
Extended Morton Codes for High Performance Bounding
Volume Hierarchy Construction

Marek Vinkler

Czech Technical University,

Faculty of Electrical Engineering

Karlovo nam. 13

Prague 12135

vinkler@fel.cvut.cz

Jiri Bi�ner

Czech Technical University,

Faculty of Electrical Engineering

Karlovo nam. 13

Prague 12135

bi�ner@fel.cvut.cz

Vlastimil Havran

Czech Technical University,

Faculty of Electrical Engineering

Karlovo nam. 13

Prague 12135

havran@fel.cvut.cz

ABSTRACT
We propose an extension to the Morton codes used for spatial sort-

ing of scene primitives. �e extended Morton codes increase the

coherency of the clusters resulting from the object sorting and work

be�er for non-uniform distribution of scene primitives. In partic-

ular, our codes are enhanced by encoding the size of the objects,

applying adaptive ordering of the code bits, and using variable

bit counts for di�erent dimensions. We use these codes for con-

structing Bounding Volume Hierarchies (BVH) and show that the

extended Morton code leads to higher quality BVH, particularly for

the fastest available BVH build algorithms that heavily rely on spa-

tial coherence of Morton code sorting. In turn, our method allows

to achieve up to 54% improvement in the BVH quality especially for

scenes with a non-uniform spatial extent and varying object sizes.

Our method is easy to implement into any Morton code based build

algorithm as it involves only a modi�cation of the Morton code

computation step.

CCS CONCEPTS
•Information systems →Multidimensional range search;
•�eory of computation →Sorting and searching;
•Computing methodologies →Ray tracing;

KEYWORDS
ray tracing, bounding volume hierarchy, Morton codes

ACM Reference format:
Marek Vinkler, Jiri Bi�ner, and Vlastimil Havran. 2017. Extended Morton

Codes for High Performance Bounding Volume Hierarchy Construction. In

Proceedings of HPG ’17, Los Angeles, CA, USA, July 28-30, 2017, 8 pages.

DOI: 10.1145/3105762.3105782

1 INTRODUCTION
Spatial data structures play a key role in computer graphics. Any

data set containing many details is too complex to be processed

without organizing the scene objects in a spatial data structure.

Spatial data structures assist for example in performing visibility

culling, collision detection, and ray tracing. Particularly for ray

tracing based rendering applications including interactive ones it is

important to improve on the quality of the spatial data structures

while keeping the time of building them low. If the scene contains

HPG ’17, Los Angeles, CA, USA
© 2017 ACM. �is is the author’s version of the work. It is posted here for your

personal use. Not for redistribution. �e de�nitive Version of Record was published in

Proceedings of HPG ’17, July 28-30, 2017 , h�p://dx.doi.org/10.1145/3105762.3105782.

a dynamic content, it is also important to reconstruct or update the

spatial data structure quickly to accommodate the scene changes.

In such situations, we seek to balance the construction time and

the rendering performance. Particularly in interactive applications,

the construction time should match the target frame-rate, which is

a di�cult task for most of the commonly used scenes.

In this paper, we focus on fast construction of Bounding Vol-

ume Hierarchies (BVH) that are one of the most popular spatial

data structures nowadays. BVHs have predictable memory foot-

print, allow for relatively fast construction, and provide very good

run-time performance. Most state-of-the-art BVH construction

methods exploit Morton codes for spatial sorting of scene primi-

tives [Domingues and Pedrini 2015; Garanzha et al. 2011; Gu et al.

2013; Lauterbach et al. 2009]. Morton codes are employed in these

algorithms because they provide a simple yet e�cient method for

approximate spatial sorting of scene primitives.

We propose a new code, formed as an extension of the Morton

code. Our Extended Morton code (EMC) can signi�cantly improve

the quality of the BVH constructed with the fastest available BVH

construction algorithms, while not increasing the computation time.

We show that even for such simple build method (LBVH [Karras

2012]) the quality, expressed as the expected cost of the created

BVH, can get close to the high-quality BVHs constructed using a

sweeping-based algorithm with the surface area heuristic, but in a

fraction of the computation time. Moreover, we show that even the

highest quality build algorithms such as ATRBVH [Domingues and

Pedrini 2015] can bene�t from the use of EMC.

2 RELATEDWORK
�e build algorithms for data structures used in ray tracing have

undergone intensive research, both on multi-core CPU and many-

core GPU platforms. Below we summarize the main algorithms

for BVH construction on both platforms and discuss how they can

bene�t from the proposed extended Morton codes.

2.1 CPU based algorithms
One of the �rst techniques signi�cantly speeding up the build of

high-quality data structures on CPUs was the binned BVH build

proposed by Havran et al. [2006]. �is idea was later used in a

parallel implementation by Wald [2007], where top levels of the

tree were built by a lower quality but fast grid based spli�ing. �is

top level build can be replaced by our extended Morton code build

for higher quality data structures. A recent advance in the �eld of

binned BVH building on the CPU is the one by Olivares et al. [2016].

http://dx.doi.org/10.1145/3105762.3105782

HPG ’17, July 28-30, 2017, Los Angeles, CA, USA M. Vinkler et al.

Another avenue of research features bo�om-up build using ag-

glomerative clustering [Gu et al. 2013; Walter et al. 2008] to improve

on the quality of BVHs. �is algorithm directly employes presort-

ing by Morton codes and thus can immediately bene�t from our

extended variant. By considering multiple bits of the Morton code

for a split at each level, BVHs with higher arity of nodes can be

built [Dammertz et al. 2008].

Finally, optimization of the BVH was proposed by the means of

node rotations [Kensler 2008; Kopta et al. 2012] or insertions/removal

of whole subtrees [Bi�ner et al. 2013]. Such algorithms were shown

to bene�t from starting the optimization on a tree of higher quality

and thus they can also bene�t from improving the Morton code

based construction of the initial BVH. An alternative to optimizing

the cost of an existing tree is to be�er predict the cost of the splits

during the build by using temporarily constructed BVHs as in the

work of Wodniok and Goesele [2017].

2.2 GPU based algorithms
Morton code based build algorithms were used on GPUs from the

beginning because of their easy parallelization. �e �rst algorithm

exploiting the code properties is the linear BVH (abbreviated to

LBVH) proposed by Lauterbach et al. [2009]. Pantaleoni and Lue-

bke [2010] and Garanzha et al. [2011] proposed hybrid build algo-

rithms (known as HLBVH) that are both fast and produce high-

quality data structures by building parts of the tree using the surface

area heuristic. Karras [2012] proposed an improved build algorithm

for LBVHs based on radix trees to further reduce the build time.

�is method was improved by Apetrei by reducing the number of

passes of the algorithm [Apetrei 2014]. An algorithm for massively

parallel optimization of BVHs on a GPU was given by Karras et

al. [2013]. In their work the BVH topology is changed by rearrang-

ing subtrees, similarly to the method of Kopta et al. [2012]. �is

algorithm was further optimized by Domingues [2015] for even

faster builds. All the above-mentioned methods use Morton codes

and can thus be easily upgraded to extended Morton codes without

much implementation e�ort.

3 MORTON CODE BASED SPATIAL SORTING
3.1 Morton codes in 3D
Morton code is a way of mapping quantized n-dimensional vec-

tors into integer scalar values, i.e., codes. Morton code induces a

space �lling curve that provides relatively coherent ordering of the

quantized vectors, meaning the vectors with subsequent Morton

codes are spatially close to each other. �is curve is also referred

to as Z-curve because of the shape of the curve in the 2D case (see

Figure 1). Although other space �lling curves exist that yield even

more coherent spatial ordering [Samet 2005], Morton code gained

popularity because of the simplicity of its computation: the Morton

code can be computed using simple bit interleaving operations.

A major parameter of the Morton code is the number of bits

used for the code. In particular an n bit Morton code of a three

dimensional vector v = (vx ,vy ,vz) ∈ 〈0, 1〉
3

is computed by

�rst determining the quantized coordinates v∗ = {v∗x ,v∗y ,v∗z } ∈
〈0, 2n/3〉 × 〈0, 2n/3〉 × 〈0, 2n/3〉. �e Morton code is then evaluated

by interleaving bits of the components of v∗. For example, a 24-bit

Morton code for the quantized coordinatesv∗x = x7x6x5x4x3x2x1x0,

v∗y = y7y6y5y4y3y2y1y0, andv∗z = z7z6z5z4z3z2z1z0 is thenm(v∗)=
x7y7z7x6y6z6x5y5z5x4y4z4x3y3z3x2y2z2x1y1z1x0y0z0. �e bit in-

terleaving operation can be performed using algebraic operations

such as multiplication and sums [Morton 1966]. Alternatively, look-

up tables can be used to precompute the codes for certain bit ranges

and then combined at runtime by simple additions and shi�s.

00 01 10 11

00

01

10

11

0 00 0 0 00 1

0 10 0

1 00 0

1 10 0

0 10 1

1 00 1

1 10 1

0 11 0

1 01 0

1 11 0

0 11 1

1 01 1

1 11 1

0 01 10 01 0

Figure 1: Visualization of the Morton code based space �ll-
ing curve in 2D.

3.2 Constructing BVH using Morton Codes
Since Morton codes encode the spatial location of vectors (points),

they can be easily used for the construction of spatial data structures.

By representing scene primitives as points and sorting them by

their Morton code, multi-scale clusters of primitives can be formed.

�e boundaries between the clusters are indicated by the change

of a bit in the Morton code on certain bit position.

�is property is exploited by the algorithms using Morton codes

for spatial sorting of scene primitives. �e LBVH method [Lauter-

bach et al. 2009] sorts primitives according to the Morton codes of

their centroids. Starting from the highest bit, the hierarchy is con-

structed by �nding the positions of bit changes and applying this

procedure recursively on the two subsets. �us the BVH topology

is solely given by the computed Morton codes.

�e HLBVH method [Pantaleoni and Luebke 2010] performs the

BVH construction in two steps. �e highest levels of the BVH are

built using the Morton codes similar to the algorithm of Lauterbach.

When the individual subsets become small enough, they are further

subdivided using the surface area heuristic (SAH) for improved

quality. Because the quality of splits ma�ers mostly near the top

of the hierarchy, Garanzha at al. [2011] proposed to turn this two-

level build around. �ey �rst identify clusters of primitives that

share a common pre�x of the Morton code of a given length. For

these clusters, the subtrees are constructed using the remaining

EMC for High Performance BVH Construction HPG ’17, July 28-30, 2017, Los Angeles, CA, USA

bits of the code, but the top part of the tree is constructed using the

binning SAH method [Wald 2007] executed on the bounding boxes

of the clusters. �us, the Morton codes directly in�uence how these

clusters look like and also how the topology of the lower levels of

the tree is formed. Probably the fastest algorithm to date for con-

structing BVHs based on Morton codes is the one of Apetrei [2014]

on GPU and the Embree [Wald et al. 2014] implementation on CPU.

�e AAC method [Gu et al. 2013] uses Morton codes to recur-

sively subdivide objects into clusters on which the agglomerative

clustering is applied in a bo�om-up fashion. �e Morton codes

directly in�uence how these clusters are formed, but the method

has a potential to postpone clustering towards higher levels of the

tree and thus to limit the potentially ine�cient clusters resulting

from the Morton codes.

4 EXTENDED MORTON CODES
Since any BVH topology can be embedded in the space of bit codes

and built e�ciently with the algorithm of Karras [2012], it is natural

to search for good embeddings. In the rest of this section, we

propose several extensions of the standard Morton code that lead

to embeddings for higher quality data structures with practically

no increase in the build time.

4.1 Encoding object size
Many real-world scenes contain geometry primitives of di�erent

sizes. When sorting such primitives based on the centroids of their

bounding boxes, the resulting object clustering can be ine�cient for

the following reason: even though the centroids of the objects can

be very close (and thus assumed coherent) their common bounding

volume is not a good �t, especially for smaller objects in the cluster.

In other words, large objects enforce large bounding volumes not

only at a single node in the tree, but on the whole path from the

leaf to the root. �us, it is bene�cial to separate such objects and

possibly keep them at higher levels of the tree so that they do not

in�uence the rest of the tree.

�e decision on how to separate the large objects has to be done

with care. Too early and too late separation of large objects could

actually increase the overlaps of bounding volumes and in turn,

decrease the BVH quality. We propose to inject extra bits into the

Morton code that encode the size of the object. In particular, we

use the length of the diagonal of the object. In the simplest form,

the size is encoded using the same number of bits as the other axes.

�us, the Morton code is then computed by interleaving bits of 4

quantized coordinates (x ,y, z, s), where x ,y, z encode the spatial

position of geometric primitive centroids and s encodes the size of

the geometric primitive. �e size s is normalized so that the highest

value represented using the given number of bits corresponds to

the diagonal of the scene bounding box.

When using regular bit interleaving (xyzsxyzs) the bounding

box corresponding to a particular Morton code pre�x follows a

regular octree-like subdivision of the scene volume. In other words,

each triple of spatial splits subdivides the original volume into eight

equally shaped sub-volumes (boxes) with their diagonal size equal

to the half of the original box diagonal size. �erefore the bits

encoding the size of the object can be directly used to determine

the objects with their size smaller/larger than the current volume of

the centroids. In particular, the objects with the size bit set to 1 are

larger than the current box and will be separated into a di�erent

subtree (see Figure 2).

We have also experimented with encoding the object size using

its surface area, but the diagonal length achieved slightly be�er

overall results in our tests.

y-axis

x-axis

size

y-axis

SPLIT AXIS

Figure 2: Illustration of the BVH construction on a simple
scene using the extended Morton code. Note the third level
of the hierarchy in which the size bit is used to subdivide
objects into those smaller and larger than the diagonal of
the corresponding centroid volume (shown in blue).

4.2 Using fewer size bits
In some situations, it might be bene�cial to encode the object size

in a coarser manner not to loose the main potential for subdivision

given by the object positions. �is applies especially for shorter bit

codes (32-bit Morton codes) or for large scenes with many primi-

tives (e.g. more than 10M triangles).

We propose a method that reduces the number of bits used to

encode the object size while keeping its main bene�t of separating

small and large objects at appropriate levels. �e main idea is to

inject the size bits only every seventh bit, thus a�er two series of

splits in each axis. In this case, however, we should make sure

that the encoded object size corresponds to the size of the centroid

bounding box corresponding to the given bit position. A�er six

spatial splits, the size of the diagonal becomes one-fourth of the

size of the diagonal of the box at which the previous size split was

performed. At the same time, the following bit in a binary coded

number represents half of the previous (higher) bit value. �is

discrepancy can be easily resolved by encoding a quantized value

that corresponds to the square root of the diagonal of the object

size.

HPG ’17, July 28-30, 2017, Los Angeles, CA, USA M. Vinkler et al.

Algorithm 1 Pseudocode of the 64-bit EMC generation using the

adaptive axis order and size bits injected every 4th bit. �e Expand

function inserts three zeros before each bit of the input number.

Notation: X�Y corresponds to shi� le� bitwise operation of integer

X by Y bits, | corresponds to bitwise binary operation OR, and

& corresponds to bitwise binary operation AND.

1: function Init(scene)

2: . default axis order

3: a0 = x ,a1 = y,a2 = z,a3 = size
4: . descending axis order using scene dimensions

5: sort(a0..2)

6: . Compute quantization scales

7: s0 = 2
16

/scene.box.size[a0]

8: s1 = 2
16

/scene.box.size[a1]

9: s2 = 2
16

/scene.box.size[a2]

10: s3 = 2
16

/scene.box.diagonal.length

11: end function
12: function Expand((integer X))

13: integer v=0, mask=1

14: for i=0 to 15 step 1 do
15: v = v | ((X & mask)�(3.i))

16: mask = mask�1

17: end for
18: return v

19: end function
20: function Code(triangle)

21: v = triangle.box.center-scene.box.min

22: size = triangle.box.diagonal.length

23: integer v∗
0
= s0 · v[a0]

24: integer v∗
1
= s1 · v[a1]

25: integer v∗
2
= s2 · v[a2]

26: integer v∗
3
= s3 · size

27: return ((Expand(v∗
0
) � 3) | (Expand(v∗

1
) � 2)

| (Expand(v∗
2
)� 1) | Expand(v∗

3
))

28: end function

4.3 Adaptive axis order
During our tests, we discovered that the order in which the bits

corresponding to di�erent spatial axes are used in the code in�u-

ences the resulting BVH quality. In particular, ordering the axes

by pu�ing the ones with the largest extent at the beginning of the

code had a consistently positive e�ect on the results. We expect

that this follows from the fact that by spli�ing the larger axes �rst,

the centroid clusters are closer to the cuboid shape and thus more

spatially compact than always keeping a �xed (xyz) order.

Algorithm 1 shows a pseudocode of a simple variant of the

algorithm using the adaptive axis order and size bits injected at

every 4th bit. �e actual code is very similar to standard Morton

code encoding, with a few modi�cations. During initialization

additional sorting of axes is performed and the Expand function

injects three zeros before each bit of quantized coordinates unlike

two bits injected in standard 3D Morton coder. Finally, the size bits

are computed from the diagonal of the triangle and inserted into

the resulting code.

4.4 Variable bit count
�e adaptive axis order can further be generalized by allowing a

variable number of bits to be used for di�erent axes. If the scene

extends mainly in two dimensions (such as terrain or city models),

it might be bene�cial to subdivide in these two dimensions multiple

times and subdivide in the remaining dimension only a�er the

subdivided volume becomes close to a cube. Inspired by the major-

axis based spli�ing used for BVH construction, we propose a simple

method that determines the order of axes encoding. Unlike the

classical major-axis based spli�ing, where the decision is made for

each node separately, here the proposed method is solely based

on the knowledge of the scene bounding box. Starting from the

scene bounding box, we determine the largest axis according to

which a split should be done at the �rst bit position and then cut the

bounding box in half according to the selected axis. �e selection

of the axis for each bit is stored in an auxiliary array and in this

way we determine the axis corresponding to all spatial bits of the

extended Morton code. Note that during this process we optionally

also inject the size bits (every 4th or 7th bit). When all bits are

assigned, we can count the number of bits used for di�erent axes

and use these counts for computing appropriate quantization scales

for the input points (see Algorithm 2).

Note that the resulting code is no longer the traditional Morton

code that uses a regular bit interleaving, however, the main features

of the code for the BVH construction are kept (the bit based subdivi-

sion of primitives). �e adaptive axis order typically in�uences only

the �rst two to four bits of the code – the rest of the code contains

regular triples (or quadruples in the case of injected size bit) of the

spatial axes, i.e., a 16-bit code might look like xyxyzxyzxyzxyzxy.

As soon as the shape of the bounding box approaches the cube and

no axis is twice larger than any other axis, selecting the largest

split axis will produce a regular subdivision pa�ern.

4.5 Implementation
For maximizing the performance of the Morton code computation

step, we use look-up tables (LUTs) for all axes that contain values

with accordingly shi�ed bits. �e LUTs are precomputed before

evaluating the Morton codes of scene primitives. �en the scene

data is processed by simple look-ups followed by summing the par-

tial codes representing di�erent axes. Note that for the variable bit

counts the LUTs have to be recomputed when the scene bounding

box changes. For all other codes, the LUTs are independent of the

scene bounding box and remain �xed for a particular Morton code

setup.

In our implementation, the square root needed for the 7th-bit

encoding described in Section 4.2 is actually avoided by encoding it

in the LUT. To avoid loss of precision resulting from the square root

we use a LUT of twice the normal size 2
2 |s |

, where |s | is the number

of size bits used. Note that since the encoded size uses the triangle

bounding box diagonal, we still need one square root to compute

the size of the diagonal. �is computation could also be replaced

by another access to the LUT, but we have not implemented this

feature in our code as it would require a further increase of the LUT

size.

We provide a sample implementation of the Extended Morton

coders for download at: h�p://dcgi.fel.cvut.cz/projects/emc.

http://dcgi.fel.cvut.cz/projects/emc

EMC for High Performance BVH Construction HPG ’17, July 28-30, 2017, Los Angeles, CA, USA

Algorithm 2 Pseudocode of the 64-bit EMC generation using the

variable bit order, adaptive axis order and size bits injected every

7th bit. �e Expand function inserts variable number of zeros

before each bit of the input number. Notation: X�Y corresponds

to shi� le� bitwise operation of integer X by Y bits, | corresponds to

bitwise binary operation OR, and & corresponds to bitwise binary

operation AND.

1: function Init(scene)

2: for i=0 to 63 step 1 do
3: if i is 7th bit then
4: . insert size bit

5: axes[i] = 3

6: else
7: . pick the largest axis

8: axes[i] = scene .box .size .maxAxis
9: . halve the largest axis

10: scene .box .size .max/ = 2

11: end if
12: end for
13: . number of bits in each axis

14: bits0..3 = axes .sum(0..3)
15: . shi�s between bits in each axis

16: shi f ts0..3 = axes .shi f ts (0..3)
17: . Compute quantization scales

18: s0 = 2
bits0

/scene.box.size[a0]

19: s1 = 2
bits1

/scene.box.size[a1]

20: s2 = 2
bits2

/scene.box.size[a2]

21: s3 = 2
bits3

/scene.box.diagonal.length

22: end function
23: function Expand(axis A, integer X)

24: integer v=0, mask=1

25: for i=0 to bitsA-1 step 1 do
26: v = v | ((X & mask)�(shi f tsA[i]))
27: mask = mask�1

28: end for
29: return v

30: end function
31: function Code(triangle)

32: v = triangle.box.center-scene.box.min

33: size = triangle.box.diagonal.length

34: integer v∗
0
= s0 · v[a0]

35: integer v∗
1
= s1 · v[a1]

36: integer v∗
2
= s2 · v[a2]

37: integer v∗
3
= s3 · size

38: return ((Expand(a0, v∗
0
) �3) | (Expand(a1, v∗

1
) �2)

| (Expand(a2, v∗
2
)�1) | Expand(a3, v∗

3
))

39: end function

5 RESULTS
We evaluated the extended Morton codes in a fast parallel build

algorithms running on the GPU. �e primary goal of the extended

Morton codes is to improve on the build algorithms that heavily use

Morton code based ordering to construct the BVH. �is is the case

of the LBVH build algorithm [Karras 2012; Lauterbach et al. 2009],

which is one of the fastest to date. Since the LBVH algorithm tends

to build data structures with only mediocre ray tracing performance,

we also explore the state-of-the-art approach of fast build followed

by tree topology optimization [Domingues and Pedrini 2015; Karras

and Aila 2013]. In particular, we used the method with the ATRBVH

algorithm proposed by Domingues and Pedrini [2015].

We ran our evaluation on a system with Intel Xeon E3-1246

processor and the GeForce GTX 960 graphics card. We used eight

scenes for the measurements. Seven scenes represent architectural

models, and one scene represents a complex object. Our hypothesis

is that the architectural scenes typically contain triangles of more

varying sizes and non-uniform distribution, and thus the potential

impact of the proposed method will be higher for this type of scenes.

�is hypothesis is supported by the fact that SAH build algorithms

typically achieve higher performance improvement on such scenes.

5.1 EMC code layout
Table 1 gives the overview of the tested scenes and shows the actual

layout of the EMC-64-var encoding. We can observe that the 6 size-

bits are injected at every 7-th bit. We can also see that the pre�x of

the code di�ers depending on the shape of the bounding box of the

scene. For example for the Pompeii scene, the �rst 12 spatial splits

are performed in x and z axes, which is the consequence of the �at
structure of this large architectural scene.

5.2 EMC performance
�e results comparing di�erent Morton encoding schemes using

two BVH build algorithms (LBVH, ATRBVH) are summarized in Ta-

ble 2. We used the same build se�ings as in the paper of Domingues

and Pedrini [2015] (triangle intersection cost Ci = 1 and node tra-

versal cost Ct = 1.2) and the same ray traversal algorithm to allow

for more direct comparison of our results with theirs.

From all the possible variants of EMC codes, we chose to com-

pare the standard 64-bit Morton codes (MC-64) with the extended

Morton codes featuring regularly interleaved 16 size bits and sort-

ing of axes (EMC-64-sort), and the extended Morton codes with

variable bit count featuring all our improvements with 6 size bits

(EMC-64-var). We can observe that the quality of the data structures

is improved in the vast majority of cases when using the extended

Morton codes. �e SAH cost improvement ranges from 0% to 52%

with an average of 20% in the case of LBVH, and by -2% to 26% with

the average of 7% in the case of ATRBVH. �e improvements in

ray tracing performance follow closely the improvements in cost.

�e highest speedup can be seen for terrain-like scenes where the

scene bounding box is far from a cubic shape.

From the measurements, we can also observe that the extended

Morton codes do not increase the build time compared to standard

Morton codes. In our implementation, the precomputation of the

LUT for the codes is done on the CPU, but its computation time is

negligible compared to the build time (about 2µs for EMC-64-sort

and 50µs for EMC-64-var in a single thread). �e results con�rm

that the extended Morton codes can signi�cantly improve the per-

formance of the data structures. Interestingly, they not only have a

positive impact on the purely Morton code based LBVH algorithm

but also on the more complex BVH build algorithm such as the

ATRBVH. Although this impact is smaller than for LBVH (which

was expected), it can deliver the highest quality data structures

HPG ’17, July 28-30, 2017, Los Angeles, CA, USA M. Vinkler et al.

Table 1: Properties of the tested scenes and the corresponding extended Morton code layouts for EMC-64-var encoding.

scene triangles norm. bounding box X-bits Y-bits Z-bits S-bits EMC-64-var layout

6666555555555544444444443333333333222222222211111111110000000000

#bit (0-63) 3210987654321098765432109876543210987654321098765432109876543210

sponza 76,154 (1, 0.4756, 0.4480) 20 19 19 6 xxyzxySzxyzxySzxyzxySzxyzxySzxyzxySzxyzxySzxyzxyzxyzxyzxyzxyzxyz

conference 331179 (1, 0.2414, 0.6372) 20 18 20 6 xzxzxySzxyzxySzxyzxySzxyzxySzxyzxySzxyzxySzxyzxyzxyzxyzxyzxyzxyz

sodahall 2,169,132 (0.9556, 1, 0.5483) 19 20 19 6 yxzyxzSyxzyxzSyxzyxzSyxzyxzSyxzyxzSyxzyxzSyxzyxzyxzyxzyxzyxzyxzy

hairball 2,880,000 (0.9908, 1, 0.9963) 19 20 19 6 yzxyzxSyzxyzxSyzxyzxSyzxyzxSyzxyzxSyzxyzxSyzxyzxyzxyzxyzxyzxyzxy

pompeii 5,646,041 (1, 0.0291, 0.9740) 21 16 21 6 xzxzxzSxzxzxzSyxzyxzSyxzyxzSyxzyxzSyxzyxzSyxzyxzyxzyxzyxzyxzyxzy

san-miguel 7,880,512 (1, 0.2170, 0.3907) 20 18 20 6 zxzxzxSyzxyzxSyzxyzxSyzxyzxSyzxyzxSyzxyzxSyzxyzxyzxyzxyzxyzxyzxy

city 8,737,047 (1, 0.0299, 0.7272) 21 16 21 6 xzxzxzSxzxzxySzxyzxySzxyzxySzxyzxySzxyzxySzxyzxyzxyzxyzxyzxyzxyz

powerplant 12,759,246 (1, 0.4073, 0.3038) 20 19 19 6 xxyzxySzxyzxySzxyzxySzxyzxySzxyzxySzxyzxySzxyzxyzxyzxyzxyzxyzxyz

Table 2: Overview of the results of the EMC method evaluated within a GPU ray tracing framework. �e trace performance
was evaluated using di�use ray distribution with 32 secondary rays per primary ray.

sponza conference sodahall hairball pompeii san-miguel city powerplant Avg.

ratio

Scene size 76k 331k 2,169k 2,880k 5,646k 7,880k 8,737k 12,759k –

LBVH - Build Time [ms]

MC-64 5.1 (1.00) 13.0 (1.00) 65.3 (1.00) 88.5 (1.00) 158.5 (1.00) 234.4 (1.00) 261.4 (1.00) 355.3 (1.00) (1.00)

EMC-64-sort 5.2 (1.02) 12.6 (0.97) 64.6 (0.99) 87.6 (0.99) 158.4 (1.00) 225.8 (0.96) 255.6 (0.98) 354.2 (1.00) (0.99)

EMC-64-var 5.1 (1.00) 13.1 (1.01) 64.4 (0.99) 89.9 (1.02) 162.7 (1.03) 232.1 (0.99) 257.7 (0.99) 353.5 (0.99) (1.00)

LBVH - BVH Cost [-]

MC-64 97 (1.00) 65 (1.00) 101 (1.00) 542 (1.00) 180 (1.00) 94 (1.00) 121 (1.00) 49 (1.00) (1.00)

EMC-64-sort 86 (0.88) 50 (0.78) 92 (0.91) 537 (0.99) 150 (0.84) 82 (0.87) 100 (0.83) 44 (0.90) (0.88)

EMC-64-var 93 (0.96) 50 (0.78) 95 (0.94) 541 (1.00) 95 (0.53) 76 (0.82) 58 (0.48) 44 (0.91) (0.80)

LBVH - Trace performance [Mrays/s]

MC-64 75 (1.00) 80 (1.00) 113 (1.00) 7 (1.00) 19 (1.00) 19 (1.00) 30 (1.00) 25 (1.00) (1.00)

EMC-64-sort 76 (1.01) 93 (1.17) 114 (1.01) 7 (1.02) 21 (1.11) 22 (1.12) 36 (1.18) 28 (1.13) (1.09)

EMC-64-var 71 (0.95) 98 (1.23) 112 (0.99) 7 (1.01) 28 (1.47) 23 (1.17) 61 (2.01) 27 (1.09) (1.24)

ATRBVH - Build Time [ms]

MC-64 10.7 (1.00) 31.9 (1.00) 184.3 (1.00) 242.1 (1.00) 478.5 (1.00) 669.3 (1.00) 750.6 (1.00) 1029.0 (1.00) (1.00)

EMC-64-sort 10.8 (1.01) 30.3 (0.95) 185.3 (1.01) 244.1 (1.01) 475.5 (0.99) 665.8 (0.99) 740.7 (0.99) 1023.2 (0.99) (0.99)

EMC-64-var 10.5 (0.97) 32.2 (1.01) 182.9 (0.99) 242.3 (1.00) 479.1 (1.00) 675.0 (1.01) 713.7 (0.95) 1027.2 (1.00) (0.99)

ATRBVH - BVH Cost [-]

MC-64 70 (1.00) 37 (1.00) 72 (1.00) 476 (1.00) 101 (1.00) 60 (1.00) 62 (1.00) 35 (1.00) (1.00)

EMC-64-sort 69 (1.00) 37 (0.98) 72 (1.00) 475 (1.00) 94 (0.93) 61 (1.01) 56 (0.92) 34 (0.98) (0.98)

EMC-64-var 71 (1.02) 36 (0.98) 72 (1.00) 476 (1.00) 76 (0.75) 60 (1.00) 46 (0.74) 34 (0.99) (0.93)

ATRBVH - Trace performance [Mrays/s]

MC-64 97 (1.00) 123 (1.00) 144 (1.00) 7 (1.00) 28 (1.00) 27 (1.00) 57 (1.00) 37 (1.00) (1.00)

EMC-64-sort 100 (1.02) 125 (1.02) 128 (0.89) 7 (1.01) 30 (1.04) 28 (1.02) 61 (1.07) 39 (1.05) (1.01)

EMC-64-var 94 (0.96) 121 (0.98) 148 (1.03) 7 (1.00) 35 (1.23) 28 (1.04) 74 (1.31) 38 (1.03) (1.07)

without increasing the build time. �e best results regarding the

BVH cost were achieved with the 64-bit Morton code that uses all

the modi�cations proposed in the paper (EMC-64-var). �e bene�t

of using fewer bits for the size component (i.e. 6 instead of 16) is

especially evident on the terrain-like scenes, where the geometry

is �nely tessellated and the extra size bits do not help much.

�e 32-bit counterpart of (EMC-64-var) (not shown in Tables)

also performs very well regarding the cost and leads to lower build

times. �erefore the 32-bit EMC is a very good choice for small

EMC for High Performance BVH Construction HPG ’17, July 28-30, 2017, Los Angeles, CA, USA

to medium sized scenes, for approximately 100k triangles (like

sponza).

5.3 In�uence of di�erent optimizations
�e proposed Morton optimizations are not orthogonal and their

combined bene�t is scene dependent. In some cases the optimiza-

tions support each other in other cases one of the optimizations

(e.g. injecting size bits) provides most of the bene�t. We provide a

brief discussion of the in�uence of di�erent components of EMC in

combination with the LBVH algorithm.

�e adaptive axis order and variable bit count provides a sig-

ni�cant BVH cost improvement in large scenes with mostly �at

structure while providing no bene�t in other scenes. In particular,

the adaptive axis order alone decreased the BVH cost by 12% in

the pompeii scene and by 15% in the city scene. �e adaptive axis

order combined with the variable bit count provides further cost

reduction in such scenes (44% for pompeii and 49% for city).

Injecting size bits improved the BVH cost in all tested scenes. �e

cost reduction ranged from 23% for conference to 10% for sodahall.

In most scenes (particularly in those without the �at structure)

injecting size bits was the dominant component of EMC improving

the BVH cost.

�e in�uence of using fewer size bits varies. For 32-bit encoding

this method was bene�cial in majority of cases as it leaves more bits

for spatial sorting within the limited codes size. For 64-bit encoding

it was able to further reduce the cost particularly in combination

with the adaptive axis order. In some scenes (sponza, conference,

powerplant) using fewer size bits led to slightly worse results than

using the �x length encoding of object size. We assume that this is

because the size based subdivision remains under-explored when

using just a few size bits in these scenes.

5.4 Using EMC with other build algorithms
We also veri�ed the EMC behavior with other BVH build algorithms

in an experimental CPU-based ray tracing framework. We tested the

EMC method within CPU implementations of LBVH [Lauterbach

et al. 2009], HLBVH [Garanzha et al. 2011], and AAC [Gu et al.

2013] methods. We also compared the EMC based build algorithms

with respect to full sweep SAH which does not use Morton code

based build and provides a high-quality reference.

On average the EMC-64-var improves the SAH cost by 20% for

LBVH, which is the same result as achieved for the GPU implemen-

tation (Table 2). For the AAC method, the EMC-64-var encoding

improves the BVH cost by 11% on average. Finally, for HLBVH it

improves the BVH cost by 16%.

�e LBVH build algorithm with EMC-64-var encoding leads to

BVH with the cost just 20% higher than the much slower full-sweep

SAH build (taking the average ratio for all tested scenes). Similarly,

the AAC build algorithm yields 3% higher BVH cost and the HLBVH

build algorithm yields 11% higher cost than full-sweep SAH. In a

number of test scenes, the improvement in SAH cost provided by

EMC is actually enough to bridge the gap between the fast build

algorithm (LBVH, AAC, HLBVH) and the full-sweep SAH build

algorithm. �is suggests that most of the overlap between bounding

boxes in a BVH can be prevented already in the precomputation

phase when looking at individual primitives independently.

6 CONCLUSIONS
We proposed a method to extend the Morton code for spatial sorting

of scene primitives. �e extended Morton code allows for improv-

ing the quality of bounding volume hierarchies for ray tracing

constructed using the Morton codes as the primitive sorting step.

In fact, simple highly parallel build algorithms such as LBVH can

then build hierarchies which in terms of quality get closer to the

high-quality methods such as the binned or sweep-based top down

SAH build algorithms. We evaluated the impact of di�erent com-

ponents of the proposed method on two fast BVH build algorithms

(LBVH, ATRBVH) on a GPU and showed that without modifying

the build algorithms themselves, signi�cant improvements in data

structure quality can be achieved. We also evaluated the method in

CPU implementations of high-performance BVH build algorithms

(LBVH, HLBVH, AAC) where the EMC also shows its bene�ts in

most test cases.

In future work, it would be interesting to embed other heuristics

into the bit codes for even higher quality, and to test the other

search algorithms than ray tracing with hierarchies built with the

extended Morton code.

REFERENCES
Ciprian Apetrei. 2014. Fast and Simple Agglomerative LBVH Construction. In Computer

Graphics and Visual Computing (CGVC).
Jiri Bi�ner, Michal Hapala, and Vlastimil Havran. 2013. Fast Insertion-Based Opti-

mization of Bounding Volume Hierarchies. Computer Graphics Forum 32, 1 (2013),

85–100.

Holger Dammertz, Johannes Hanika, and Alexander Keller. 2008. Shallow Bounding

Volume Hierarchies for Fast SIMD Ray Tracing of Incoherent Rays. Computer
Graphics Forum 27 (2008), 1225–1233(9).

Leonardo R. Domingues and Helio Pedrini. 2015. Bounding Volume Hierarchy Opti-

mization through Agglomerative Treelet Restructuring. In Proceedings of the 7th
Conference on High-Performance Graphics. 13–20.

Kirill Garanzha, Jacopo Pantaleoni, and David McAllister. 2011. Simpler and Faster

HLBVH with Work �eues. In Proceedings of Symposium on High Performance
Graphics. 59–64.

Yan Gu, Yong He, Kayvon Fatahalian, and Guy Blelloch. 2013. E�cient BVH Con-

struction via Approximate Agglomerative Clustering. In Proceedings of the 5th
Symposium on High-Performance Graphics. 81–88.

Vlastimil Havran, Robert Herzog, and Hans-Peter Seidel. 2006. On the Fast Construc-

tion of Spatial Data Structures for Ray Tracing. In Proceedings of IEEE Symposium
on Interactive Ray Tracing 2006 (18-20). 71–80.

Tero Karras. 2012. Maximizing Parallelism in the Construction of BVHs, Octrees,

and K-d Trees. In Proceedings of the 4th Symposium on High-Performance Graphics.
33–37.

Tero Karras and Timo Aila. 2013. Fast Parallel Construction of High-quality Bounding

Volume Hierarchies. In Proceedings of the 5th High-Performance Graphics Conference.
89–99.

Andrew Kensler. 2008. Tree Rotations for Improving Bounding Volume Hierarchies.

In Proceedings of the Symposium on Interactive Ray Tracing. 73–76.

Daniel Kopta, �iago Ize, Josef Spjut, Erik Brunvand, Al Davis, and Andrew Kensler.

2012. Fast, E�ective BVH Updates for Animated Scenes. In Proceedings of the
Symposium on Interactive 3D Graphics and Games. 197–204.

Christian Lauterbach, Michael Garland, Shubhabrata Sengupta, David Luebke, and

Dinesh Manocha. 2009. Fast BVH Construction on GPUs. Comput. Graph. Forum
28, 2 (2009), 375–384.

G. M. Morton. 1966. A Computer Oriented Geodetic Data Base; and a New Technique

in File Sequencing. In Research Report, IBM Ltd., O�awa, ON, Canada.

Ulises Olivares, Hector G. Rodriguez, Arturo Garcia, and Felix F. Ramos. 2016. E�cient

construction of bounding volume hierarchies into a complete octree for ray tracing.

Computer Animation & Virtual Worlds 27, 3-4 (2016), 358–368.

Jacopo Pantaleoni and David Luebke. 2010. HLBVH: Hierarchical LBVH Construction

for Real-Time Ray Tracing of Dynamic Geometry. In Proceedings of the Conference
on High Performance Graphics. Eurographics, 87–95.

Hanan Samet. 2005. Foundations of Multidimensional and Metric Data Structures (�e
Morgan Kaufmann Series in Computer Graphics and Geometric Modeling). Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA.

Ingo Wald. 2007. On Fast Construction of SAH-based Bounding Volume Hierarchies.

In Proceedings of the Symposium on Interactive Ray Tracing. 33–40.

HPG ’17, July 28-30, 2017, Los Angeles, CA, USA M. Vinkler et al.

Ingo Wald, Sven Woop, Carsten Benthin, Gregory S. Johnson, and Manfred Ernst. 2014.

Embree: A Kernel Framework for E�cient CPU Ray Tracing. ACM Trans. Graph.
33, 4, Article 143 (2014), 8 pages.

Bruce Walter, Kavita Bala, Milind Kulkarni, and Keshav Pingali. 2008. Fast Agglomera-

tive Clustering for Rendering. In IEEE Symposium on Interactive Ray Tracing (RT).
81–86.

Dominik Wodniok and Michael Goesele. 2017. Construction of bounding volume

hierarchies with SAH cost approximation on temporary subtrees. Computers &
Graphics 62 (2017), 41 – 52.

ACKNOWLEDGMENTS
�is research was supported by SAMSUNG Electronics Co., Ltd.,

under the project ”Fast BVH Tree Build for Dynamic Ray Trac-

ing on Mobile Environment”. We would also like to acknowledge

the contributors of the scenes used in our measurements. Marko

Dabrovic for the Sponza model, Greg Ward for the Conference

model, Prof. Carlo Séquin for the Sodahall model, Samuli Laine and

Tero Karras for the Hairball model, Guillermo M. Leal Llaguno for

the San Miguel model, and the University of North Carolina for the

Power Plant model. Finally we would like to thank Tero Karras,

Timo Aila, and Samuli Laine as well as Leonardo R. Domingues and

Helio Pedrini for releasing their GPU ray tracing frameworks to

public.

	Abstract
	1 Introduction
	2 Related Work
	2.1 CPU based algorithms
	2.2 GPU based algorithms

	3 Morton Code based Spatial Sorting
	3.1 Morton codes in 3D
	3.2 Constructing BVH using Morton Codes

	4 Extended Morton Codes
	4.1 Encoding object size
	4.2 Using fewer size bits
	4.3 Adaptive axis order
	4.4 Variable bit count
	4.5 Implementation

	5 Results
	5.1 EMC code layout
	5.2 EMC performance
	5.3 Influence of different optimizations
	5.4 Using EMC with other build algorithms

	6 Conclusions
	References
	Acknowledgments

