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Parallel BVH Construction using k-means Clustering

Daniel Meister · Jǐŕı Bittner

Abstract We propose a novel method for fast paral-

lel construction of bounding volume hierarchies (BVH)

on the GPU. Our method is based on a combination

of divisible and agglomerative clustering. We use the

k-means algorithm to subdivide scene primitives into

clusters. From these clusters we construct treelets using

the agglomerative clustering algorithm. Applying this

procedure recursively we construct the entire bounding

volume hierarchy. We implemented the method using

parallel programming concepts on the GPU. The re-

sults show the versatility of the method: it can be used

to construct medium quality hierarchies very quickly,

but also it can be used to construct high quality hier-

archies given a slightly longer computational times. We

evaluate the method in the context of GPU ray tracing

and show that it provides results comparable with other

state-of-the-art GPU techniques for BVH construction.
We also believe that our approach based on the k-means

algorithm gives a new insight on how bounding volume

hierarchies can be constructed.

Keywords Ray Tracing · Object Hierarchies ·
Three-Dimensional Graphics and Realism

1 Introduction

Spatial data structures such as octrees, kD-trees, or

bounding volume hierarchies play an important role in

computer graphics as they help to handle the ever in-

creasing scene complexity. The bounding volume hierar-
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chies (BVH), which we address in the paper, have been

shown to accelerate a number of intersection queries,

particularly in the context of collision detection and ray

tracing. The BVH is a hierarchical object partitioning

and thus it has a predictable memory footprint (every

primitive is referenced exactly once in the data struc-

ture) and can handle dynamic scenes by refitting, i.e.

a simple adaptation of the bounding volumes keeping

the same hierarchy topology.

The BVH can be constructed by partitioning the

set of scene objects recursively: when constructing a bi-

nary BVH we split the current set of objects into two

groups according to certain rules and continue the pro-

cess until we reach termination criteria. The rule used

to partition the objects can have a significant impact

on the efficiency of the constructed BVH for a partic-
ular application. In the context of ray tracing the sur-

face area heuristic [14] is commonly used to optimize

the object partitioning. Another approach is to con-

struct the BVH from bottom to top by agglomerative

clustering [35]. While this approach can lead to higher

quality trees (measured using SAH cost [14]), it also

requires much higher computational effort. Recently,

Gu et al. [15] proposed a method that combines top-

down construction with local agglomerative clustering.

A viable alternative for the GPU construction of high

quality BVHs are the techniques that first construct

the BVH using a fast Morton code based algorithm

and then perform treelet restructuring to optimize its

topology [22,9]. These methods allow trading quality

for performance and can be tuned for a desired BVH

quality.

We propose a new technique for massively parallel

GPU based BVH construction that gives novel ideas

into the field of BVH construction. In our approach we

use the well-known k-means clustering [28] as a basis
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for the BVH construction. By using the k-means clus-

tering the top-down phase of our algorithm can already

compute high quality clusters which allows us to use

a simple bottom-up merging procedure and in turn to

implement the whole method on the GPU.

Our paper aims at the following contributions: (1)

according to our knowledge we are the first to apply

the k-means clustering in the context of BVH construc-

tion for ray tracing, (2) our method provides a flexible

means to trade BVH quality for construction speed, (3)

we show that the results of the method are comparable

with the latest GPU BVH builders that use already es-

tablished methods such as Morton code based primitive

sorting.

2 Related Work

BVH Bounding volume hierarchy is one of the most

common acceleration data structures in the context of

ray tracing. Already in the early 80s Rubin and Whit-

ted [31] used a manually created BVH, while Weghorst

et al. [36] proposed to build the BVH using the model-

ing hierarchy. The very first BVH construction algo-

rithm using spatial median splits was introduced by

Kay and Kajiya [23]. Goldsmith and Salmon [14] pro-

posed a cost function known as the surface are heuristic

(SAH). This function can be used to estimate the effi-

ciency of a BVH during its construction and thus most

state of the art BVH builders are based on SAH. The

BVH construction methods require sorting and thus

generally exhibit O(n log n) complexity (n is the num-

ber of scene triangles). Several techniques have been

proposed to reduce the constants behind the asymp-

totic complexity. For example Havran et al. [16], Wald

et al. [33], and Ize et al. [19] used approximate SAH cost

function evaluation based on binning. Hunt et al. [18]

suggested to use the structure of the scene graph to

speed up the BVH construction process. Dammertz et

al. [7] proposed to use BVHs with a higher branching

factor to better exploit SIMD units in modern CPUs.

High quality BVH Recently more interest has been

devoted to methods, which are not limited to the top-

down BVH construction. Walter et al. [35] proposed to

use bottom-up agglomerative clustering for construct-

ing a high quality BVH. Gu et al. [15] proposed a par-

allel approximative agglomerative clustering for accel-

erating the bottom-up BVH construction. Kensler [24],

Bittner et al. [5], and Karras and Aila [22] proposed

to optimize the BVH by performing topological modi-

fications of the existing hierarchy. Recently Ganestam

et al. [12] introduced the Bonsai method performing a

two level SAH based BVH build on a multi-core CPU.

These approaches allow to decrease the expected cost of

a BVH beyond the cost achieved by the traditional top-

down approach. Several extensions of the basic SAH

have also been proposed to increase the BVH perfor-

mance for specific applications. Hunt [17] proposed cor-

rections of SAH with respect to mailboxing. Fabianowski

et al. [10] proposed SAH modification for handling scene

interior ray origins. Bittner and Havran [6] proposed to

modify SAH by including the actual ray distribution,

Feltman et al. [11] extended this idea to shadow rays.

Corrections of the SAH based BVH quality metrics have

been proposed by Aila et al. [1].

Parallel BVH construction Recently both multi-

core CPUs and many-core GPU construction methods

of BVHs have been investigated. Lauterbach et al. [26]

proposed a GPU method known as LBVH, which is

based on the Morton curve and spatial median splits.

Wald [34] studied the possibility of fast rebuilds from

scratch on an Intel architecture with many cores. Panta-

leoni and Luebke [30], Garanzha et al. [13], Karras [21],

Vinkler et al. [32], and Domingues and Pedrini [9] pro-

posed methods for parallel BVH construction that achieve

impressive performance on the recent GPUs. The method

of Karras [21], which was further improved by Ape-

trei [3] is considered a fastest available BVH builder

on the GPU, but it generally builds trees of slightly

lower quality. A good balance between the build time

and tree quality can be achieved by the combination of

a fast BVH build and subsequent treelet optimization

on the GPU as proposed by Karras and Aila [22] and

further optimized by Domingues and Pedrini [9]. We

use LBVH [21], HLBVH [13], ATRBVH [9], and the

AAC [15] methods as references for our comparisons.

The paper is further organized as follows: Section 3

describes the overview of our method, Section 4 de-

scribes the main components of the proposed method,

Section 5 gives details about the GPU implementation,

Section 6 provides the results and evaluation, and fi-

nally Section 7 concludes the paper.

3 Method Overview

We first introduce the basics of hierarchical clustering

and then we give an outline of the proposed algorithm

by describing its elementary steps.

3.1 Hierarchical Clustering

Hierarchical clustering is a well-known approach in pat-

tern recognition, image analysis, and bioinformatics.

Given an n-element set X = {x1, . . . ,xn} and a dis-

tance function d such that d(xi,xj) > 0 for i 6= j
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and d(xi,xj) = 0 for i = j, we construct a tree T =

{L1, . . . ,Lm} such that

– Li is a partition of X for i ∈ {1, . . . ,m},
– Li is a proper refinement of Li+1 for i ∈ {1, . . . ,m−

1},
– L1 = {{x1}, . . . , {xn}},
– Lm = {{x1, . . . ,xn}}.

The goal is to minimize the objective function∑
Lk∈T

∑
Ci∈Lk

∑
xj∈Ci

d(Ci,xj),

where Ci denotes the mean of cluster Ci. Unfortunately

the hierarchical clustering problem is NP-hard [25]. How-

ever there are greedy heuristics which work quite well

in practice [20]. The main hierarchical clustering strate-

gies include top-down hierarchy construction (divisible

clustering) or bottom-up construction (agglomerative

clustering).

One of the most popular divisible clustering algo-

rithm is the k-means algorithm [28,27]. Initially k clus-

ter representatives are chosen. The common practice is

to draw the representatives randomly from X . However

there are more sophisticated approaches how to choose

the representatives, e.g. k-means++ [4]. The k-means al-

gorithm works iteratively by assigning elements x ∈ X
to the cluster representatives and thus forming the clus-

ters. First, each element x ∈ X is assigned to the near-

est representative. Second, the cluster representatives

are replaced by the mean of all elements forming the

cluster. This procedure is repeated until the maximum

number of iterations is reached. The cluster hierarchy

is constructed by applying the k-means algorithm re-

cursively.

Another popular hierarchical clustering method is

agglomerative clustering [35]. The agglomerative clus-

tering starts with level L1 and iteratively constructs

higher levels. In each step algorithm finds two nearest

clusters among the sibling nodes according to the func-

tion d. Then both clusters are merged together. This

procedure is repeated until Lm is constructed.

3.2 Algorithm Outline

Our algorithm constructs the BVH by a combination

of divisible and agglomerative hierarchical clustering.

First we associate all scene primitives with the root

node of the BVH. This root node is then subdivided

into k clusters using the k-means algorithm. We use a

data parallel approach so even at the top of the hierar-

chy the k-means clustering can be efficiently executed

on the GPU. The k-means algorithm is then applied on

all nodes resulting from the previous k-means execu-

tion that do not fulfill a termination criterion (number

of triangles per node). Thus we build one level of a k-

ary BVH at each step of the algorithm. In most cases

ray tracers are optimized for BVHs with low branch-

ing factors such 2 or 4. Thus we postprocess the result-

ing BVH by performing agglomerative clustering within

each node of the k-ary BVH. This step expands each

interior node of the k-ary BVH to a treelet in a result-

ing binary BVH. The agglomerative clustering step is

limited to the k children of each input BVH node and

thus can be applied in parallel on all BVH nodes. The

main steps of the algorithm are illustrated in Figure 1.
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Fig. 1 Illustration of the proposed algorithm. First we use
the k-means algorithm to build a k-ary BVH by sorting node
primitives to clusters (blue nodes). Then we use the agglom-
erative clustering algorithm to build the intermediate levels
of the output binary BVH (green nodes). Although depicted
as a complete n-ary tree, the BVH need not be balanced in
general.

4 BVH Construction using k-means with

Agglomerative Clustering

In this section we first describe how to use the k-means

algorithm to build a k-ary BVH. Then we describe how

to apply agglomerative clustering to convert the k-ary

BVH to a binary BVH commonly used for ray tracing.

4.1 k-means for BVH

The k-means algorithm needs a definition of the dis-

tance function d used for distributing the primitives to
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the clusters. We assume that the bounding volumes as-

sociated with BVH nodes correspond to axis aligned

bounding boxes. A bounding box b is defined by two

extreme points bmin and bmax representing the mini-

mal and maximal coordinates of all points enclosed by b

in all three axes. Given two bounding boxes b1 and b2,

we define the distance function d as a sum of squared

Euclidean distances between the extreme points of b1

and b2:

d(b1,b2) = ||bmin
1 − bmin

2 ||2 + ||bmax
1 − bmax

2 ||2. (1)

The distance function thus corresponds to a squared

Euclidean distance in R6 when considering the pair of

extreme points of a given bounding box as a point in R6.

We tried other distance functions including the well-

known Manhattan and Chebyshev metrics. We also ex-

perimented with distance functions taking into account

various spatial relations of bounding boxes, e.g. the sur-

face area of union of bounding boxes [35]. However, the

described distance function provided the most stable re-

sults with respect to the final BVH quality. Note, that

this corresponds to what is known about k-means: they

perform well for hierarchical clustering with Euclidean

metrics, but need not converge with other distance met-

rics [8].

In the k-means algorithm we first have to initialize

the cluster representatives. We use a simple heuristic to

draw the initial representatives from bounding boxes of

scene primitives. The first representative is drawn ran-

domly. The i-th representative is determined by ran-

domly drawing p candidates and choosing the one max-

imizing the distance to the nearest already determined

representative. We have also tested the k-means++ [4],

which however shown to be too slow for our purposes.

At the core of the k-means algorithm we first as-

sign each scene primitive to the nearest representative

according to the function d. Then we update the rep-

resentatives. The new representative ri associated with

the cluster Ci is the mean of bounding boxes in cluster

Ci computed as

rt+1
i = Cti =

1

|Cti |
(
∑

bj∈Ct
i

bmin
j ,

∑
bj∈Ct

i

bmax
j ). (2)

The assignment to the nearest cluster and the clus-

ter update are performed iteratively, where the number

of iterations is a parameter of the method. Therefore we

also refer to this part of the algorithm as the k-means

loop. The whole k-ary tree is constructed by applying

this procedure recursively, while each level of the tree

may be processed in parallel. Note that the number of

iterations in the k-means loop may be set to zero, in

which case we just assign scene primitives to the ini-

tial representatives and do not update this assignment

any further. An illustration of the results of the k-means

clustering and the corresponding cluster representatives

is shown in Figure 2.

Fig. 2 Example of the results of k-means clustering (k = 8)
for the first three passes of the algorithm using five k-means
iterations. Triangles belonging to different clusters are shown
in different colors. Cluster representatives are shown as axis
aligned boxes in green.

4.2 Agglomerative Clustering

We use agglomerative clustering to build the intermedi-

ate levels of the tree. As we use relatively small values

of k (8, 16, 32, or 64) a näıve agglomerative cluster-

ing considering all pairs of clusters provides a sufficient

performance. The implementation of the näıve agglom-

erative clustering is simple and requires no additional
data to be kept or preprocessed. In this phase of the

algorithm we use the surface area of the merged cluster

as a distance function between two clusters as proposed

by Walter et al. [35]. The main advantage of this ap-

proach compared to previous techniques is that as we

already have a k-ary BVH available we can process all

treelets in parallel.

5 GPU Implementation

We implemented our BVH construction algorithm in

CUDA [29]. We use a queue system proposed by Garanzha

et al. [13]. The input queue is used for handling unpro-

cessed tasks and the output queue is used for generating

new tasks. At the beginning the input queue contains

only one task corresponding to the root of the hierar-

chy and all triangles are assigned to this task. Each

task may produce up to k new tasks using the k-means

algorithm. Threads process data corresponding either
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to tasks or to triangles in parallel. Each task is associ-

ated with a continuous segment in the triangle indices

array. We also use an auxiliary array storing an index

of the corresponding task for each triangle. Thus we

can map triangle to task and vice versa. The overview

of the complete algorithm is shown in Figure 3. In the

remainder of this section we provide details about the

individual steps of the implementation of the proposed

algorithm.
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Fig. 3 Overview of the algorithm. White rectangles repre-
sent kernel launches.

Initialization The algorithm starts by computing

bounding boxes and indices of triangles. Then the al-

gorithm enters the main loop depicted in Figure 3.

k-means initialization We use two (input and out-

put) arrays to store the cluster representatives. The

very first kernel implements the previously described

heuristic initializing the representatives. We use a sim-

ple linear congruential generator to draw representative

candidates.

k-means loop The k-means loop consists of three

kernels. The first kernel resets the cluster representa-

tives by setting the output array to zeros. The second

kernel assigns triangles to the nearest representative.

Each triangle is processed by a single thread in par-

allel. This thread finds the nearest input representa-

tive, atomically increments the corresponding triangle

counter and atomically adds the extremes of the tri-

angle bounding box to the corresponding output repre-

sentative. For higher k it may happen that some cluster

representatives are equal. If this happens the triangles

might be assigned to just one of these representatives.

As a consequence empty nodes may occur that corre-

spond to the other representative to which no triangle

has been assigned. Thus during the triangle assignment

we use a simple rule based on triangle indices to ensure

that at least two clusters are not empty even when all

representatives are the same. At the end of the k-means

loop iteration the third kernel normalizes the represen-

tatives by dividing the output representatives by the

corresponding triangle counters. At the end of the iter-

ation the input and output representatives are swapped.

Cluster size computation Before creating new tasks

corresponding to the new clusters we have to determine

cluster sizes. We run a very similar kernel to the one

that we used for assigning triangles in the k-means loop.

For each triangle we determine the nearest representa-

tive and atomically increment the corresponding trian-

gle counter. To avoid redundant computations we store

an index of the nearest representative in an auxiliary

array.

Task creation When we know the number of tri-

angles in each cluster, we can create new tasks. Let m
denote the maximum leaf size. If the cluster contains

less than m triangles, it is marked as leaf, otherwise it

is handled as a new interior node and a corresponding

new task is created. If the interior node contains less

than mk triangles and k > 2 the task is put to the aux-

iliary leaf queue that handles the treelets at the bottom

of the tree. Otherwise the new task is put to the out-

put queue. We use the approach proposed Garanzha et

al. [13] to determine the positions of new task in the

output queue. Threads compute the number of output

tasks and then a warp-wide prefix scan is performed.

The first thread within the warp atomically adds the

number of output tasks to the global counter. Atomic

addition returns the original value of the counter which

is the offset for threads within the warp. We also per-

form (sequential) exclusive prefix scan on the cluster

counters for each task.

Triangle indices reordering Each triangle is pro-

cessed by a single thread in parallel. The thread deter-
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mines the nearest representative using the index stored

in the previous phase. Then it determines the position

of the triangle index by atomically incrementing the

prefix scan value of the corresponding cluster counter

taking into account also the parent node offset. The

thread also assigns to the triangle the index of the cor-

responding task. If a triangle belongs to a leaf then the

index is set to a special negative constant value. If the

corresponding task was put to the leaf queue then we

use bitwise negation to distinguish triangles belonging

either to active or leaf tasks. At the end of the iteration

input and output queues are swapped. This procedure

is repeated until the output queue is empty.

Bounding boxes computation We compute bound-

ing boxes of the k-ary BVH using a simple bottom-up

refit procedure. If the current loop of the algorithm has

been executed with k = 2 the loop is terminated and

the postprocessing is applied.

Agglomerative clustering To transform k-ary BVH

to binary BVH we build intermediate levels of the tree

using näıve agglomerative clustering. This can be done

in a single kernel launch. Each node of the k-ary BVH

is processed by a single thread. We store treelet node

indices in the local memory. In each step two nodes min-

imizing their unified surface area are merged together

using a new parent node. The index of the first merged

node is replaced by the parent node index and the in-

dex of the second merged node is replaced by the last

node index. This preserves continuity of the indices ar-

ray. This procedure is repeated until the whole treelet

is constructed.

Leaf refinement The leaf queue consists of nodes

which contain less than mk triangles (m is the maxi-

mum number of triangles per leaf). Splitting these into

k clusters could create leaf nodes with very small num-

ber of triangles or even empty leaves. Therefore we post-

pone subdividing these nodes to an additional pass us-

ing k = 2. In this pass the task indices of triangles

belonging to nodes in the leaf queue have to be acti-

vated. This concerns all triangles with negative task in-

dex except those with a special negative constant value

used to mark triangles contained in the already finalized

leaves. We use a simple kernel applying bitwise negation

to negative task indices to get the original task index

value for each such triangle. Then we swap the input

queue and the leaf queue. We set k to 2 and we repeat

the whole procedure again.

Postprocessing In post processing we run an addi-

tional kernel that copies the BVH into a new BVH with

nodes allocated in the breadth-first order which is more

efficient for ray tracing. Additionally, in this pass the

empty leaves (if any) are removed from the BVH.

Note that we used the following optimization in our

code: as the CUDA floating point atomic operations

are rather slow we use fixed point coordinates and inte-

ger atomic add operation. We pre-multiply normalized

coordinates by the maximum integer value divided by

the number of triangles belonging to the correspond-

ing node to ensure that the sums computed during the

k-means loop do not overflow.

6 Results and Discussion

We have evaluated the proposed method using nine test

scenes of different complexity. We used five different pa-

rameter settings that represent different goals in terms

of the quality of the constructed BVH. The parameters

of our method are: the number of clusters generated in

one step of the k-means algorithm (k), the number of

draws of initial representatives (p), and the number of

iterations of the k-means algorithm (i). The selected

five parameter sets are:

– k-means Q1: k = 8, p = 5, i = 0,

– k-means Q2: k = 8, p = 5, i = 2,

– k-means Q3: k = 16, p = 5, i = 5,

– k-means Q4: k = 32, p = 20, i = 10.

– k-means Q5: k = 64, p = 30, i = 15.

As reference methods we used a full sweep SAH

CPU builder implemented in C++ sequential code, the

LBVH builder proposed by Karras [21], the HLBVH

builder proposed by Garanzha et al. [13], and the ATR-

BVH builder proposed by Domingues [9]. For LBVH as

well as HLBVH we used 60-bit Morton codes, HLBVH
used 15 bits for the SAH based top-tree construction.

For ATRBVH we used the publicly available implemen-

tation of treelet restructuring, using treelets of size 9

and 2 iterations.

We assume that the build time of SAH method is

0 which in turn gives us idealized time-to-image results

using the full sweep SAH. In all cases the BVH termi-

nation criterion was set to 8 triangles per leaf. We eval-

uated the constructed BVH using a high performance

ray tracing kernel of Aila et al. [2]. All measurements

were performed on a PC equipped with Intel Core I7-

3770 3.4 GHz, 16 GB RAM and GTX TITAN Black

with 6 GB RAM.

The results are summarized in Table 1. For each

method we report the SAH cost of the constructed BVH

(using traversal and intersection constants cT = 3 and

cI = 2), the average trace speed, the build time, and

the time-to-image (total time) for two different appli-

cation scenarios (the sum of kernel times is used). The

first time-to-image measurement corresponds to path
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tracing with 8 samples per pixel, the second measure-

ment corresponds to 128 samples per pixel, both use

1024x768 image resolution. Our path tracing implemen-

tation uses next event estimation with two light source

samples per hit and Russian roulette for path termina-

tion. The reported times are an average of three differ-

ent representative camera views to reduce the influence

of view dependency.

BVH quality From Table 1 we can observe that the

ATRBVH method provides the lowest BVH cost for

all test scenes. However, regarding the trace speed the

best performance was achieved by ATRBVH for 3 test

scenes, while in other 6 cases the k-means based meth-

ods achieved the highest trace speed. While this can

partly be caused by the view dependency of the mea-

surements it also corresponds to recent observation of

Aila et al. [1] that the SAH cost alone need not precisely

reflect the trace speeds on the GPU.

Build time The results show that the LBVH method

is the fastest in all test scenes. However the k-means

Q1 has build times relatively close to LBVH while pro-

viding better trace speed in 6 test scenes. The build

times of our method significantly depend on the pa-

rameter settings. The k-means Q1 is more than an or-

der of magnitude faster than the k-means Q5 method.

Compared to ATRBVH, the k-means Q1 is about 3x

faster in all tests, while the ATRBVH build time is be-

tween the times of the k-means Q2 and Q3 methods.

On smaller scenes k-means Q1 is up to 4x faster than

HLBVH, however for larger scenes (San Miguel, Power

Plant) it becomes about 15-30% slower. This shows that

the overhead per one input primitive is larger for our

method than for HLBVH which uses global presorting

of all primitives using Morton codes. However as our

method is able to construct higher quality BVHs than

HLBVH, the longer construction time can be amortized

even in these more complex scenes.

Time-to-image Regarding the total time for lower

number of path tracing rays the best times have been

achieved by the LBVH (2 scenes), HLBVH (1 scene),

ATRBVH (3 scenes), and k-means (3 scenes). Regard-

ing the total time for higher number of rays the best

times have been achieved by the ATRBVH (7 scenes)

and k-means (2 scenes). These results indicate that the

ATRBVH method seems to be the currently best choice

for general usage, while the k-means based methods

can provide slightly better performance for some scenes

when setting up correct parameters. A visual compar-

ison of the BVH cost and time-to-image for all tested

scenes is given in Figure 4, where we show the results

relative to the results of the idealized SAH method (full

sweep SAH with 0 build time).

k-means Q1 k-means Q2 k-means Q3
k-means Q4 k-means Q5 SAH

LBVH HLBVH ATRBVH
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Fig. 4 Plots of the total time and SAH costs for all tested
scenes. The depicted values are normalized with the respect
to the idealized SAH method.

Method parameters We have extensively evalu-

ated the dependence of the proposed method on its pa-

rameters by performing measurements for 88 parameter

combinations. We used k ∈ {8, 16, 32, 64}, i in the range

from 0 to 15, and p in the range from 5 to 30. From these

measurements we selected 5 representative parameter

settings that give a good overview of the behavior of

the method (Q1-Q5 shown in Table 1). We have ex-

plicitly evaluated the dependence of the method on the

number of k-means iterations used (see Figure 5). These

results illustrate that particularly the first two k-means

iterations are important and using more iterations does
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not really bring a benefit especially considering the cor-

responding linear increase in build times.
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Fig. 5 Plots of the build time and SAH cost for the Power
Plant scene showing the dependence on the number of iter-
ations. We used four configurations: R1 (k = 8, p = 5), R2

(k = 16, p = 5), R3 (k = 32, p = 20) and R4 (k = 64, p = 30).

We have also measured the times required for dif-

ferent parts of our method using GPU timers (see Fig-

ure 6). We can observe that in all cases more than

half of the build time is spent in the internal loop of

the k-means algorithm in which the triangles are as-

signed to clusters and new cluster representatives are

computed. Thus further optimizing this part of the al-

gorithm might bring significant performance gains.
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Fig. 6 Kernel times of different phases of the BVH construc-
tion for the Power Plant scene for the tested configurations.

Comparison with the AAC Although our method

is primarily targeted at the GPU implementation we

provide a brief comparison with respect to the state-of-

the-art CPU BVH construction algorithm, namely the

Approximate Agglomerative Clustering (AAC) method

proposed by Gu et al. [15]. For the comparison we used

the publicly available implementation of AAC provided

by the authors of the method in the proposed Fast

and HQ settings. This implementation is sequential and

thus to get a more realistic picture about the perfor-

mance of the method on a multi-core CPU we divided

the AAC running times by the number of physical cores

in the testing PC (i.e. by 4) to get a lower-bound of par-

allel running times.

The AAC-Fast is about 2-4 times slower than k-

means Q1 for the tested scenes (e.g. 956ms vs 274ms for

the Power Plant scene), but leads to 10%-40% better

SAH costs. The exception is the Power Plant scene for

which the AAC implementation constructs BVHs with

significantly worse cost than the k-means based meth-

ods (198 for AAC-Fast and 144 for AAC-HQ versus

115 for k-means Q1 and 90 for k-means Q5). The build

times of AAC-HQ roughly correspond to build times of

k-means Q5, while the achieved SAH cost is 0.5%-10%

better for the AAC (except for the Power Plant scene).

These results indicate that our method is on pair with

the state-of-the-art CPU builder and thus the choice

of the method in practice should be motivated by the

target platform and given application scenario.

7 Conclusion and Future Work

We proposed a new BVH construction method based

on a combination of the top-down divisive clustering

using the k-means algorithm and a bottom-up agglom-

erative clustering. The method uses several parameters

which can be used to trade the quality of the con-

structed BVH for the construction speed. We described

a parallel implementation of the method using CUDA.

The results show that in a number of test cases the

proposed method compares favorably to the HLBVH

method. Compared to the more recent ATRBVH which

represents a state of the art technique among GPU

BVH builders our method is usually slightly worse than

ATRBVH, but still leads to better results in several of

the test cases. We expect that the k-means loop of our

method can be further optimized and thus become even

more competitive.

Since our method can directly build BVH with dif-

ferent branching factors, we believe that it can be used

as a powerful tool opening new possibilities for the GPU

based BVH construction. We also plan to further in-

vestigate other metrics for the k-means clustering algo-
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rithm, which might better reflect the axis aligned shape

of the bounding volumes used for the constructed clus-

ters. Further, we plan to investigate the possibility of

incorporating the prediction of object movement in the

clustering metric to construct a BVH optimized for sev-

eral frames.
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Sponza Sibenik Crytek Sponza
#triangles #triangles #triangles
66k 75k 262k

SAH trace build total total SAH trace build total total SAH trace build total total
cost speed time time1 time2 cost speed time time1 time2 cost speed time time1 time2

[-] [MRays/s] [ms] [ms] [ms] [-] [MRays/s] [ms] [ms] [ms] [-] [MRays/s] [ms] [ms] [ms]
SAH 216 211 - 141 2225 147 199 - 176 2792 213 162 - 166 2660
LBVH 264 189 1.8 154 2429 192 175 2.1 202 3197 279 140 4.8 189 2944
HLBVH 219 206 11.7 154 2292 156 192 12.3 193 2911 225 155 14.1 186 2764
ATRBVH 180 223 5.4 139 2130 138 209 6.0 171 2663 180 175 16.6 167 2418
k-means Q1 229 200 2.7 148 2341 177 184 3.0 187 2957 251 133 5.7 201 3248
k-means Q2 211 212 4.2 139 2196 165 190 4.5 183 2888 222 154 10.2 180 2776
k-means Q3 203 212 9.0 143 2191 158 190 9.3 189 2895 211 154 17.8 190 2805
k-means Q4 198 224 30.1 162 2121 150 201 33.7 205 2756 203 150 60.2 237 2920
k-means Q5 195 216 111 244 2238 147 199 117 291 2899 192 177 260 408 2604

Conference Happy Buddha Soda Hall
#triangles #triangles #triangles
331k 1087k 2169k

SAH trace build total total SAH trace build total total SAH trace build total total
cost speed time time1 time2 cost speed time time1 time2 cost speed time time1 time2

[-] [MRays/s] [ms] [ms] [ms] [-] [MRays/s] [ms] [ms] [ms] [-] [MRays/s] [ms] [ms] [ms]
SAH 120 223 - 214 3425 168 109 - 118 1834 219 205 - 108 1644
LBVH 159 192 5.8 251 3947 216 96 18.9 151 2111 270 189 34.2 146 1821
HLBVH 135 212 13.5 242 3679 198 97 26.4 155 2076 237 197 43.2 151 1766
ATRBVH 93 239 20.4 221 3223 180 105 67.1 187 1961 180 213 129 228 1716
k-means Q1 131 220 6.8 230 3586 227 97 21.7 150 2080 280 180 39.0 156 1920
k-means Q2 115 231 12.3 215 3403 213 102 36.7 160 2008 250 190 69.2 179 1832
k-means Q3 102 240 22.4 222 3299 207 100 61.3 186 2062 228 195 125 232 1847
k-means Q4 101 240 75.0 275 3302 207 98 147 275 2184 213 191 285 397 2056
k-means Q5 96 240 282 484 3525 195 106 406 524 2285 207 203 665 770 2333

Hairball San Miguel Power Plant
#triangles #triangles #triangles
2880k 7880k 12759k

SAH trace build total total SAH trace build total total SAH trace build total total
cost speed time time1 time2 cost speed time time1 time2 cost speed time time1 time2

[-] [MRays/s] [ms] [ms] [ms] [-] [MRays/s] [ms] [ms] [ms] [-] [MRays/s] [ms] [ms] [ms]
SAH 1257 48 - 329 4962 171 116 - 267 4056 108 70 - 420 6605
LBVH 1290 45 46.1 376 5322 264 81 129 479 5803 132 61 200 682 8043
HLBVH 1284 45 54.6 381 5291 204 96 142 443 4993 120 65 214 670 7611
ATRBVH 1098 51 165 456 4844 150 119 483 728 4439 84 69 731 1151 7575
k-means Q1 1324 38 52.7 444 6501 264 90 163 473 5333 115 60 274 721 8195
k-means Q2 1227 42 90.0 447 5946 226 104 302 576 4720 105 62 518 981 8132
k-means Q3 1197 41 169 529 6029 201 108 551 820 4905 98 72 927 1326 7382
k-means Q4 1170 44 427 762 5860 187 120 1189 1429 5058 92 67 2010 2467 9406
k-means Q5 1144 42 707 1052 6381 173 114 2522 2778 6602 90 66 3782 4203 10786

Table 1 Performance comparison of tested methods. We used five configurations: Q1 (k = 8, p = 5, i = 0), Q2 (k = 8, p = 5,
i = 2), Q3 (k = 16, p = 5, i = 5), Q4 (k = 32, p = 20, i = 10) and Q5 (k = 64, p = 30, i = 15). The reported numbers are
averaged over three different viewpoints for each scene. The best results are highlighted in bold. For computing the SAH cost
we used cT = 3 and cI = 2.
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