s surface. Figure 5.7
shows the dependency of the planet�s terrain on the level of detail of the regular sphere generated prior
to applying the Mid-Point Displacement algorithm.

Figure 5.7: The dependency of the size and distribution of continents on the level of detail of a regular
sphere created prior to applying the Mid-Point Displacement algorithm. From left to right the level of
detail of the sphere was 0, 1, 2, 3, and 4.

 55

Lambda and number of octaves of Perlin Noise algorithm

 There are many ways how to control the appearance of the terrain produced by the Perlin
Noise algorithm. If we are looking at the whole planet from a bigger distance, we are mainly interested
in the size and distribution of continents. The two most important parameters affecting those
properties of the model are the lambda and number of octaves of the Perlin Noise function.
 The lambda determines the size of the continents. Because we reduce the amplitude in half for
every consecutive octave, only the first couple octaves determines the size of continents and islands,
while the other octaves adds only additional detail into the model. So by changing the lambda of the
first octave we can control the size of the continents.
 The number of octaves influences the detail of the whole model. If we use only small number
of octaves the produced terrain will consist only of smooth rather flat terrain formation. Adding more
octaves will result in adding more detail and randomness into the terrain.
 Figure 5.8 shows the dependency of the planet look on those two parameters. We increase the
number of octaves in the horizontal direction and the lambda in the vertical direction. From these
images we can see that there is a certain optimal value for the lambda parameter in order for the terrain
to look realistic. We can see that if we want to create an Earth-like looking planet the lambda should
be somewhere between 0.2 and 0.3. Also we can notice that there is almost no difference between
planet generated with Perlin Noise with 4 and 5 octaves. This is because the resolution of the mesh at
this level of detail is not capable of displaying the highest octaves. Those would be revealed if we
zoom closer to the surface.

 56

Figure 5.8: The effect of different values of lambda and the number of octaves on the terrain
generated with Perlin Noise algorithm. From left to right octaves = 1, 2, 3, 4, 5. From top to bottom
lambda = 0.1, 0.2, 0.3, 0.4, 0.5.

Number of octaves of multifractal Perlin Noise algorithm

 In addition to looking at how the number of octaves influences the appearance of the whole
planet, it is also interesting to look at how it influences the look of a high detailed terrain patch. The
observation is even more interesting if we generate the model with multifractal Perlin Noise. In this
case we can clearly see how the influence of higher order octaves is emphasized at higher elevation
and reduced near the sea level. We can see these effects in Figure 5.9, where are 8 images of the same
terrain generated with multifractal Perlin Noise. Each consecutive terrain was generated with function
using one more octave then the previous one.

 57

Figure 5.9: The influence of the number of octaves on the terrain generated with multifractal Perlin
Noise. From left to right octaves = 1, 2, 3, 4, 5, 6, 7, 8.

5.2.4 The Moon

 In this section we will look at the results of our experimenting with generating a Moon-like
looking planet. One part of this model is the right coloring that was already described and shown in
section 4.7.8. The other part is adding craters to the model. As was already explained in section 4.6.2
we can control the shape and the final look of the craters on the planet in several ways. We have tried
to find the optimal size, elevation and also the number of craters so that the planet looks as much as
Moon as possible. However in a detailed look at the Moon�s surface we can see an incredible number
of very small craters that we are not able to create because of the low resolution of the mesh. Because
of this reason the crater model still a little bit suffers from the lack of high resolution.
 Figure 5.10 shows an example of a Moon-like looking planet with craters and a detailed look
at the surface.

Figure 5.10: Moon-like planet. Overall view and a detail view of the surface.

 58

 This planet was created with a multifractal Perlin Noise and we added 1000 craters to its
surface. Many of those craters had too small diameter and therefore they are not actually visible on the
surface or just a small part of their rim is visible. In the detailed view of the Moon�s surface we can
see the crater in a higher detail. It is clearly visible how the size and also the vertical displacement of
the rim are perturbed with Perlin Noise function to create more natural and random look.

5.3 Comparison of Static and Dynamic Level of Detail

 In the last section of this chapter we will present a comparison of the static and dynamic level
of detail. Although we can see from many images in this whole chapter that the dynamic level of detail
enables us to zoom in and explore the surface of the planet in a higher detail, only thorough
comparison of both methods will reveal the true performance boost that is provided by the Dynamic
Level of Detail algorithm.
 We will do the comparison from two points of view. First we will look at the visual
differences in the terrain that we are able to display on the same computer with static and dynamic
level of detail. The other point of view is a quantitative comparison. In this part of this section we will
look at the size of the data structure and the number of triangles in the planetary model maintained by
the static and dynamic level of detail.

5.3.1 Visual Comparison

 In this section we will compare the two levels of detail according to what they are able to
display. First we will compare terrain patches with the same number of triangles in the mesh structure
but maintained by different level of detail algorithm. Then we will show more detailed example of
how the Dynamic Level of Detail algorithm actually generates the additional detail and increases the
resolution of the mesh.

Figure 5.11: Comparison of static (left) and dynamic (right) level of detail.

 59

Static versus Dynamic Level of Detail

Obviously the detail of the terrain that we are able to display on the screen depends on the
performance of our computer. For that reason we will compare terrain models with approximately the
same number of triangles in the mesh for both level of detail algorithms. In Figure 5.11 are identical
terrain patches produced with multifractal Perlin Noise. Both planet models contain about 35000
triangles in the mesh. For a better visualization of the difference of the resolution of the mesh the
figure also shows the wire frame model of the terrain.

Zooming in with Dynamic Level of Detail

 Most of the images in this whole thesis are either showing an overall view of the whole planet
or a high detailed view of some small part of the planet�s surface. This cannot provide the right idea of
how the Dynamic Level of Detail algorithm continuously increase the resolution of the planet mesh
based on our distance from it. In this section we will show an illustration of this. In Figure 5.12 is a
sequence of images generated during zooming in closer to the planet�s surface. In each image the
planet is generated with the same Perlin Noise function, only additional point and triangles are added
into the model by the Dynamic Level of Detail algorithm.

Figure 5.12: Illustration of increasing of the level of detail of the mesh structure by the Dynamic Level

of Detail as we zoom in closer to the surface.

5.3.2 Quantitative comparison

 In this section we will compare the number of triangles in the mesh maintained by static and
dynamic level of detail. The static level of detail algorithm maintains the same resolution all over the
planet and this resolution stays the same no matter how far from the surface we are. So in order to be
able to explore the terrain with a high detail after we zoom in, we have to generate a mesh with high
resolution all over the surface and thus very high number of triangles in the structure. Sooner or later
the computational power of the computer will not manage to render such a big model fast enough and
the rendering will not be smooth any more. Fortunately this is not true with the Dynamic Level of

 60

Detail. This algorithm increases the resolution of the mesh only when necessary and therefore keeping
the mesh structure small. The measurements and data in the following sections show exactly the
differences between the two level of detail algorithms.

Dependency of the number of triangles on the level of detail

In our implementation of the Dynamic Level of Detail algorithm we first create the planet with
a certain static level of detail and then from this level of detail we start applying the dynamic level of
detail. The following Table 13 shows the number of triangles in the mesh with a certain level of detail.
By certain level of detail we mean level of detail of the scene that is rendered on the screen. We can
see that we start applying the dynamic level of detail from level of detail 5. The measurements were
done when zooming towards the center of the planet. That means that we were moving in a
perpendicular direction towards the surface of the planet.

Level of
Detail 0 1 2 3 4 5 6 7 8 9 10 11

Static LoD 8 32 128 512 2048 8192 32768 131072 524288 2097152 8388608 33554432
Dynamic LoD 8 32 128 512 2048 8192 15722 36092 34688 30068 29594 28646

Table 13: The number of triangles in the mesh structure with a certain level of detail.

 The table clearly shows how the number of triangles incredibly increases for the static level of
detail algorithm. It is also quite interesting that the Dynamic Level of Detail algorithm manages to
maintain more or less the same number of triangles in the structure even if we further increase the
level of detail. To visualize these results in a better way, we plot them in Figure 5.13. We will plot the
logarithm of the number of triangles in the mesh as a function of the level of detail. This is necessary
in order to be able to have the values for both level of detail algorithms in the same graph.

Log(Number of Triangles)/ Level of Detail

0

1

2

3

4

5

6

7

8

0 2 4 6 8 10 12

Level of Detail

Tr
ia

ng
le

s
[1

0
x̂]

Static LoD
Dynamic LoD

Figure 5.13: The dependency of the logarithm of number of triangles in the mesh on the level of detail.

Dependency of the number of triangles on the distance

 We can obtain more interesting results if we closely measure the dependency of the number of
triangles in the mesh structure maintained by the Dynamic Level of Detail algorithm when we are
approaching the planet. The results are shown in Figure 5.14.

 61

No. of Triangles / Distance from the terrain

0

5000

10000

15000

20000

25000

30000

35000

40000

2,
00

00
0

1,
44

00
0

0,
98

37
1

0,
76

37
0

0,
60

69
6

0,
48

29
6

0,
37

49
4

0,
29

10
9

0,
23

75
5

0,
18

84
3

0,
15

00
4

1,
22

45
4

0,
09

75
0

0,
07

57
0

Distance

Tr
ia

ng
le

s

Mesh

Parent mesh

Figure 5.14: The dependency of the number of triangles on our distance from the surface for the
Dynamic Level of Detail algorithm.

In this graph we can see how the number of triangles in the mesh changes as we are getting

closer to the surface. For a complex idea about the size of the whole data structure the graph displays
the number of triangles in both the mesh that is rendered on the screen and in the parent mesh that
holds the parent triangles. There is couple of interesting things visible in this graph.

First of all we can see that the trend of the dependency becomes from a certain distance quite
periodic. This periodic rising and regression of the curve is caused by the two main principles of the
Dynamic Level of Detail algorithm. When the curve is at its lowest point, it means that the closest
triangles in the mesh just become closer than the actual threshold for their refinement. When we keep
zooming closer to the surface more and more triangles reaches this threshold and more and more
triangles increase the resolution and add more new triangles into the structure. This appears in the
graph as the rising part of the curve. At a certain distance from the surface all triangles have increased
their resolution but no new ones yet reached the next threshold for the refinement of the resolution. If
we keep zooming closer to the surface still smaller and smaller part of the surface is rendered in our
view. In order to keep the mesh structure as small as possible the dynamic level of detail reduces the
resolution of the triangles that move out from our view back to the low resolution. This is applied to
all triangles at the edges of our view that are no longer visible on the screen. No new ones are added
because we are still too far from the surface. This is happening till the closest triangles reach the next
threshold for increasing their resolution and it appears in the graph as the regressing part of the curve.

Another interesting observation is that the size of parents list is not growing as we keep
zooming closer. An obvious assumption would be that based on the hierarchical architecture of the
data structure as we are increasing the detail of the mesh more levels of parents are added to the list,
because we have to store all the ancestors of the currently displayed triangles all the way to the starting
level of detail. But again the size of the parents list is also periodic because of the same principles that
we have explained in the previous paragraph. As the triangles are removed from our view, they are
reduced to the starting low resolution. This also removes all their parents from the parents list and thus
keeping it small.

 62

6 Conclusion and Future Work

In this conclusion chapter we will conclude and summarize what we have accomplished in this
bachelor work and whether it fulfilled our goals that we have stated at the beginning of this thesis.
Further we will mention several possible extensions and improvements to the application. In the last
part we will describe several options for future development.

6.1 Conclusion

 We can say that we have successfully accomplished all goals that we have stated at the
beginning of this work. Our main contributions could be divided into the following points:

1. We have done a survey and found several algorithms for terrain generation and terrain

coloring that are suitable for creating a planetary model.

2. We have analyzed, designed and implemented a hierarchical and dynamic data structure

that is optimal for holding the geometry of the planet and that could be easily used as an
input for terrain generation and terrain coloring algorithms.

3. An algorithm for dynamic level of detail was designed and implemented. The data

structure holding the mesh was enhanced and optimized so that the dynamic level of detail
works efficiently.

4. A testing application with graphical user interface was developed to enable us to generate

a complex planetary model, to control the algorithms by adjusting the key parameters and
to explore the planet model in a high detail.

5. We have carried out a comparison of terrain generation algorithms and algorithms for

terrain coloring at different scales. Based on the results of this comparison we have
described some problems and artifacts of some algorithms and we have reasoned about
what algorithms create the best looking complex planetary model.

6. The last part of our work was a visual and quantitative comparison of static and dynamic

level of detail algorithms. This comparison has clearly shown how big improvement is
provided by the dynamic level of detail.

6.2 Extensions to the Current Application

 Even though we said that we have accomplished all of our goals, there are still several
problems that need to be solved and a lot of possible extensions to the current system. Here we will
mention some of the most important ones
 Most of the issues that still persist in our system are related to the more efficient
implementation of the dynamic level of detail. An improved version of back face culling should be
developed so that we don�t waste computational time and memory space on triangles that are not
visible on the screen. Also the whole data structure should be organized in a quad tree so that a faster
and more efficient searching for points in our view could be implemented. The last set of problems is
related to our current inability to calculate the normals and the coloring of the terrain in a real time
while still maintaining smooth dynamic level of detail.
 As we said several times before, this application was developed as a testing application mostly
for the use by its programmers. In order for an external user to use it, the GUI should be improved and
several important features must be added.
 A quite big area of improvement and further research is the coloring of the planet. We could
see on the figures in previous chapters that the level of detail of the geometry and the coloring applied
to it still cannot provide sufficient amount of detail for the terrain to look realistic. In order to improve

 63

this we have to texture the terrain. This would require implementation of texture synthesis module.
This module would generate a unique texture for each terrain part based on its local and global
properties. Applying this texture on the generated terrain would significantly improve the realistic
impression of the rendered terrain.

6.3 Future Development

 This application was developed for the purpose of studying fractal algorithms and it fulfils this
requirement. However besides this the only output of the application is a nice looking image of a
planet or a part of its terrain. In the future work I would like to re-implement the program as a plug-in
for some 3D modeling software. The most probable candidate is modeling software called Maya.
Having this application in the form of a plug-in would have several advantages.

First of all we could take advantage of the robust and fully equipped rendering engine of
Maya. This would provide a huge improvement to the appearance of the produced planetary model.
Secondly the output of the application would not be just a nice image but the geometry of the
planetary model in the form of a Maya�s object. This object could be stored, converted into another
one for use by another software application or most importantly it could be added into a modeling
scene and used for computer animation or other purposes.
 In addition to this, this work could be used as a basic framework for implementing more
complicated algorithms that are related to creating a complex planetary model. There are many ways
how to further enhance the model. We can implement an algorithm simulating the tectonics of the
continents. Also the erosion plays an important role in the forming of a real terrain and implementing
an algorithm simulating this effect would significantly improve the model. We should add algorithms
simulating the atmosphere of the planet as well. Another possible way of enhancement would be
placing the planet in a real planetary system with other planets like moons around it and simulating the
movement of the planets.

 64

7 References

[1] D. S. Ebert, F. K. Musgrave, D. Peachey, K. Perlin, S. Worley. Texturing and Modeling: A

Procedural Approach, Academic Press Inc, London, 1st edition, 1994.

[2] Heinz-Otto Peitgen, Dietmar Saupe. The Science of Fractal Images, Springer, 1st edition,

1988.

[3] Web page about the Perlin Noise algorithm, URL:

http://freespace.virgin.net/hugo.elias/models/m_perlin.htm.

[4] Ken Perlin. An image synthesizer. In B. A. Barsky, editor, Computer Graphics (SIGGRAPH

�85 Proceedings), volume 19, pages 287-296, July 1985.

[5] Harmut Jurgens, Heinz-Otto Peitgen, Dietmar Saupe Chaos and Fractals, Springer, 1st edition,

1993.

[6] Web page with Musgrave�s images from the Texturing and Modeling book, URL:

http://www.texturingandmodeling.com/ART/MUSGRAVE/CH14/Chapter14Art.html.

[7] Ken Perlin. Ken Perlin�s home page. URL:

http://mrl.nyu.edu/~perlin/.

[8] Web page about Perlin Noise function and its variations, URL:

http://calyxa.pandromeda.com/tutorial/bigT/basis.html.

[9] Web page about visualization techniques, URL:

http://www-viz.tamu.edu/.

[10] Andy Novocin. Web page with some images of fractals, URL:

http://www.math.fsu.edu/~anovocin/pictures.html.

[11] Wikipedia. Web page about fractals, URL:

http://en.wikipedia.org/wiki/Fractals.

[12] Anton Feenstra. Web page about Mandelbrot�s set, URL:

http://www.chem.vu.nl/~feenstra/mandel_gallery.html.

[13] Paul Bourke. Perlin Noise and Turbolence, URL:

http://local.wasp.uwa.edu.au/~pbourke/texture_colour/perlin/.

[14] Russell Beattie. Web page with images of the Earth, URL:

http://www.russellbeattie.com/notebook/1008356.html.

[15] The Open University. Web page about the Solar system, URL:

http://rocksfromspace.open.ac.uk/The_Moon.htm.

[16] University Corporation for Atmospheric Research. Web Page about the Solar System, URL:

http://www.windows.ucar.edu/tour/link=/cool_stuff/tour_mars_climate_1.html.

[17] J.C. Francois. Tutorial of the creation of a model of the Earth in 3D Studio Max containing

images of the Earth, URL:
http://www.noirextreme.com/earth.

 65

[18] Rolf Hicker. Web page with images of the La Sal Mountains, URL:
http://www.hickerphoto.com/la-sal-mountains-8906-pictures.htm.

[19] Andrew True. Tutorial to the Dynamic Level of Detail Algorithm, URL:

http://www.gamedev.net/reference/articles/article2074.asp.

[20] Web page of the Computer Graphics course, URL:

http://service.felk.cvut.cz/courses/X36ZPG/.

[21] Virtual Terrain Project home page, URL:

http://www.vterrain.org/.

[22] Google Earth project home page, URL:

http://earth.google.com/.

[23] Earth3D project home page, URL:

http://www.earth3d.org/.

[24] Terragen project home page, URL:

http://www.planetside.co.uk/terragen/.

[25] TerraJ project home page, URL:

http://terraj.sourceforge.net/.

[26] Paddy Ryan. Web page with images of the Ayers Rock, URL:

http://www.ryanphotographic.com/Essay.htm.

[27] Web page with images of Canadian mountains, URL:

http://www.field.ca/activities/canoeing/.

[28] Frantisek Staud. Image gallery with photographs of Namibia desert, URL:

http://www.phototravels.net/namibia/namib-desert-aerial-vast.html.

[29] Wikipedia. Web page about the Moon, URL:

http://en.wikipedia.org/wiki/Moon.

[30] OpenGL home page, URL:
 http://www.opengl.org/.

[31] Glut library source page, URL:
 http://www.opengl.org/resources/libraries/glut/.

[32] Glui library source page, URL:
 http://glui.sourceforge.net/.

[33] History of the Moon, URL:
 http://starryskies.com/solar_system/Earth/lunar_history.html.

[34] Earth�s Moon, URL:
 http://nssdc.gsfc.nasa.gov/imgcat/html/object_page/a17_m_2444.html.

[35] Ulf Assarson, Tomas Möller. Optimized View Frustum Culling Algorithms for Bounding

Boxes. In Journal of Graphics Tools, 5(1), pages 9-22, 2000.

 66

[36] Mel Slater and Yiorgos Chrysanthou. View Volume Culling Using a Probabilistic Caching
Scheme. In Proceedings of the ACM Symposium on Virtual Reality Software and Technology,
pages 71-78, 1997.

[37] Hanna Holst. Avoiding cracks between terrain segments in a visual terrain database.

Department of Science and Technology, Linkopings University, 2004.

[38] David Hill. An efficient, hardware-accelerated, level-of-detail rendering technique for large

terrains. University of Toronto, Department of Computer Science, 2002.

 67

A User Manual

In this user manual we will go over the installation of the application and its technical
requirements. Afterwards the description of all control blocks and their function will follow. As an
extension to this User Manual the enclosed CD contains few tutorials that will show step by step how
planets of various types could be created.

A.1 Hardware Requirements

 The main bottleneck of the performance of this application is the size of the mesh structure.
The bigger the mesh is and the bigger the resolution of the planet is the more memory space and
computational time is required. However it is hard to specifically say what the minimum hardware
requirements are because simply the better hardware configuration of the computer is, the better
resolution and better quality of the final planetary model is. The hardware configuration determines
the maximal level of detail of the planet, when the scene will can still be smoothly rendered. On
Pentium M 1.7 GHz with 512 MB RAM the maximal smooth level of detail was 5. On Core 2 Duo 1.7
GHz with 2 GB RAM the maximal smooth level of detail is 7. Those values also strongly depend on
the used graphical card.

A.2 Installation of the Application

 The application was tested under the operational system Microsoft Windows XP and
Microsoft Window Vista. On the enclosed CD is located the executable file. Any installation
procedure is therefore unnecessary. However we have to make sure that all required libraries and
textures are presented in the folder with the executable file as they are on the CD.

A.3 Operating Manual

 In this section follow the detail descriptions of all control blocks in the GUI and available
keyboard control of the application.

A.3.1 Opening Screen

When the application is started, the window will look as in Figure A.1. In the display window
is a regular octahedron, which is the base for the future planet. All the parameters in the GUI are set to
the default parameters.

Figure A.1: The start of the application.

 68

A.3.2 Change Shape

 If we don�t want to use the regular octahedron as the base shape for the planet, we can change
its shape. First we have to choose which one of the octahedron�s 6 vertex is supposed to be displaced.
This is done chosen in the list box shown in Figure A.2. Afterwards we can use the mouse movement
plus one of the keys �c�, �b� or �v� to change the point�s X, Y, Z coordinate.

Figure A.2: Change Shape Listbox

A.3.3 Random Faults

 The Random Faults control block can be used for setting parameters and starting and stopping
the Random Faults algorithm. The control block could be seen in Figure A.3. The �Number of
Random Faults� text field displays the number of iterations done so far. We can also set the amplitude
of the Random Faults. By clicking on the button �Step� we will perform one iteration of the algorithm.
If we click on the button �Run� the algorithm will start running in a loop performing a sequence of
iterations. If we wish to stop it, then we click on the button �Run� again.

Figure A.3: Random Faults control block.

A.3.4 Planet Coloring

 In this control block we can choose particular coloring scheme, set parameters of some of
them and then apply our choice to the planet. The control block for planet coloring is shown in Figure
A.4. In the �Coloring� list box we can choose one of the possible coloring schemes. We can set the
lambda attribute for coloring schemes that use the Perlin Noise function. For schemes using the
perturbation we can adjusts the number of octaves, the amplitude and the lambda of the used Perlin
Noise function. This control block also includes checkbox that turns on and off the automatic color
update while using the dynamic level of detail. Finally we can apply the chosen coloring scheme by
clicking at the button �Apply�.

Figure A.4: The Planet Coloring control block.

 69

A.3.5 Method of Iteration

 This block deals with the selection of the algorithm that is used for displacing the new points
when we increase the static detail of the planet. We can select on of possible algorithms in the
�Method� listbox. We can also set the amplitude of the displacement done by the Mid-Point
Displacement algorithm. This control block also displays the actual static level of detail. We can apply
the chosen algorithm to the planet by clicking at the button �Iterate�. Clicking at the button �Reduce�
will decrease the resolution of the planet by 1 level.

Figure A.5: The Method of Iteration control block.

A.3.6 Perlin Noise

 This control block is in charge of applying various Perlin Noise based algorithms to the planet.
We can choose particular Perlin Noise algorithm that we wish to apply in the �Perlin Noise� listbox.
Consequently we can set the amplitude, the lambda and the number of octaves of the Perlin Noise
function. We can apply the selected algorithm to the planet that we have previously created by clicking
at the button �Apply�. Another possibility is to apply the algorithm to the regular sphere. This could
be done by clicking at the button �Re-Apply(Sphere)� and it enables us to apply the algorithms always
to the same object and thus compare them with one another.

Figure A.6: The Perlin Noise control block.

A.3.7 Dynamic Level of Detail

 This control block enables us to select the terrain generation algorithm that will be applied to
the planet when we change the view and the Dynamic Level of Detail algorithm generates new points.
It also includes the check box that turns the dynamic level of detail on and off.

Figure A.7: The Dynamic Level of Detail control block.

 70

A.3.8 Craters

 In this control block we can control the generation of craters on the surface of the planet. We
can set how many craters are supposed to be added during one step. Furthermore we can control the
shape of the craters by adjusting the ration between the diameter and the elevation of the rim of the
crater and by setting the maximal radius of the craters. The craters can be added to the planet�s surface
by clicking at the button �Add Craters�.

Figure A.8: The Craters control block.

A.3.9 Water Level

 This control block controls the level of water on the planet. We can set the level of the water
by adjusting the diameter of the water sphere. The water layer can be turned on and off by clicking at
the button �Water On/Off�.

Figure A.9: The Water Level control block.

A.3.10 Others

 This control block contains four checkboxes that can turn on and off some additional effects in
the scene. �Wireframe� checkbox will display the planet model in the wireframe. By checking the
�Axis� checkbox we can display the Earth axis going through the poles. �Sky� checkbox will turn on
the sky texture. Similarly the �Sea texture� will control the displaying of the sea texture.

Figure A.10: Control block of additional effects.

A.3.11 Additional Control

 This last control block located at the bottom of the GUI displays the actual dynamic level of
detail of the planet and the number of triangles in the structure. By clicking at the button �New Planet�
we will reset the GUI and start from the original regular octahedron. The �New Seed� button will
reinitialize the random number generator. Lastly the �Quit� button will end the application.

 71

Figure A.11: Additional control.

A.3.12 Keyboard Control

 In addition to the GUI control objects, several keyboard buttons also have some important
function. The following table summarizes all buttons and their functions.

Keyboard Action
Q + Mouse Rotation of the planet
W + Mouse Zoom In/Out
E Shift the scene up
D Shift the scene down
S Shift the scene left
F Shift the scene right
C + Mouse Change the X-coordinate of the selected point
V + Mouse Change the Y-coordinate of the selected point
B + Mouse Change the Z-coordinate of the selected point
X Apply the selected coloring to the planet
N Calculate the normals of all triangles

Table A.1: List of keyboard controls and actions that they perform.

 72

B Content of the Enclosed CD

Directory doc Contains this thesis and the application tutorial in .doc and .pdf format.
Directory src Contains the source codes and a project for Visual Studio 2003.
Directory Textures Contains textures in jpg format.
glut32.dll Glut library necessary for the application.
Frakt.exe Executable version of the application.

