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Abstract

We propose a new method for incremental construction of Bounding Volume Hierarchies (BVH). Despite the wide belief that the
incremental construction of BVH is inefficient we show that our method incrementally constructs a BVH with quality comparable
to the best SAH builders. We illustrate the versatility of the proposed method using a flexible parallelization scheme that opens
new possibilities for combining different BVH construction heuristics. We demonstrate the usage of the method in a proof-of-
concept application for real-time preview of data streamed over the network. We believe that our method will renew the interest
in incremental BVH construction and it will find its applications in ray tracing based remote visualizations and fast previews or in
interactive scene editing applications handling very large data sets.
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1. Introduction1

Interactive ray tracing becomes an increasingly popular al-2

ternative to rasterization mainly because ray tracing based algo-3

rithms allow computing accurate global illumination and thus4

achieving high degree of realism. One of the main obstacles5

for their interactive usage is the necessity to organize the scene6

in an acceleration data structure in order to efficiently compute7

the ray-object intersection queries. The most commonly used8

methods involve spatial subdivisions (uniform grids, octrees,9

kd-trees) and bounding volume hierarchies (BVH). In particular10

BVHs became a vivid choice for many recent implementations11

as they have predictable memory footprint, allow relatively easy12

dynamic updates, and perform well in GPU ray tracing imple-13

mentations [1].14

Practically all currently used BVH build methods require15

that the whole scene is known in advance. While this is of-16

ten the case, there are also applications, in which accessing the17

scene data takes significant amount of time. Waiting for all the18

data to be present in memory introduces significant latency in19

the whole rendering process. Another use case when the whole20

scene is not known in advance is for example an interactive21

modeling session of complex data assemblies for which high22

quality preview is required. A natural solution in these appli-23

cations could be an incremental BVH construction, which in-24

serts pieces of the scene geometry into the BVH as soon as they25

become available. It is however widely believed that the in-26

cremental BVH construction is inefficient particularly in terms27

of ray tracing performance of the resulting BVH. In this pa-28

per we show that using a careful optimization of the incremen-29

tal BVH construction combined with global structural updates30

leads to efficient BVHs. In particular we aim at three main31

contributions: (1) We present an incremental construction al-32

gorithm, which produces high quality BVH. We are the first33

to show that the insertion based incremental BVH construc-34

tion can lead to efficient BVHs, which directly contradicts the35

state of the art results [2, 3]. (2) We propose two parallelization36

schemes of the incremental BVH construction, which are actu-37

ally the first parallel schemes of incremental BVH construction38

we are aware of. (3) We test the proposed method in a proof-39

of-concept application which performs GPU ray tracing of the40

data streamed over the network while using different data prior-41

itization schemes. An illustration of the incremental BVH con-42

struction combined with data streaming is shown in Figure 1.43

2. Related Work44

Bounding volume hierarchies provide an efficient way of45

organizing scene primitives and they have a long tradition in46

the context of ray tracing. Already in the early 80s Rubin and47

Whitted [4] used a manually created BVH, while Weghorst et48

al. [5] proposed to build the BVH using the modeling hier-49

archy. Kay and Kajiya [6] designed a top down BVH con-50

struction algorithm using spatial median splits. Goldsmith and51

Salmon [7] proposed the measure currently known as the sur-52

face area heuristic (SAH) which predicts the efficiency of the53

hierarchy already during the BVH construction. In this highly54

influential work Goldsmith and Salmon proposed to build BVH55

incrementally by insertion. However the algorithm they pro-56

vided was limited to greedy decisions during the insertion pro-57

cess and did not properly explore the space of all possible in-58

sertion positions. This insertion based method thus generally59

results in a poor quality BVH as was shown in performance60

studies by Havran [2] and later by Masso et al. [3]. This led61

to a belief that the incremental construction of a BVH by in-62

sertion is inefficient and these methods were practically disre-63

garded by the research community. In our paper we revisit the64

idea of incremental BVH construction and show that it can ac-65

tually lead to trees of higher quality than the nowadays used66

top-down SAH construction methods.67
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Figure 1: Snapshots showing ray traced images of the Power Plant scene (12.7M triangles) during data streaming. A high quality BVH is constructed incrementally
on the CPU, while the scene is being ray traced on the GPU at real-time (60FPS). The data is sent by prioritizing the geometry based on its estimated projected area.
By streaming a fraction of the scene geometry we already obtain a good overview of the visible part of the scene.

Bounding volume hierarchy construction was also studied68

in the context of collision detection, for which Omohundro [8]69

designed an efficient method using a priority queue based search70

for construction of a hierarchy of bounding spheres. A similar71

search strategy was recently used by Bittner et al. [9] in an al-72

gorithm, which optimizes the BVH in a postprocess. This work73

however gives no indication if the proposed optimization meth-74

ods can also be used for the actual construction of high quality75

BVHs.76

The vast majority of currently used methods for BVH con-77

struction use a top-down approach together with the surface78

area heuristic [10]. These methods require sorting and thus gen-79

erally exhibit O(NlogN) complexity (N is the number of scene80

triangles). Several techniques have been proposed to reduce81

the constants behind the asymptotic complexity. For example82

Havran et al. [11], Wald et al. [10], and Ize et al. [12] used83

approximate SAH cost function evaluation based on binning.84

Hunt et al. [13] suggested to use the structure of the scene graph85

to speed up the BVH construction process. Dammertz et al. [14]86

proposed to use a higher branching factor of the BVH to better87

exploit SIMD units in modern CPUs. More recently, the par-88

allel build-up of a BVH has been demonstrated also on a GPU89

by Lauterbach et al. [15], using a 3D space-filling curve. Aila90

and Laine [1] targeted optimization of BVH traversal on the91

GPU. Wald studied the possibility of fast rebuilds from scratch92

on an upcoming Intel architecture with many cores [16]. Pan-93

taleoni and Luebke [17], Garanzha et al. [18], and Karras [19]94

proposed GPU based methods for parallel BVH construction.95

These methods achieve impressive performance, but generally96

construct a BVH of lower quality than the full SAH builders.97

Recently more interest has been devoted to methods, which98

are not limited to the top-down BVH construction. Walter et99

al. [20] propose to use bottom-up agglomerative clustering for100

constructing a high quality BVH. Gu et al. [21] propose a paral-101

lel approximative agglomerative clustering for accelerating the102

bottom BVH construction. Kensler [22], Bittner et al. [9], and103

Karras and Aila [23] propose to optimize the BVH by perform-104

ing topological modifications of the existing tree. These ap-105

proaches allow to decrease the expected cost of a BVH beyond106

the cost achieved by the traditional top down approach. The107

comparison of different BVH construction methods and new108

quality metrics have been studied recently by Aila et al. [24].109

Our paper makes use of the incremental BVH construction110

in an application, which receives streamed scene data over the111

network. This area has been thoroughly researched particularly112

in the case of massive model visualizations [25, 26]. These113

methods typically use specialized scene representations (such114

as LODs, point clouds, or voxels) and work usually with the115

rasterization paradigm rather than ray tracing. In our paper the116

streaming component is used only as a particular use case of the117

proposed incremental BVH construction and thus for more de-118

tails about the remote and out-of-core visualization techniques119

we direct an interested reader to the survey of Gobetti et al. [27].120

The paper is further structured as follows: The overview121

of the algorithm is given in Section 3. The incremental BVH122

construction algorithm is described in Section 4 and its par-123

allelization in Section 5. Section 6 presents the framework,124

which exploits the proposed BVH construction for ray tracing125

data streamed over the network. Section 7 presents the results126

which are discussed in Section 8. Finally, Section 9 concludes127

the paper.128

3. Algorithm Overview129

The core of our method is the incremental insertion of scene130

geometry into the BVH. In the sequential version of the algo-131

rithm we construct a new leaf node for each geometric primitive132

(triangle), which is then inserted at an appropriate position into133

the BVH. We use a branch and bound search to find a posi-134

tion in the tree which minimizes the increase of the tree cost135

evaluated using SAH. The new leaf is then linked to the tree136

and the process continues with the next geometric primitive.137

Apart from the sequential algorithm we propose two methods138

of parallelization of the algorithm. The first method searches139

for the best positions of the triangles in the BVH for a batch140

of triangles in parallel. The second method subdivides the in-141

put triangle stream into chunks for which small local BVHs are142

constructed in parallel and then sequentially inserted into the143

global BVH.144

The final BVH quality depends on the order of inserted145

primitives - for some orders the tree might get globally imbal-146

anced with respect to the SAH cost metric. We compensate for147

that by performing global tree updates by re-inserting selected148

nodes at better positions in the BVH so the global BVH cost149

is minimized. The selection of nodes for re-insertion is driven150

by tracking the history of BVH modifications performed for the151

inserted geometry.152
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The BVH construction can handle input geometry provided153

in arbitrary order. We also discuss view dependent prioriti-154

zation schemes which change the order in which the data is155

streamed. These methods are based on evaluating the impor-156

tance of scene primitives for the current camera view and using157

either a deterministic or a stochastic approach for prioritizing158

the data according to their importance.159

4. Incremental BVH Construction160

In this section we recall the SAH cost model and then we161

present the incremental BVH construction, which forms a core162

contribution of our paper.163

4.1. SAH Cost Model164

The quality of the BVH for ray tracing purposes is com-165

monly measured using the SAH cost model, which expresses166

the expected number of operations to process a ray intersecting167

the scene. This cost can be expressed as:168

C(T ) =
1

S (T )

cT ·
∑

N∈inner nodes

S (N) + cI ·
∑

N∈leaves

S (N) · tN

, (1)169

where S (T ) is the surface area of the bounding box of the scene,170

S (N) is the surface area of the bounding box of node N, tN is171

the number of triangles in leaf N, and cT and cI are constants172

representing the traversal and intersection costs. Note that the173

cost of intersecting the triangles in the leaves is constant for a174

given scene supposed there is a single primitive per leaf. Thus175

the cost term which should be minimized when inserting new176

primitives is the sum of surface areas of inner nodes in the tree177

which corresponds to the traversal overhead of the interior part178

of the tree (cT ·
∑

S (N)).179

4.2. Inserting Primitives180

The geometric primitives are inserted into the BVH incre-181

mentally, one by one. For each primitive we first create a new182

leaf node containing this primitive. Then we need to find an183

appropriate position in the BVH where the node should be in-184

serted. For this purpose we use the branch and bound algorithm185

proposed by Bittner et al. [9], which was originally designed for186

BVH optimization by repositioning its subtrees. This algorithm187

searches for a node in the tree which will become the sibling of188

the inserted node, such that the global cost increase given by189

Eq. 1 is minimized.190

4.3. Global BVH Updates191

The primitive insertion step of the algorithm finds an opti-192

mal position of the node with respect to the current BVH topol-193

ogy, but without reflecting primitives that will be inserted later.194

Therefore, in general, the tree might get imbalanced with re-195

spect to the SAH metric, since the order of insertions is also196

important. We solve this problem by interleaving the primitive197

insertion with a small number of global updates of the BVH. In198

particular we perform a batch of insertion operations followed199

insertions updates

time

...... ... insertions

Figure 2: Illustration of the interleaving of insertion and update operations.
The incremental insertion of nodes is searching for the best position of inserted
nodes, however the overall structure of the tree might get imbalanced. This
is corrected by BVH updates, which aim to globally optimize the current tree.
Note that unlike this illustration, the tree optimized according to SAH will typ-
ically not be balanced in terms of depths.

by a batch of tree update operations. The process of interleav-200

ing insertions and updates is illustrated in Figure 2.201

The global updates work by selecting a number of nodes202

whose children are removed from the tree and then reinserted203

at better positions in the tree. The nodes are selected using a204

metric which aims to identify those nodes that cause a cost over-205

head and thus the re-insertion procedure applied on these nodes206

has a higher chance for reducing the tree cost. Bittner et al. [9]207

proposed to use a combined inefficiency measure. We observed208

that this measure also works well for the optimization during209

incremental BVH construction. As an alternative approach we210

can use the surface area of the node as its inefficiency measure,211

which gives only marginally worse results.212

Node update cache. During the incremental construction it213

is often the case that only some branches of the tree are modi-214

fied by subsequent insertion operations. We exploit this obser-215

vation by keeping a cache of nodes for which their bounding216

box has been modified by insertion in a given batch of insertion217

operations. These nodes correspond to the union of paths in the218

BVH from the inserted leaves towards the root (see Figure 3).219

The update procedure then uses only the cached nodes when220

selecting the nodes to be updated. We use two constants in our221

algorithm: the first constant Nu gives the number of modified222

nodes, reaching which the batch of update operations is applied.223

The second constant ku is a fraction of nodes to be updated in224

a batch: ku.Nu nodes with the highest inefficiency metric are225

updated in the given batch. Setting larger Nu increases the size226

of the length of the insertion batch, while the length of the up-227

date batch is given by both constants. We used Nu = 8000 and228

ku = 1%, which works well for the tested scenes. We observed229

that the proposed algorithm is generally not very sensitive to230

these two constants.231

4.4. Optimizations232

Clustering subsequent primitives. Although the algorithm233

stated above assumes no particular order of scene primitives,234

it is often the case that these are already ordered in a spatially235

coherent way. We can use a simple optimization which makes236

use of such coherence to reduce the number of insertion oper-237

ations. In particular we check whether two consecutively in-238

serted primitives are spatially coherent and if this is the case we239

connect the leaves representing these primitives to form a small240
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Figure 3: Selecting candidate nodes for topological updates. Several new leaves
were added to the tree (shown in red). The part of the tree for which the bound-
ing boxes have been modified corresponds to the candidate nodes for the update
(shown in blue). Note the unmodified part of the tree which does not serve for
candidate selection (shown in green).

subtree with a single inner node. Then this subtree is inserted241

into the BVH using a single insertion operation. The coherence242

of two primitives x, y is measured using the ratio of the surface243

area of the union of their bounding boxes and the sum of surface244

areas of the bounding boxes:245

Rcoh(x, y) =
S (x ∪ y)

S (x) + S (y)
If Rcoh(x, y) < Rmax (we used Rmax = 1.5), the primitives246

are assumed to be coherent and they are connected to form a247

subtree which is inserted into the BVH as a whole. This simple248

optimization brings up to 30% speedup for some scenes, while249

reaching a very similar BVH cost.250

BVH postprocessing. Another possible optimization is to251

perform a larger batch of update operations after the incremen-252

tal BVH construction has been finalized [9]. Note that we did253

not use this optimization in order to present the raw results254

for the incremental BVH construction for the streamed trian-255

gle data.256

5. Parallel Incremental BVH Construction257

The incremental BVH construction processing individual258

triangles is inherently sequential, i.e. the BVH is constructed by259

subsequently extending the current BVH one triangle at a time.260

The amount of parallelism exploitable while inserting a single261

triangle into the BVH is limited, since the branch-and-bound262

search procedure performs localized search and thus does not263

visit too many nodes of the tree.264

However if we subdivide the input stream into batches of265

triangles of a given size, we can exploit parallelism while insert-266

ing the triangle batch into the BVH. We propose two concep-267

tually different ways of parallelizing the incremental BVH con-268

struction, parallel search and block parallel construction. Later269

in the results section we will show that the choice of the method270

depends on the properties of the input triangle stream and also271

on the desired BVH quality. Note that both methods have been272

designed to exploit multi core CPUs rather than GPUs. This273

matches our target application that will be described in Sec-274

tion 6, in which we aim to fully utilize the GPU for rendering275

in order to maximize ray tracing performance.276

5.1. Parallel Search277

The most costly operation in the BVH construction is the278

search for the position of the currently inserted node in the tree.279

Thus by parallelizing this operation we can speed up the whole280

BVH construction process. We execute the branch-and-bound281

search algorithm in a number of threads for all nodes corre-282

sponding to the triangles in the batch. As a result of this par-283

allel operation each node is assigned a node in the BVH to be284

connected with. Then the nodes are inserted into the BVH se-285

quentially. Using sequential linking into the tree prevents con-286

flicts of threads inserting a node into the same position in the287

tree. The algorithm based on parallel search is illustrated in288

Figure 4.289

For implementing the method we have used Intel’s Thread290

Building Blocks (TBB) library, which is extremely simple to291

use and also handles efficient scheduling of the threads. Note292

that it is beneficial to use a small batch size roughly correspond-293

ing to the number of threads used for the search. Larger batch294

sizes decrease the quality of the constructed BVH as the results295

of the search do not reflect the positions of the triangles from296

the same batch.297

allocate 
nodes

parallel search

insert

cluster
pairs update

...

Figure 4: Illustration of parallelization of the search phase of the BVH construc-
tion algorithm. Note that the length of the white rectangles roughly corresponds
to the costs of the individual steps of the algorithm.

5.2. Block Parallel Construction298

The parallelization scheme described above does not pro-299

vide a linear speedup. This is mainly due to the sequential300

insertion phase and the associated need of synchronizing the301

search threads. We can improve the scalability of the algorithm302

by using a different parallelization scheme in which the CPU303

cores will get better utilized.304

The idea of this parallelization scheme is to create a number305

of larger triangle batches for which we invoke parallel construc-306

tion of small BVHs representing the triangles in the batch. We307

denote these small trees bBVH (batch BVH). The bBVHs are308

fed to a thread which inserts them into the global BVH. In both309

cases we use the insertion based method. Note that in the case310

of the bBVHs they can be constructed by any existing method311

since all triangles in the batch are known when the construction312

of the bBVH is invoked. Apart from the input triangle buffer313

the method uses two work queues: the first queue contains the314

batches for which bBVHs should be constructed. The second315

queue contains the already constructed bBVHs which should be316

inserted into the global BVH. The overview of this paralleliza-317

tion method is shown in Figure 5.318

If the input triangle stream is coherent, we can create batches319

of triangles just by grouping the consecutive triangles in the in-320

put stream. However for incoherent streams such method would321

lead to a low quality BVH as the bBVHs might contain inco-322

herent geometry and in turn the bBVHs would have significant323

spatial overlaps. We handle this issue by creating the triangle324
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create 
batches insert

update

batch
queue

build bBVHs

bBVH
queue

search

streaming 
thread

building
threads

global BVH
thread

...

Figure 5: Illustration of the block parallel BVH construction algorithm.
Streaming thread creates coherent triangle batches, building threads construct
bBVHs for the batches in parallel, and the global BVH thread inserts the con-
structed bBVHs into the global BVH.

batches by spatial sorting the buffered input stream. The trian-325

gles currently available in the buffer are sorted using a quick-326

sort like approach corresponding to spatial median splits.327

Initially all currently buffered triangles form one batch. We328

evaluate whether the triangles in the batch B are sufficiently co-329

herent using an extension of the above defined coherency mea-330

sure:331

R∗coh(B) =
S (B)∑

i∈B
S (i)

3
√
|B| − 1,

where S (B) is the surface area of the bounding box of the332

triangle batch, |B| is the number of triangles in the batch, S (i) is333

the surface area of the bounding box of the triangle i. Note that334

the extension is derived so that for two triangles R∗coh({x, y}) =335

Rcoh(x, y) and for larger batches R∗coh(B) ≈ 1 if the bounding336

boxes of the triangles form cells of a regular 3D grid.337

If R∗coh(B) is smaller than a threshold Rmax, we consider the338

batch to be coherent and send it for processing without further339

subdivision. Otherwise, if R∗coh(B) ≥ Rmax, the batch is incoher-340

ent and needs to be subdivided. We use a cycling axis spatial341

median pivot (center of the bounding box of the batch in the342

current axis) to sort the triangles into two groups according to343

the pivot. This process repeats until the coherency criterion is344

met or we have a single triangle in the batch.345

6. Ray Tracing Streamed Data346

Our method is capable of adding new primitives to an al-347

ready built BVH without reducing its quality and therefore its348

possible application lies for example in rendering scenes that349

are received in parts. This may involve either very large data350

sets, for which it is impractical to wait until the storage medium351

provides the whole set, or data streamed over a network, where352

it may take a long time untill the next part arrives. In these cases353

our method can provide an interactive ray traced visualization354

of the data set even when it is not complete.355

6.1. Application Architecture356

We designed and implemented a pilot application, which is357

capable of real-time ray tracing of data streamed over a net-358

work. The application contains client and server parts. For359

each connected client the server provides the client the objects360

representing the scene data using a certain data prioritization361

scheme. The client application inserts all received objects into362

the BVH using the proposed incremental algorithm and renders363

them using the GPU based ray-tracer by Karras et al. [28]. The364

client also informs the server of any camera changes, since this365

is necessary for the computation of some of the prioritization366

metrics. The overview of the application framework is shown367

in Figure 6.368

stream
server

stream
client BVH

insert

GPU
renderercopy

update rendercamera

network

Figure 6: Overview of the application framework for ray tracing streaming data
with the incremental BVH construction at its core.

6.2. Data Prioritization369

In the early stages of the rendering session the visualized370

scene data are incomplete. In order to evaluate our incremen-371

tal construction we used different prioritization schemes for the372

streamed data. In particular we have tested the following four373

prioritization schemes:374

The view direction prioritization scheme uses a dot product375

of the view direction and the vector from the camera position to-376

wards the object (triangle) as the priority of the object. We used377

a deterministic algorithm, which at each step selects a batch of378

k untrasferred objects with highest priorities using a partial sort.379

The projected area prioritization uses the estimated pro-380

jected area of the object as its priority. For this scheme we381

used stochastic sampling algorithm that constructs a cumula-382

tive distribution function (CDF) and uses it to randomly draw383

the objects to be sent with probability proportional to the pri-384

orities. To select an object to be sent we generate a uniformly385

distributed random number which is mapped to a particular ob-386

ject index by using a binary search in the CDF.387

The as is scheme involves no prioritization and is suitable388

for the case when the camera parameters are not available at the389

server side or when the server could get overloaded by evaluat-390

ing the view dependent client prioritization schemes.391

The random scheme sends the scene objects in a random or-392

der. This allows to test how the incremental construction han-393

dles incoherent data both in terms of speed and BVH quality.394

7. Results395

We have implemented the proposed incremental BVH con-396

struction method in C++. The GPU ray tracing part is imple-397

mented using CUDA. The results were evaluated on a PC with398

Intel Xeon E5-1620/3.60GHz CPU (4 cores) with 16GBytes399

RAM, equipped with NVIDIA GeForce GTX 580 GPU with400

3GBytes RAM. For measurements we used nine test scenes401

which are summarized in Figure 7.402
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Sibenik Conference Armadillo Happy Buddha

Soda Hall Hairball Pompeii San Miguel Power Plant

Figure 7: Snapshots of the tested scenes.

7.1. Incremental BVH Construction403

First we evaluated the proposed incremental BVH construc-404

tion algorithms. We focused on the construction time and the405

resulting quality of the BVH. The quality was expressed using406

the SAH cost of the BVH and also by measuring the GPU ray407

casting performance. As reference methods we used a BVH408

constructed by a high quality sweep-based SAH builder (de-409

noted SAH) and by spatial median splits (denoted Median). For410

our proposed algorithm we evaluated four versions: the first one411

(Incr) uses only insertion operations and performs no global412

updates, the second one (IncrU) uses the global updates, the413

third one (IncrUP) uses parallel search and global updates, and414

the fourth one (IncrUPB) uses block parallel construction with415

global updates. The parameters for the global updates were416

Nu = 8000 and ku = 1%. We have used three different stream417

ordering methods: as is, view direction prioritization, and ran-418

dom. Note that the random order represents an extreme case419

for the incremental insertion build as there is almost no coher-420

ence among consecutive triangles in the stream. The measured421

results are summarized in Table 1.422

Build time. The results show that even the sequential imple-423

mentations of the proposed methods (Incr, IncrU) are always424

significantly faster than the full sweep SAH builder (SAH) in425

terms of BVH construction speed. For coherent stream orders426

they are about twice slower than the spatial median algorithm427

(Median), but this gap gets larger for random ordering. We can428

also observe that the IncrU method is faster than Incr for all429

cases except for the random stream order. This is due to the430

fact that the method continuously works with a slightly more431

optimized BVH, which also reduces the cost of insertion opera-432

tions. The parallel search based implementation of the method433

IncrUP is about 15 − 50% faster than IncrU, while the block434

parallel method IncrUPB is up to 5 times faster than IncrU.435

However for random stream order the speed benefit of the In-436

crUPB method reduces and it can even get slower than the In-437

crUP method.438

BVH cost. Regarding the quality of the constructed BVH439

we can observe that in most cases both incremental construc-440

tion methods construct a BVH with even lower cost than the441

full top-down SAH builder. In particular the BVH constructed442

with IncrU method has usually about 10% lower cost than the443

BVH constructed with full SAH. An exception when the BVH444

cost for the incremental construction is higher than SAH is the445

Happy Buddha scene. An interesting observation is that the446

random stream order leads to higher quality BVH for the incre-447

mental methods. This is however paid by significantly longer448

construction times.449

Streaming speed. We also expressed the average streaming450

throughput for the incremental BVH construction expressed in451

millions of triangles per second inserted into the BVH (MTris/s).452

This throughput varies among the tested scenes in the range of453

0.1 - 0.8 MTris/s for the sequential implementation and 0.1 -454

2.9 MTris/s for parallel implementation. When comparing the455

speed versus quality of the different incremental construction456

methods we can observe that the IncrUP would be the method457

of choice when the BVH quality is important. On the other hand458

the IncrUPB method is a good choice when maximum stream-459

ing throughput is desired.460

Ray tracing speed. Table 1 also shows the measured GPU461

ray tracing performance for the final BVH constructed by the462

different methods expressed in millions of rays per second (MRays/s)463

for two different ray types (primary rays and ambient occlusion464

rays). For all the proposed methods the measured performance465

varies between 25-294 MRays/s and allows real-time ray trac-466

ing of the tested scenes. We can observe that the highest ren-467

dering performance is mostly obtained using the IncrU or In-468

crUP methods, while the block parallel IncrUPB method usu-469

ally achieves slightly lower ray tracing performance.470

Progress of the computation. To evaluate the progress of471

the incremental BVH construction we show the number of pro-472

cessed triangles as a function of time (Figure 8-left). We ob-473

served that the triangle insertion throughput slightly decreases474

6



as the BVH contains more nodes, but this dependence is very475

weak. This conforms with the theoretic logarithmic decay of476

the triangle insertion throughput. Figure 8-middle shows that477

the BVH cost has generally non uniform evolution as we can478

observe also the sudden reductions of the BVH cost in time479

which are caused by a successful batch of update operations.480

Note that for the case of random triangle order the cost evo-481

lution curve is much smoother (see Figure 8-right). Figure 9482

shows a detailed comparison of the BVH cost evolution for dif-483

ferent streaming strategies on three selected scenes. To give an484

idea how frequent the global BVH updates are we measured the485

relative number of update operations expressed as the number486

of update operations with respect to the number of triangles in487

the scene. This value varies among 0.6-1.7%, so a relatively488

low number of update operations is able to keep the tree well489

balanced.490

We also tested the influence of changing the number of up-491

dated nodes per batch (ku). When increasing ku from 1% to 5%,492

we observed a marginal increase of build time in order of 1%493

to 5% and also a reduction of the BVH cost in order of few494

percent for vast majority of tests. In some cases the reduction495

of the BVH cost was even more significant (e.g. 20% lower496

cost for IncrU on Happy Buddha at 5% increase of build time).497

However, in some other cases the time increase was higher, but498

it was not reflected in the higher cost reduction (e.g. 30% in-499

crease of build time with 2% cost reduction for IncrU at San500

Miguel).501

7.2. Ray Tracing Streaming Data502

In order to evaluate the sample application using network503

streaming we captured several videos showing the behavior of504

the application depending on the data prioritization method and505

network bandwidth (the videos are provided as a supplementary506

material for the paper). Several snapshots showing the applica-507

tion at different stages of data streaming are shown in Figure 1.508

The projected area based prioritization provides a very fast509

global overview of the scene structure, however due to its inher-510

ent stochastic nature the scene contains a lot of noise appearing511

as cluttered geometry. The view direction prioritization on the512

other hand quickly reveals the details in the area of camera fo-513

cus, while it takes longer to give the global scene structure. In514

our tests we generally found the view direction method more515

pleasant to use and very intuitive - when the user moves the516

camera the method automatically streams the part of the scene517

in the new camera focus.518

We also measured the GPU ray tracing performance in de-519

pendence on the number of received triangles for the different520

streaming strategies (see Figure 10). We observed that for the521

projected area based prioritization the ray tracing speed reduces522

faster than for the other two methods. This follows from the523

fact that this prioritization technique is designed to fill the ren-524

dered image with objects as fast as possible (most rays intersect525

some visible objects at early stages of the computation). The526

other two methods fill the image more gradually, which as a527

side product is reflected in the slower reduction of the render-528

ing speed. Note that even for the final BVH with several mil-529

lion triangles, the rendering speed is sufficient for interactive530

ray tracing of the scene as shown in Table 1.531
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Figure 10: Performance of the GPU ray tracing depending on the number of
triangles inserted into the BVH. The graph shows different streaming prioriti-
zation methods measured on the Sibenik (top) and San Miguel scene (bottom).

8. Discussion and Limitations532

BVH cost. The results show that the proposed method con-533

structs a very high quality BVH for most tested scenes. How-534

ever we have observed that for some scenes with a simpler535

and more regular structure the methods performs slightly worse536

than the top-down SAH (e.g. HappyBuddha, Armadillo). This537

can be compensated by subsequent update passes applied on538

such scenes [9].539

Comparison to Goldsmith and Salmon. The only previously540

proposed and evaluated incremental BVH construction method541

for ray tracing is the technique proposed in the highly influ-542

ential paper of Goldsmith and Salmon [7]. This paper contains543

rather vague description of the actual algorithm, however the re-544

sults obtained by different implementations of the method [2, 3]545

show that our technique creates more than an order of mag-546

nitude better BVH in terms of its cost, particularly for larger547

scenes for which the method of Goldsmith and Salmon fails to548

construct a BVH comparable with the top-down SAH builders.549

Construction Speed. The proposed methods achieve con-550

struction speeds of 0.1-2.9MTris/s. This is on one hand much551

higher than the equivalent speed of the reference full SAH builder,552

on the other hand lower than the speed of the fast GPU builders [17,553

18]. A benefit of the proposed method is that by performing the554

construction on the CPU, the GPU can ray trace the scene in555

real-time without being forced to offload its resources to the556

BVH construction. Another important benefit is the reduced557
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Figure 8: (left) The number of inserted triangles as a function of time for all tested scenes using as is triangle order. (middle) The evolution of the BVH cost during
the BVH construction using as is triangle order. We can observe moments when the cost was decreased due to the global BVH updates. (right) The evolution of the
BVH cost during the BVH construction using random triangle order. Note the logarithmic scales of the graphs.
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Figure 9: The evolution of the BVH cost during the BVH construction for the IncrU method measured on Soda Hall, Hairball, and Power Plant scenes. We can
observe moments when the cost was decreased due to the global BVH updates, especially in the case of as is stream order. Note that the random stream order causes
smooth BVH cost evolution and leads to slightly lower final BVH cost at the expense of higher computational time.

latency of the rendered image. In particular if the construc-558

tion speed in MTris/s is higher or comparable to the streaming559

throughput our method leads to minimal latency in the appear-560

ance of the data on the screen regardless of the scene complex-561

ity. The latency is caused only by inserting either a single tri-562

angle or a batch of triangles into the tree. Note that the latency563

reduction is useful also for loading large data sets from the disk.564

It is often the case that the data is stored in a format which needs565

decompression and parsing and thus the streaming throughput566

of the parser in MTris/s is similar to the speed of our incre-567

mental construction algorithm. That means that as soon as the568

parsing of the scene is finished, the BVH is already available569

and can be used for rendering.570

Latency Analysis and Comparison. We conducted a com-571

parison, which aims at defining a use case for which the in-572

cremental BVH construction outperforms the existing fast CPU573

and GPU builders. The comparison is based on the recent re-574

sults reported by Karras and Aila [23] and Gu et al.[21].575

For the comparison we use the San Miguel scene with build-576

ing times and ray traversal performance reported in the original577

papers. For the method of Gu et al. we scaled the reported578

building performance to four core CPU to make the results com-579

parable to the ones measured on our hardware. We evaluate the580

latency of appearance of a batch of triangles once the batch is581

received by the test application. For the non-incremental meth-582

CPU

GPU

rcv copyinsert

copy renderrender

latency CPU incremental

rcv insert copy

copy render

CPU

GPU

rcv copy

copy renderrender

latency GPU full build 

rcv

build

Figure 11: The main components of the latency of appearance of newly re-
ceived geometry. (top) Latency for CPU incremantal construction. Note that if
the newly inserted geometry is small enough the insertion time is completelly
hidden by the rendering time and thus the latency is given only by copy and
rendering times. (bottom) Latency for full build on the GPU.

ods we assume that the BVH is rebuilt from scratch when the583

batch of triangles is received. The latency has three main com-584

ponents: time for copying the new data to the GPU, time for585

building/updating the BVH, and time for rendering the frame586

(see Figure 11). For the GPU builders (denoted Karras2013 and587

LBVH) the latency can be approximated as: tl = 2(pNT /sC +588

(1+ p)NT /sB + NR/sR), where p is the relative number of newly589

inserted triangles, NT is the number of scene triangles, sC is590

the speed of copying the triangles from CPU to GPU, sB is591

the construction speed, NR is the number of rays cast for one592
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frame, and sR is the speed of tracing the rays with the given593

BVH. For the CPU builder proposed by Gu et al. [21] (de-594

noted Gu2013) the latency is expressed as tl = 2(pNT /sC +595

max((1 + p)NT /sB,NR/sR)) since the CPU building and GPU596

rendering can run in parallel. For the proposed incremental597

methods (IncrU and IncrUPB) the latency is expressed as tl =598

2(pNT /sC + max(pNT /sB,NR/sR)) since the insertion and GPU599

rendering runs in parallel and furthemore we only insert the new600

triangles in the tree. Note that in the latency models we assume601

that the triangle insertion speed and the ray tracing speed are602

constant for the given method, which does not hold especially603

when p is large as both are influenced by the newly inserted tri-604

angles. However, we target at the use case when p is small for605

which this approximation is sufficient.606
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IncrUPB
Gu2013
Karras2013
LBVH

4M 30M
Method sB sR tl

[MTris/s] [MRays/s] [ms]
IncrU 0.44 99 359 605

IncrUPB 1.60 69 116 866
LBVH 107.0 55 294 1081

Karras2013 29.0 84 650 1272
Gu2013 14.8 92 1081 1234

Figure 12: The comparison of rendering latency for different BVH construction
methods when inserting a batch of new triangles in the scene. The plots and the
table show the latency in dependence on the size of the inserted batch for the
SanMiguel scene. (top) Casting 4M rays per frame. (middle) Casting 30M rays
per frame. (bottom) The table showing parameters used for compared methods
and the evaluated latency for the case of inserting 1% of new scene triangles
and tracing either 4M or 30M rays. sB is the construction speed, and sR is the
ray tracing speed, tl is the evaluated latency. Note that the CPU to GPU transfer
speed was set to sC = 500MTris/s for all methods.

The results of the comparison for small number of rays607

per frame (4M) and larger number of rays per frame (30M)608

are shown in Figure 12. We can observe that with 4M rays609

per frame the incremental construction (methods IncrU and In-610

crUPB) lead to significantly lower latency for small values of611

p. Observe that for the incremental methods the latency is con-612

stant for small batches as it is solely given by copy and ren-613

dering times. Therefore the benefit of the incremental con-614

struction would become even more apparent if lower number615

of rays would be cast. For larger batches (> 3% of scene size)616

the slower triangle throughput of the incremental insertion be-617

comes more apparent and the LBVH method leads to the small-618

est latency among compared methods. For higher number of619

rays shown in the second plot the situation is similar for small620

batches of inserted triangles although the latency reduction is621

not that significant anymore as the tracing time becomes more622

significant. The incremental methods provide the best results623

until the batch size of 12% of scene size. For a short interval624

of batch sizes (12%-17%) the method of Gu et al. provides625

the best results as it is relatively fast and provides a high qual-626

ity BVH, while for the even larger batches again the LBVH627

method leads to the smallest latency. To summarize the latency628

analysis, we conclude, that our method significantly reduces the629

latency compared to the state of the art full-build methods for630

the case of incrementally inserting batches of triangles forming631

only a fraction of the scene size.632

Implementation. The implementation of the method is straight-633

forward and particularly in its sequential version it is much sim-634

pler than that of the other high quality BVH builders. This635

makes the method a good choice for rapid prototyping of appli-636

cations requiring high quality BVH. In more complex projects637

the method can coexist with other BVH construction / update638

implementations (running either on CPU or GPU) and the one639

most efficient for target application should be used.640

Limitations. As the main limitation of the method we see641

the need for synchronization of the insertion and update opera-642

tions. The proposed parallelization methods are able to partially643

remove this limitation. However, the parallel search method644

does not scale well to larger number of threads. The block par-645

allel construction scales well except for the random triangle or-646

der and generally leads to trees of slightly lower quality. The647

scalability of the method might be improved by a combination648

of insertion based construction with a different build strategy,649

but we leave this as a topic for future work. Additional issue650

which would have to be addressed in the actual streaming based651

application is handling materials and particularly textures. As652

textures are typically defined over larger geometric groups the653

streaming should take texture information into account when654

determining a geometry order providing the fastest visual feed-655

back.656

Data Prioritization. We used three basic strategies for data657

prioritization in order to demonstrate the possibilities of the658

proposed incremental BVH construction. There are numerous659

alternatives how to prioritize the data and also how to incor-660

porate scalable geometric representation by using LOD tech-661

niques. A deeper evaluation of the different streaming strate-662

gies and associated LOD methods goes out of the scope of our663

paper, in which the core contribution is the incremental BVH664

construction algorithm and its evaluation.665

9. Conclusion666

We have proposed an incremental BVH construction algo-667

rithm, which constructs a BVH with better or comparable qual-668

ity than the traditional SAH based top-down BVH construction669

methods. The proposed method debunks the myth of insertion670

based BVH construction not being competitive with the top-671

down BVH construction. The sequential implementation of the672

algorithm achieves construction speeds up to 0.8 million trian-673

gles per second, and the parallel algorithm achieves speeds up674

to 2.9 million triangles per second on a 4 core CPU. This makes675

the proposed method significantly faster compared with the ref-676

erence implementation of the precise top-down SAH build.677
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We have shown a possible application of the method for678

real-time ray tracing of scenes which are streamed over a net-679

work. This application uses GPU ray tracing, while the net-680

working layer and the incremental BVH construction is imple-681

mented on the CPU. We have used several simple prioritization682

schemes allowing fast previewing of large data sets even in the683

case of low network bandwidth. We believe that our method has684

a prospective use in mobile setups when streaming data over the685

network. In the future we would like to study other possible ap-686

plications of the incremental BVH construction such as LOD687

methods or handling large scale online virtual worlds.688
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Build BVH Stream. GPU GPU Build BVH Stream. GPU GPU Build BVH Stream. GPU GPU
Method time cost speed primary AO time cost speed primary AO time cost speed primary AO

[s] [-] [ MTris
s ] [ MRays

s ] [ MRays
s ] [s] [-] [ MTris

s ] [ MRays
s ] [ MRays

s ] [s] [-] [ MTris
s ] [ MRays

s ] [ MRays
s ]

Sibenik, 80k triangles Conference, 283k triangles Armadillo, 307k triangles
SAH 0.44 82.3 n/a 137 191 1.93 130 n/a 124 198 1.98 86.3 n/a 159 86.5
Median 0.06 391 n/a 18.7 27.3 0.20 842 n/a 14.4 30.8 0.24 144 n/a 93.8 61.1

as is
Incr 0.11 80.2 0.68 105 140 0.68 119 0.41 113 192 0.77 101 0.39 125 74.4
IncrU 0.12 73.8 0.66 127 176 0.68 109 0.41 123 215 0.87 97.3 0.35 130 75.5
IncrUP 0.10 82.0 0.78 99.8 144 0.49 121 0.56 97.6 178 0.70 98.3 0.43 132 75.5
IncrUPB 0.04 83.7 1.96 93.2 136 0.13 133 2.11 116 216 0.58 111 0.52 111 68.3

view direction
Incr 0.24 85.8 0.33 74.6 114 1.00 132 0.28 96.1 179 1.62 273 0.18 56.8 38.8
IncrU 0.22 73.9 0.35 125 156 0.92 109 0.30 103 203 1.17 134 0.26 91.1 61.2
IncrUP 0.18 74.8 0.42 101 142 0.72 108 0.39 112 216 0.88 133 0.34 90.0 61.9
IncrUPB 0.04 96.0 1.67 58.3 116 0.19 128 1.42 72.4 143 0.22 126 1.38 102 64.6

random
Incr 0.24 79.4 0.33 116 148 1.30 116 0.21 125 221 0.96 94.9 0.31 133 77.9
IncrU 0.29 71.7 0.27 136 181 1.45 105 0.19 132 237 1.12 94.1 0.27 138 78.2
IncrUP 0.23 71.4 0.33 125 179 1.13 105 0.25 121 238 0.93 94.3 0.32 136 77.9
IncrUPB 0.25 91.6 0.32 100 133 1.37 139 0.20 68.0 117 1.08 105 0.28 114 73.1

HappyBuddha, 1,087k triangles SodaHall, 2,169k triangles Hairball, 2,880k triangles
SAH 8.91 165 n/a 355 82.6 22.5 217 n/a 113 156 24.1 1415 n/a 13.6 36.9
Median 0.82 276 n/a 203 44.9 1.88 1396 n/a 8.11 8.96 2.42 2447 n/a 8.18 21.2

as is
Incr 2.63 346 0.41 162 42.5 3.84 204 0.56 84.2 116 6.69 1517 0.43 9.23 25.6
IncrU 2.35 230 0.46 227 56.2 3.55 183 0.61 75.1 157 6.19 1460 0.46 11.2 29.7
IncrUP 1.76 242 0.61 210 52.2 2.90 224 0.74 67.2 95.9 5.18 1908 0.55 7.60 22.8
IncrUPB 1.56 271 0.69 170 49.9 0.76 229 2.85 86.2 113 1.08 2115 2.65 7.03 16.1

view direction
Incr 6.13 457 0.17 120 36.0 8.52 220 0.25 102 134 18.8 1772 0.15 8.68 22.7
IncrU 4.49 243 0.24 233 55.0 8.16 188 0.26 121 155 18.0 1571 0.15 10.4 27.1
IncrUP 3.39 240 0.32 226 55.0 6.54 189 0.33 81.8 158 14.1 1569 0.20 10.7 27.6
IncrUPB 1.39 289 0.77 148 49.6 2.05 238 1.05 38.0 87.8 8.08 2601 0.35 4.43 18.8

random
Incr 4.53 184 0.24 298 72.1 12.5 198 0.17 112 135 17.7 1431 0.16 11.8 31.5
IncrU 5.49 181 0.19 294 73.1 14.5 183 0.14 115 175 20.3 1424 0.14 12.0 31.7
IncrUP 4.21 183 0.25 291 72.4 11.4 185 0.19 107 157 15.8 1424 0.18 11.7 31.2
IncrUPB 4.85 194 0.22 266 67.8 13.1 229 0.16 62.0 101 21.8 1853 0.13 9.71 26.4

Pompeii, 5,646k triangles SanMiguel, 7,881k triangles PowerPlant, 12,749k triangles
SAH 46.7 253 n/a 24.7 36.4 107 181 n/a 44.0 95.5 209 116 n/a 141 75.1
Median 4.27 767 n/a 8.59 12.9 7.96 1278 n/a 4.32 8.62 14.6 661 n/a 8.82 9.44

as is
Incr 11.4 266 0.49 20.8 36.0 20.3 177 0.38 40.3 80.6 34.7 120 0.36 35.4 74.3
IncrU 10.6 231 0.53 24.5 42.4 17.9 158 0.44 48.6 99.3 27.5 104 0.46 139 82.0
IncrUP 7.97 258 0.70 20.8 34.3 13.3 172 0.59 34.4 84.2 20.3 118 0.62 101 61.4
IncrUPB 2.13 272 2.64 20.2 35.3 4.92 192 1.59 34.0 69.3 4.63 117 2.75 87.6 64.6

view direction
Incr 27.7 274 0.20 19.7 34.2 49.7 212 0.15 25.4 58.9 121 132 0.10 96.9 59.5
IncrU 25.8 240 0.21 23.0 38.4 46.7 165 0.16 38.9 84.1 114 107 0.11 126 78.3
IncrUP 19.3 240 0.29 22.5 36.4 36.3 166 0.21 41.7 87.2 93.3 108 0.13 118 77.2
IncrUPB 4.53 348 1.24 15.7 27.4 16.3 205 0.48 26.5 58.4 44.8 149 0.28 60.5 40.7

random
Incr 41.1 241 0.13 23.5 38.7 58.8 169 0.13 33.5 86.9 115 107 0.11 131 76.6
IncrU 48.8 234 0.11 24.1 37.6 69.2 154 0.11 43.5 101 136 102 0.09 149 85.8
IncrUP 35.7 233 0.15 24.9 40.2 52.3 153 0.15 45.6 102 93.5 103 0.13 140 86.5
IncrUPB 46.6 313 0.12 17.4 32.2 64.6 178 0.12 35.1 78.7 128 130 0.09 60.0 56.0

Table 1: Results of the incremental BVH build. The lowest BVH costs and the highest streaming and rendering speeds for the given scene and the stream order are
highlighted.
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