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Abstract

In this paper we present LazyBrush, a novel interactive tool for painting hand-madecartoon drawings
and animations.Its key advantage is simplicity and �exibility. As opposedto previous customtailored ap-
proaches[SBv05, QWH06] LazyBrushdoesnot rely on style speci�c features such as homogenousregionsor
patterncontinuityyet still offers comparable or evenlessmanualeffort for a broad classof drawing styles.In
addition to this, it is not sensitiveto impreciseplacementof color strokeswhich makespainting lesstediousand
brings signi�cant time savingsin thecontext cartoonanimation.LazyBrushoriginally stemsfrom requirements
analysiscarried out with professionalink-and-paintillustrators who establisheda list of usefulfeaturesfor an
ideal painting tool. We incorporate this list into an optimizationframework leadingto a variant of Pottsenergy
with several interestingtheoretical properties.We showhowto minimizeit ef�ciently anddemonstrate its useful-
nessin variouspractical scenariosincludingtheink-and-paintproductionpipeline.

Categoriesand SubjectDescriptors(accordingto ACM CCS): ComputerGraphics[I.3.4]: GraphicsUtilities—
Graphicseditors,ImageProcessingandComputer Vision [I.4.6]: Segmentation—Pixel classi�cation,Computer
Applications[J.5]: Arts andHumanities—Finearts

1. Intr oduction

Painting, i.e. the processof adding colors to hand-made
drawings,is a commonoperation in standardimagemanip-
ulation programs startingfrom simplebitmapeditors such
asPaintbrushto professional digital ink-and-paint solutions
likeAnimo, Toonz, or Retas. In thesesystemsavariantof the
�ood-�ll algorithm is typically usedto speedup painting.
This algorithm workswell for imageswith homogenousre-
gionsandsalientcontinuousoutlines.However, many hand-
madedrawing styles contain more complicatedstructures
(e.g.pencildrawing in Figure1). For suchimagesit is nec-
essaryto performmany detailedmanualcorrectionsto get
cleanresults.This additionaleffort can be very time con-
sumingand cost ineffective in the context of the ink-and-
paintpipelinewherethousandsof framesmustbepainted.

Recently, signi�cant effort hasbeendevoted to a simi-
lar problem– the interactive colorizationof gray-scaleim-
ages[LLW04,YS06]. Althoughtheseapproachesoffer fasci-
natingresultson naturalphotographsandvideos,they typi-
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cally fail whenappliedto hand-madedrawingswhichdonot
preserve a smoothimagemodel (seeFigure 2). Sýkora et
al. [SBv05] addressedthis issueby developinganunsuper-
vised segmentationalgorithm for black-and-whitecartoon
animationsableto producesegmentationsimilar to thatpro-
ducedby connectedcomponentanalysis[RK82] onabinary
image.Themaindrawbackof their approachis theassump-
tion of largehomogenousregionsenclosedby distinctcon-
tinuousoutlines.Whenappliedto morecomplicatedstyles,
they tendto groupsalientregionsdueto gappy outlinesor
producemany smallregions(seeFigure2).

Qu et al. [QWH06] proposedmanga colorizationframe-
work that overcomesforementionedlimitations by exploit-
ing bothpatternandintensitycontinuityin conjunctionwith
a level-setoptimization.Accordingto user-speci�ed exam-
plesof hatchingpatterns,they extract textural featuresand
computea similarity maphaving an intensitypro�le like a
homogeneousregionwith distinctboundaries.Subsequently
they propagate colors from user-speci�ed scribbles until
they reachsalientbarriers.During thepropagationthey also
employ shaperegularizationto overcomepossibleleakage
throughgappy boundaries.Despitethe successof this ap-
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Figure 1: LazyBrushin action– minimaleffort is neededto paint this highly structuredpencildrawingwith fuzzyoutlinesand
shadedregions(left). Seehowthealgorithmhandlesimpreciseplacementof color strokes(middle)andis ableto producehigh
qualityanti-aliasedoutput(right).

Sykora et al. 2005 Qu et al. 2006 LazyBrushInput Levin et al. 2004
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Figure2: LazyBrushvs.state-of-the-art– variousalgorithmsappliedonthesameinputdata(backgroundseedsaroundtheim-
ageborderandblueseedinsidetheelephant'sear): Levin etal. [LLW04] assumeimproperimagemodel,Sýkora etal. [SBv05]
donothandlegapsandproducemanysmallregions,andQuetal. [QWH06] getstuck in inappropriatelocal minimasothatall
remainingregionsshouldbe�lled individually. In contrast to this, LazyBrush�nds an optimalboundaryanddoesnot require
furthereffort.

proach,many important issuesremain.Sincethe level-set
optimizationis basedon gradientdescentit caneasily get
stuckin someinappropriatelocalminima.This typically oc-
curs when the algorithm is usedfor imageswhich do not
containrepetitive hatchingpatterns(seeFigure 2). In this
casethe user has to specify many additional scribblesor
tweakparametersof level-setoptimizationto allow crossing
salientboundariesduring front propagation.Anotherprob-
lem occurswhennarrow or small regionsarepainted.Also
in this casemany thin scribblesmustbe drawn andparam-
eterstweaked to achieve desiredresults.Theselimitations
hinderthe practical usability of manga colorization for im-
ageswhichdonot containrepetitivepatterns.

Theaimof this paperis to presentanovel �e xible painting
tool easilyapplicableto variousdrawing styles.We demon-
stratean approachthat is independentof style-speci�c fea-
turesbut, despitethis, requirescomparableor lessmanual
effort thanpreviousstyle-limitedapproaches.Our key con-
tribution is hiddenin a list of previously undiscussedprop-
ertiespresentedin Section3 which rede�nesbehavior of an
idealpaintingtool. This list arosefrom arequirementsanal-
ysiscarriedout with professionalink-and-paintillustrators.
Wereformulateit asanenergy optimizationproblemandob-
tainaninterestingand,to ourknowledge,unexploredvariant
of energy function with Pottsinteraction[Pot52] and spe-
cial sparse dataterm. We discussits interestingtheoretical

propertiesandpresentanef�cient approximationalgorithm
requiringonly a few globally optimal decisionsto obtaina
nearlyoptimalsolution.

The rest of the paperis organizedas follows. First we
brie�y discussrelatedwork, thenwe analyzesomedesired
propertiesof a new paintingtool, formulatetheenergy min-
imizationproblemandshow how to solve it ef�ciently . Af-
terwardsweuseournew algorithmfor paintingrealcartoon
imagesin different drawing styles and analyzeits practi-
cal strengthsand limitations. Finally, we presenta couple
of promisingapplicationsin thecartoonproductionpipeline
andconcludewith severalnew avenuesfor futureresearch.

2. Relatedwork

Interactive �lling of homogenousregionshasbeenstudied
sinceseveraldecadesago whenlargepixel frame-buffersbe-
camepractical.Lieberman[Lie78] proposedanextensionof
the �ood-�ll algorithmfor �lling with arbitraryblack-and-
white patterns,Smith [Smi79] showed how to �ll regions
with shadedboundaries,andFishkinandBarsky [FB84] pre-
sentedrecoloringof anti-aliasedimages.Althoughtheseap-
proachescansimplify �lling in somespecialcases,they still
suffer from limitations of the original �ood-�ll algorithm,
i.e. theinability to copewith gappy boundariesor to reacha
salientboundaryof a regionwith complicatedhatching.
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The samelimitations also hold for auto-paintingsys-
tems[SF00, QST� 05] which build uponconnectedcompo-
nent analysis.This processis equivalent to sequentialex-
ecutionof the �ood-�ll algorithm with different labelson
eachun�lled pixel in a thresholdedbinary image.Sýkoraet
al. [SBv05] replacedthe thresholdingby a more sophisti-
catedoutline detectionalgorithmallowing auto-paintingof
black-and-whitecartoonanimations.Nevertheless,in the�-
nal stage,they still rely on connectedcomponentanalysis
andthussharetheaforementionedlimitations.

A relatedoperationto �lling is colorizationbasedoncolor
seeds.Thismethodwaspioneeredby Horiuchi [Hor02] who
usedprobabilistic relaxationto propagate colors. Levin et
al. [LLW04] popularizedthis approachwith their variant
basedon a weightedleastsquaresoptimizationframework.
Later Yatziv and Sapiro [YS06] proposeda different so-
lution basedon a blendingof several nearestcolor seeds
weightedby geodesicdistance.Although theseapproaches
require little effort for imagessatisfying a smoothimage
model,they becomeimpracticalfor cartoonimagesdueto
color bleedingartifacts.Qu et al. [QWH06] andlater Luan
etal. [LWCO� 07] addressedtheseissuesby employing hard
pre-segmentationbasedon texture classi�cation schemes.
However, thisapproachis applicableonly for drawing styles
containingrepetitive textural patterns.

Paintinghasmuchin commonwith interactive imageseg-
mentation.This �eld wasmainly motivatedby the seminal
work of Boykov andJolly [BJ01] whodemonstratednumer-
ous bene�ts of a graphcut basedsolution.Grady [Gra06]
later proposeda concurrentapproachbasedon a weighted
leastsquaresframework (similar to [LLW04]) which is eas-
ily extendableto multi-labelsegmentationandobtainscom-
parableresultsto a graphcut framework. Nevertheless,all
theseapproachesdo not take into accountthe speci�c re-
quirementsof paintingwhich differ from thoseusedin im-
agesegmentation.

3. Ideal painting tool

In this section,we formulatea setof desiredpropertiesfor
an ideal painting tool. This setarosefrom discussionwith
professionalink-and-paintillustratorswho arefamiliar with
standardimagemanipulationtools as well as professional
ink-and-paintsystems.They typically usea variant of the
�ood-�ll algorithm,providing aneffective solutionfor sim-
ple cartoonimageswith homogenousregions and distinct
continuousoutlines, but onerarely applicableto morecom-
plicateddrawing styles.

One of the well-known problemsof the �ood-�ll algo-
rithm is color leakagethroughoutline gaps.To overcome
this issue,illustratorstypically join problematicgapsman-
ually. This is a tedioustask requiring high concentration
since the humanvisual systemnormally tendsto connect
weakedges[Kan79]. In professionalink-and-paintsystems,
automaticoutline joining algorithms[SC94] are available.

However, this processusually connectsall gaps which is
often counterproductive sincein many drawings this oper-
ation removesthe simplicity of one-click �lling. A similar
problemoccursalso when the imagecontainshatchingor
many small regions.In thesecasesillustratorstypically de-
lineatethe region of interestusingsomeedgesnappingse-
lection tool (suchas intelligent scissors [MB99]) and then
�ll thewholearea.Thishoweverrequiresprecisepositioning
of boundaryseedswhich is a tedioustask.Manga coloriza-
tion [QWH06] partially overcomestheselimitationsby vir-
tually convertingareaswith repetitivepatternsinto homoge-
nous regions with distinct boundaries.Nevertheless,such
conversionworks only for manga sincerepetitive patterns
arerarein hand-madecartoondrawings.

A

C

D

B

Figure 3: An ideal painting tool tendsto �ll as much area
aspossible(A); whenthere are concurrentseeds,it �nds an
optimalboundaryregardlessof gappyoutlinesandproduces
compactregionswithoutholes(B); it supportssoftscribbles
by preservingrule of majority so it is not necessaryto paint
preciselyinside the region of interest (C); it handlesanti-
aliasingbypushingcolor boundariesto pixelswith minimal
intensitynotwith maximalgradient(D).

Optimal boundary. The illustrators' wish is to have a tool
thattendsto � ll asmuchareaaspossibleby �nding anopti-
mal enclosingboundary(regardlessof holesandgappy out-
lines)andthen,whennecessary, they canre�ne the interior
using additionalstrokes (seecasesA and B in Figure 3).
Suchwork�o w is not supported in manga colorization.Al-
thoughit handlesgappy outlinesvia region shaperegular-
ization, it is not able to �nd and optimal boundarydue to
gettingstuckin inappropriatelocal minima(seeFigure2 or
redcrossedexamplein Figure3, ruleA).

Connectedlabelling. In manga colorization,usereditscan
producecolor regionswith arbitrary topology(i.e. they can
consist of several disconnected parts). This functionality
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brings considerablespeed-upin a specialcasewhen there
is a one-to-onecorrespondencebetweencolor and pattern.
However, in amoregeneralsettingthisbehavior canbecon-
fusingsinceit breaksa locality assumption,which is essen-
tial for paintingandis requiredby illustrators.

Soft scribble. Anotherfeaturewhich illustratorsappreciate
is a color brushresistantto impreciseplacement.Accord-
ing to namingconventionusedin colorizationandinterac-
tive imagesegmentation,wereferto strokesmadewith such
a brushas soft scribbles. Soft scribblesshouldsatisfy the
so called rule of majority, meaningthat a region is �lled
with a color whosestrokeshave mostof their pixels lying
in its interior (seecaseC in Figure3). This simplerule can
bring signi�cant time savingswhenpainting thin structures
or smallregions.Dueto Fitts' law [Fit54] thetimeneededto
reachthin objectscanbegreatlyreducedby slightly increas-
ing brushradius(seeFigure4). A greatspeedupcanalsobe
achieved in the context of the ink-and-paintpipelinewhen
severalalignedanimationphasesarepaintedsimultaneously
(onion �ll ) or when color patchesare transferredfrom al-
readypaintedframesto new ones(patch pasting, seeSec-
tion 5 andFigure9). In comparisonto the manga coloriza-
tion, soft scribblesarea completelynew feature,however,
a similar ideahasbeenexploredrecentlyin the context of
appearanceediting [AP08]. The key differenceis that the
energy minimization framework usedin [AP08] takes into
accountonly coarseeditswhichareinsuf�cient for painting.
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Figure 4: SoftscribblesandFitts' law [Fit54] – the taskis
to �ll the small rectangleof width w1. Using a pixel-wide
brushtheexpectedtimeneededto reach its interior is t1. By
increasingbrush radius we can enlarge the target margin
to w2 andobtainconsiderably lower timet2.

Anti-aliasing. Since scannedhand-drawn imagescontain
soft anti-aliasededges,it is necessaryto have a mechanism
that preserves suchanti-aliasingduring the painting phase
(seecaseD in Figure3). This featurecanalsobeformulated
asa goal to retrieve boundariesminimizing thevisibility of
color discontinuities.The reasonis that in cartoonimages
darkoutlinesareusedto emphasizeregion shapeandsince
thecolor is typically multiplied by theoriginal intensity, the
optimalboundaryshouldbein theplacewherethis intensity

is minimal. This �nding is inconsistentwith standardmax-
imum gradientformulation usedin interactive imageseg-
mentation[BJ01] (seeintensitypro�les in Figure3 bottom).
In manga colorizationthis featurewasnot discussedsince
authorsconsideredonly binaryimages.

4. Energy function

In this section,we formulateanenergy minimizationframe-
work, the aim of which is to satisfy the requirementspre-
sentedin theprevioussection.

As an input we have a gray-scaleimageI consistingof
pixelsP in a 4-connectedneighborhood systemN anda set
of user-provided non-overlappingstrokes S with colorsC.
Theaim is to �nd a labelling, i.e. thecolor-to-pixel assign-
mentc thatminimizesthefollowing energy function:

E(c) = å
f p;qg2N

Vp;q(cp;cq) + å
p2 P

Dp(cp) (1)

wheresmoothnesstermVp;q representsthe energy of color
discontinuitybetweentwo neighborpixels p andq, anddata
termDp theenergy of assigningcolor cp to pixel p.

4.1. Smoothnessterm

As discussedin Section3, the aim is to hide color discon-
tinuities. Sincetypically multiplicative color modulationis
used,the bestlocationsfor color discontinuitiesareat pix-
elswheretheoriginal imageintensityis low, e.g.insidedark
outlines.Accordingto this �nding we let theenergyVp;q be:

Vp;q(cp;cq) /
n

Ip for cp 6= cq
0 otherwise

(2)

However, theabsolutevaluesof Vp;q shouldbesetcarefully
sincethey have a fundamentalimpact on the resultingla-
belling.Aswewantto prefercompactandhole-free regions
it is necessaryto avoid zeros in Vp;q for the casecp 6= cq,
otherwiseregions with outlines having zero intensity will
not contribute to the minimum of (1). Such regions can
be easily disconnectedand produceholes in the �nal la-
belling. As opposedto that,non-zerosmoothnesstermwill
leadto compactregionswithout holes.However, it canalso
produceunintendedshortcutsthroughwhite areas.To sup-
pressthis shortcomingit is necessaryto set high energies
for theboundariesgoing throughthewhite pixels.Theoret-
ically, this energy shouldbehigherthanthe longestoutline
in the imageI . Nevertheless,a goodestimatefor this value
is a perimeterof I . In mostcasesthis settingeffectively en-
suresthat a region boundarywill go through white pixels
only whenthereis no otherlow energy pathalongdarkout-
lines. Following theseideas,we map an interval of image
intensitiesh0;1i to h1;Ki , whereK = 2� (w+ h), w is width
andh heightof I . For nearlybinary imagessuchmapping
can be linear, i.e. I0

p = K � Ip + 1, however, for black-and-
whitecartoonsor softpencildrawings(suchas“blocks” im-
agein Figure1 or “robber” in Figure10) theproblemwith
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shortcutspersistsdue to lower contrastbetweenhomoge-
nousareasandoutlines.

To alleviate this issueit is possibleto usesomenonlinear
mappingthatenhancesthe contrast(e.g.I0

p = K � I2
p + 1) or

employ a morepowerful techniquepreviously usedfor out-
line detectionin black-and-whitecartoonimages[SBv05].
Here,outlinesare detectedusing the responseof a Lapla-
cian of Gaussian(L � G) �lter . This �lter correspondsto a
light-over-darkmechanismusedin theprimarystagesof the
humanvisual system[MH80]. From a mathematicalpoint
of view, L� G estimatesthe secondorder derivative of the
image intensity, its zero-crossingscorrespondto edgelo-
cations,and local maxima to placeswith high curvature
(e.g. centersof outlines).According to this we preprocess
the imageI by �ltering with L� G andproducea new im-
ageI f = 1� max(0;s� L � G(I )) wherethenegativeresponse
of L � G is clampedto zeroandpositivevaluesscaledby s to
matchthe interval h0;1i . After this preprocessing,the con-
trastof outlinesis emphasizedandthe interior of homoge-
nousregions are turnedto white regardlessof their origi-
nal intensity (seeFigure 5). Finally, valuesin I f are lin-
earlymappedto the interval h1;Ki andusedin smoothness
termVp;q.

original filtered

Figure 5: An exampleof an image preprocessedby �ltering
with L� G – theoriginal image(left); normalizedandclipped
responseofL� G (right). Seetheimprovementonthecontrast
of outlines.

Note,how our smoothnessterm completelydiffers from
termsusedin interactive imagesegmentation[BJ01,Gra06].
Theaimhereis to pushthesegmentboundaryto pixelswith
maximalgradient.If the gradientmagnitudeis high (as in
cartoonimages),many pixels can have Vp;q nearor equal
zero.As discussedin Section3 this settingis unsuitablefor
paintingsinceit revealscolor discontinuitieson soft edges
andproducesholes.

4.2. Data term

In mangacolorizationor interactive imagesegmentationthe
datatermDp is usuallysetto someimage-basedlikelihood
suchaspatternor intensitysimilarity. The assumptionbe-
hind thissettingis thatthereis aone-to-onecorrespondence
betweencolor andpattern/intensity. However, repetitivepat-
ternsor intensity variationsare not typical for hand-made
drawingsandevenif they arepresent,one-to-onecorrespon-
dencesarerare.To addressthis factLazyBrushdoesnot rely
on image-basedlikelihoodsbut usescompletelyuser-driven

data term allowing the implementationof a soft scribbles
discussedin Section3.

Thekey ideais to relaxacommonassumption,i.e. thatall
user-de�ned seedsarenecessarilyhardconstraints.Instead
welet theuserto decidehow to penalizelabelling by setting:

Dp(cp) = l � K; (3)

wherel 2 h0;1i is a constantgivenby theuserandK is the
energy of discontinuity at white pixels thatbalancesthe in-
�uence of dataandsmoothnessterms(thereforewe usethe
samesymbolasin Section4.1). Thevalueof l indicatesthe
presenceof a brushstroke and its “strength”: l = 1 is for
pixels that have not receiveda brushstroke, l = 0 for hard
scribbles,andfor soft scribblesl shouldsatisfythefollow-
ing inequality:0+ K � jSj < K � ¶S+ l K � jSj, sayingthatthe
energy (1) is lowerevenif thepixelsunderascribbleShave
not receive its color (jSj is theareaand¶S theperimeterof
S). Fromthisconstraintweobtain:l > 1� ¶S=jSj whichwe
canmeasure for eachscribblebut in practicemost scribbles
have1� ¶S=jSj < 0:95sowesetl = 0:95.

It is easyto verify thatsoft scribblespreserve therule of
majority. ImagineseveralseededpixelsSwith Dp = l �K in-
sidea region R wherethesmoothnessis assumedto by con-
stant.Thenthe labelling with minimal energy shouldhave
lowestå Dp = l � K � jSj + K � jR� Sj. After simpli�c ation:
å Dp = K � (jRj � (1� l ) � jSj) yieldsminimumfor thelargest
(1� l ) � jSj, i.e.whenall scribbleshaveequall thenthewin-
nerwill have thelargestnumberof seededpixelsjSj.

4.3. Minimization

Now we proceedto the minimization of (1). Since the
smoothnessterm Vp;q dependsonly on pixel intensity and
not on the color labels,our energy function satis�es Potts
model [Pot52]. As shown in [BVZ98] minimizing sucha
functionis equivalentto solvinga multiwaycut problemon
acertainundirectedgraphG= fV ;Eg whereV = f P;Cg is a
setof verticesandE = fE p;Ecg asetof edges(seeFigure7).

Ep

Ec

c1

wp;c1

wp;q

p

q

c2 c3

c1

c2 c3

Figure 7: Multiway cut – basicstructure of graphG (left):
pixelsP (white dots),color terminalsC (color dots),pixel
edgesEp with weightwp;q (black lines),and links to color
terminalsEc with weightwp;c (color lines).Resultingmulti-
waycutandcorrespondinglabellingof pixels(right).
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c1
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c4
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c6

c7

c2;c3;c4;c5;c6;c7 ! T c3;c4;c5;c6;c7 ! T
c4;c5;c6;c7 ! T c7 ! T

c1 ! S c2 ! S c3 ! S c6 ! SG1 G2 G3 G4

M 1 M 2 M 3 M 4 M 5

c4

c5

Figure 6: Multiway cut algorithm in progress– gradually reducingmax-�ow/min-cutsubproblemssolvedon graphsG with
terminalsS and T (top), correspondingmasksof unlabelledpixelsM (bottom,checkerboard pattern indicatesunlabelled
pixels).Notehowtwo trivial subproblemsc4 andc5 wereprunedin thethird iteration (middle).

Vertices V consist of pixels P and color terminalsC.
Each pixel p 2 P is connectedto its 4 neighborsvia
edgesEp having weight equalto smoothnessterm wp;q =
Vp;q for casecp 6= cq. There are also auxiliary edgesEc
thatconnectcolor terminalsC to seededpixels.EachEc has
weightwp;c = K � Dp(c) (hardscribbleshavewp;c = K and
softwp;c = (1� l ) � K).

Note that in contrast to interactive image segmenta-
tion [BJ01] ourgraphis verysparse(hasmuchlessEc). This
is dueto thefactthatmost pixelshave Dp = K for all labels
so the weightwp;c = 0 andthusthecorrespondingEc is re-
dundant.Sincethereareno otherlinks to terminalsbesides
user-de�ned theresultinglabellingwill bealwaysconnected
to seeds.This is in accordancewith propertiesdiscussedin
Section3.

A multiway cut with 2 terminalsis equivalentto a max-
�o w/min-cut problem for which ef�cient algorithms ex-
ist [BK04]. However, for 3 or more terminalsthe problem
is NP-hard[DJP� 92] even on our sparsegraph.Neverthe-
less,it is interestingthat we arevery closeto P, becauseif
weassumeonly asetof hardscribbleseachwith uniqueter-
minal (e.g.as in Figure7), we canalways collapseseeded
pixels to this terminalandobtaina planargraphfor which
anexactpolynomialalgorithmexists[Yeh01]. Nevertheless,
wecannotcollapsepixelsseededby softscribblesandsowe
needto solvethefull non-planarproblemfor whichnopoly-
nomial approximationschemeexists. The bestknown ap-
proximation[KKS� 04] basedon geometricembeddingand
linearprogramming guaranteesanoptimalsolutionwithin a
factorof 1:3438� ek, whereek goesto zero with increasing
numberof terminalsk (for k = 3 theboundis 12

11). Thisalgo-
rithm is noteasyto implementanddueto slow performance
it is inappropriatefor interactiveapplications.Therearealso
otherapproximationalgorithmsbasedonthemax-�ow/min-
cut subroutine[DJP� 92, BVZ01]. Although they guarantee
optimality only within a factorof 2 � 2

k and2 respectively,
they aremucheasierto implement. Theproblemis thatthey
arestill relatively slow dueto many max-�ow/min-cutsteps.
For exampleit takesmore than11 secondsto computela-

belling for 0.5 Mpix imagein Figure1 on a 2.4GHzCPU
usinga-expansionalgorithmdescribedin [BVZ01].

Inspiredby the isolation heuristicusedin [DJP� 92] we
proposeanovel greedymultiwaycut algorithm,which takes
advantageof our specialgraphtopologyguaranteeingcon-
nectedlabelling.In practice,it providessimilar resultsasthe
widely useda-expansion[BVZ01] but is signi�cantly faster
(18x for Figure 1, seealso Table 1) and so more suitable
for interactiveapplications.It worksin asimplehierarchical
fashionby solving lessthanN one-to-allmax-�ow/min-cut
problems(whereN is thenumberof colors).Thesigni�cant
speedup is obtainedthanksto (1) graduallyreducingsize
of max-�ow/min-cut subproblemsand (2) ability to prune
trivial cases.It hasthefollowing steps(cf. work-in-progress
examplein Figure6):

1. Initialize a setof active color labelsC anda maskM of unla-
belledpixels.

2. Find all unlabelledregionsR in M that intersectstrokeswith
only one color label cr . For eachsuchr 2 R set labelsin M
to cr and if thereis no other region in M containingstrokes
with labelcr , removecr from C.

3. If C is emptythenstop.
4. Selectanarbitrarycolor labelc 2 C.
5. Build agraphG from all unlabelledpixelsin M .
6. Connectpixelsseededwith color labelc to terminalS, andpix-

elsseededwith colorsC� f cg to terminalT .
7. Solve max-�ow/min-cut problem[BK04] on G with sourceS

andsink T .
8. At pixels wherecorrespondinggraphverticeswereassignedto

terminalS, setlabelin maskM to c.
9. Removecolor labelc from C andgo to (2).

Roughlyspeakingthealgorithmselectsanarbitrarycolor
asa �rst terminalandall othercolorsasa secondterminal.
Thenit solvesthebinarymax-�ow/min-cut problemandre-
movesa part of the imageassigned to the �rst terminal.It
performsthesameoperationon thereducedimagewith re-
ducedsetof colorswhile avoiding max-�ow/min-cut com-
putationwhenthereareregionscontainingonly seedswith
onecolor. If thereis nootherconnectedcomponentwith two
differentcolor labelsthealgorithmstops.
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Figure 8: Limitations– two differentminimalsolutionswith equalenergy (A); a shortcutencompassinga small scribblehas
lower energy than a boundaryalong the outline (B); the rule of majority is biasedby thin creeks(C); low contrast between
outlinesand homogenousregionscausesunintendedlabelling (D); long gapsor missingoutlinescan producejaggy bound-
aries(E).Additionalsoftscribbles(markedwith reddashedline) arenecessaryto resolvecasesA-C.CaseD canbesuppressed
bycontrastenhancementandcaseE by post-processingusingsmoothactivecontourmodel[XAB07].

Althoughsucha greedyapproachdoesnot guaranteeop-
timality within a factorof 2, in practiceit produceslabelling
with energy closeor even slightly betterthana-expansion
(seeTable1) so that the visual differenceis imperceptible.
Moreover, whenthe sizeof regionscorrespondingto indi-
vidual colors is known beforehand (e.g. backgroundseed
or dominantcolor) it is possibleto perform a selectionof
colorsfrom the “largest” to the “smallest”andgain signi�-
cantsubproblemreductionafteronly a few initial steps.An-
othergreatoptimizationcanbe achieved if we canpredict
the topologyof the resultinglabelling.Then,thanksto the
four color theorem[AH89], we cangroupcolor labelsto 4
terminalsanduseonly 4-way cut to obtaina constanttime
solutionfor anarbitrarynumberof colors.

name resultion colors speedup DE [%]
bottle 720x576 3 3x -0.0452
robber 720x576 6 17x 0.0196

boy 720x576 7 17x 0.0274
picnic 1026x578 7 17x 0.0090
blocks 1026x578 7 18x 0.0038

footman 1026x578 9 9x 0.0025
manga 1026x578 11 16x 0.0395

Table 1: Our algorithmvs.a-expansion– thespeedup in-
creasesroughlywith thenumberof colors while thechange
in labelling is imperceptible(negativeDE meansour algo-
rithm found better local minimumand vice versa). Names
correspondto drawingsin Figure10. Thedrawing“blocks”
is shownin Figure1.

4.4. Limitations

Thereare several situationswherethe energy function (1)
doesnot exactly preserve rulespresentedin Section3. Al-
though thesecasesare rare, the user should be aware of
them,know the sourceof a problem anda way to resolve
it.

Ambiguity. The �rst problematic situation is depicted
in Figure8 (caseA). Therearetwo differentminimal solu-
tionswith equalenergy. In thiscasethestructureof the�nal
labellingdependsonly on theorderof labels.This ambigu-
ity canbeeasilyresolvedby puttinganotherdecisive stroke
insidethesmallsquare.

Shortcuts. When the user draws thin scribbles(e.g. one
pixel wide) insidea region with a very long or gappy out-
line, thecasecaneasilybethata shortcutencompassingthe
scribblewill have lower energy thana long boundaryalong
theoutline(caseB in Figure8). To avoid suchdegenerateso-
lutions,it is necessaryto usewiderbrushesto ensurethatthe
scribble's perimeteris muchlongerthanthesumof lengths
of all gaps.

Majority bias. Anotherproblemis connectedwith the fact
that the rule of majority can be biasedby the imagecon-
tent.Thisbiasbecomescritical in thecaseof thin creeks(see
caseC in Figure8). Here,thelower energy of soft scribbles
cancompensatefor thehighenergy of shortcutsandproduce
unintendedlabelling. Anothersoft scribbleis necessaryto
resolve this situation.

Low contrast. Our approachcanfail on imageswherethe
contrastbetweenoutline andhomogenousareais low (see
caseD in Figure 8). For such imagesit is recommended
to usenon-linearcontrastenhancementor L � G-basedpre-
processingas discussedin Section 4.1. Suchmodi�cation
is necessaryonly for settingup thesmoothnesstermin (1),
theresultinglabellingcanbethenappliedontheunmodi�ed
image(asdonein Figure1).

Metrication artifacts. When outlineshave long gaps,the
resultingboundarycanhave jaggy shapesinceits lengthis
minimizedin the senseof the L1 norm (seecaseE in Fig-
ure 8). Although an extension exists [BK03], allowing the
approximationof theL2 normto arbitraryextents,it requires
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many additionalEp edgesyielding signi�cant slowdown of
the optimization. Even if the L2 norm is minimized, the
boundaryshapestill doesnotneedto beoptimalin thesense
of higherordercontinuity(C1 or C2). To solve this problem
the shapecanbe post-processedusingsomeactive contour
modelwith amoresophisticatedsmoothnessterm[XAB07].

5. Results

We implementedLazyBrushin a simpleinteractive applica-
tion and validatedits �e xibility on variousdrawing styles
including pen and pencil drawings, black-and-whitecar-
toons [SBv05] and manga [QWH06]. Selectedresultsare
presentedin Figure10(drawings“bottle” and“robber” were
preprocessedusingL� G to enhancecontrastof outlines).

Note that the usereffort requiredby LazyBrushis com-
parableto previous techniques,even thoughit doesnot as-
sumeany style-speci�cfeatures.Theroughlypositionedsoft
scribblesalsoreducethe level of concentrationrequiredof
the illustrator, which makes painting more enjoyable and
thuslesstedious.This featurecanalsobebene�cial in appli-
cationswherespeci�c motorcoordinationabilitiesaretaken
into account(e.g.apaintingtool for youngchildren).

Theadvantageof softscribblesbecomesevenmoreappar-
ent in thecontext of the ink-and-paintpipelinewherethou-
sandsof framesmustbepaintedmanually. A populartech-
nique hereis onion �ll allowing to paint several superim-
posedanimation in-betweenssimultaneously(seeFigure 9,
top). In contrastto standardapproachesLazyBrushdoesnot
requireprecisepositioningof colorseeds.By drawing longer
soft scribblesit is possibleto cover largemovements.

LazyBrushcan be also utilized in a more sophisticated
auto-paintingtechniquecalledpatch pasting[SBv04] where
color informationis transferredautomaticallyby registering
interestingpoints in alreadypaintedand unpainteddraw-
ings. The original methodrequirespre-segmentationin or-
der to computethe most frequently used color inside a
region (see Figure 9, bottom). With LazyBrushthe pre-
segmentationis no longer neededsince the color patches
canbe usedassoft scribblesand the rule of majority will
propagateto themostfrequentlyusedcolor. Thanksto this,
patchpastingcanbeusedalsofor morecomplicateddrawing
styleswheremeaningfulsegmentationis hardto obtain.

Since LazyBrush does not mix colors (as compared
to [LLW04]) but produceshardsegments,it is possibleto
useit for �lling regionswith differentcontentbeyond just
color, e.g.gradients,patternsor depthinformationwhichcan
be utilized for composition,unsharpmasking [LCD06] or
in Lumo [Joh02] where it is necessaryto producecorrect
normalorientationfor 3D-likeshading.

6. Conclusionsand Futur ework

We have presenteda new interactive tool for paintinghand-
madecartoondrawings calledLazyBrush. It is basedon an

optimizationframework that tries to mimic the behavior of
an ideal painting tool asproposedby professionalillustra-
tors. The key advantageof LazyBrushis �e xibility . It can
beusedfor paintingin variousdrawing styleswith compa-
rableusereffort to thatofferedby previousstyle-limitedap-
proaches.Wehavealsodemonstratedits usabilityin thecon-
text of the ink-and-paintpipelinefor which LazyBrushwas
mainly designatedandcanprovide signi�cant reductionof
manualeffort.

As futurework we planto integrateLazyBrushmoreinto
the spatio-temporaldomain [WBC� 05] and examinepos-
sible modi�cations of our energy function in order to uti-
lize differentoptimization schemessuchasweightedleast-
squares [Gra06, AP08]. Another interestingavenuefor fu-
tureresearchis graphcoloringalgorithms[RSST96], which
allow thegroupingof color terminalsin suchawaythatonly
a�x ednumberof max-�ow/min-cutstepsis necessaryto ob-
tainasolutionfor arbitrarynumbersof colors.
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Figure 10: LazyBrushpaintings– in each exampleseeuser-speci�edscribblessuperimposedon theoriginal drawingandthe
correspondingoptimizedpainting(namescorrespondto Table1). Backgroundscribblesare sometimesinvisiblesincethey are
implicitly drawnaroundtheimageborder. Mostcolor scribblesaresofttherefore they canbepositionedroughly.
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