Incremental BVH Construction for Ray Tracing

Jifi Bittner, Michal Hapala, Vlastimil Havran

Abstract

We propose a new method for incremental construction of Bounding Volume Hierarchies (BVH). Despite the wide belief that the
incremental construction of BVH is inefficient we show that our method incrementally constructs a BVH with quality comparable
to the best SAH builders. We illustrate the versatility of the proposed method using a flexible parallelization scheme that opens
new possibilities for combining different BVH construction heuristics. We demonstrate the usage of the method in a proof-of-
concept application for real-time preview of data streamed over the network. We believe that our method will renew the interest
in incremental BVH construction and it will find its applications in ray tracing based remote visualizations and fast previews or in
interactive scene editing applications handling very large data sets.

Keywords:
bounding volume hierarchies, ray tracing

1 1. Introduction

2 Interactive ray tracing becomes an increasingly popular al-
s ternative to rasterization mainly because ray tracing based algo-
+ rithms allow computing accurate global illumination and thus
s achieving high degree of realism. One of the main obstacles
¢ for their interactive usage is the necessity to organize the scene
7 in an acceleration data structure in order to efficiently compute
s the ray-object intersection queries. The most commonly used
s methods involve spatial subdivisions (uniform grids, octrees,
10 kd-trees) and bounding volume hierarchies (BVH). In particular
11 BVHs became a vivid choice for many recent implementations
12 as they have predictable memory footprint, allow relatively easy
13 dynamic updates, and perform well in GPU ray tracing imple-
1« mentations [1].

15 Practically all currently used BVH build methods require
16 that the whole scene is known in advance. While this is of-
17 ten the case, there are also applications, in which accessing the
18 scene data takes significant amount of time. Waiting for all the
1 data to be present in memory introduces significant latency in
20 the whole rendering process. Another use case when the whole
21 scene is not known in advance is for example an interactive
22 modeling session of complex data assemblies for which high
23 quality preview is required. A natural solution in these appli-
24 cations could be an incremental BVH construction, which in-
25 serts pieces of the scene geometry into the BVH as soon as they
2s become available. It is however widely believed that the in-
27 cremental BVH construction is inefficient particularly in terms
2s of ray tracing performance of the resulting BVH. In this pa-
20 per we show that using a careful optimization of the incremen-
a0 tal BVH construction combined with global structural updates
a1 leads to efficient BVHs. In particular we aim at three main
a2 contributions: (1) We present an incremental construction al-
as gorithm, which produces high quality BVH. We are the first
a to show that the insertion based incremental BVH construc-

Preprint submitted to Computers & Graphics

a5 tion can lead to efficient BVHs, which directly contradicts the
a6 state of the art results [2, 3]. (2) We propose two parallelization
a7 schemes of the incremental BVH construction, which are actu-
s ally the first parallel schemes of incremental BVH construction
3 we are aware of. (3) We test the proposed method in a proof-
a0 of-concept application which performs GPU ray tracing of the
1 data streamed over the network while using different data prior-
42 itization schemes. An illustration of the incremental BVH con-
a3 struction combined with data streaming is shown in Figure 1.

4 2. Related Work

a5 Bounding volume hierarchies provide an efficient way of
46 Organizing scene primitives and they have a long tradition in
47 the context of ray tracing. Already in the early 80s Rubin and
s Whitted [4] used a manually created BVH, while Weghorst et
a0 al. [5] proposed to build the BVH using the modeling hier-
s archy. Kay and Kajiya [6] designed a top down BVH con-
st struction algorithm using spatial median splits. Goldsmith and
s2 Salmon [7] proposed the measure currently known as the sur-
ss face area heuristic (SAH) which predicts the efficiency of the
s+ hierarchy already during the BVH construction. In this highly
ss influential work Goldsmith and Salmon proposed to build BVH
ss incrementally by insertion. However the algorithm they pro-
s7 vided was limited to greedy decisions during the insertion pro-
ss cess and did not properly explore the space of all possible in-
so sertion positions. This insertion based method thus generally
e results in a poor quality BVH as was shown in performance
e studies by Havran [2] and later by Masso et al. [3]. This led
ez to a belief that the incremental construction of a BVH by in-
e sertion is inefficient and these methods were practically disre-
e« garded by the research community. In our paper we revisit the
es idea of incremental BVH construction and show that it can ac-
es tually lead to trees of higher quality than the nowadays used
¢7 top-down SAH construction methods.

December 8, 2014

0.1% (13k tris) 0.5% (63k tris)

1% (127K tris)

2% (255k tris) 100% (12.7M tris)

Figure 1: Snapshots showing ray traced images of the Power Plant scene (12.7M triangles) during data streaming. A high quality BVH is constructed incrementally
on the CPU, while the scene is being ray traced on the GPU at real-time (60FPS). The data is sent by prioritizing the geometry based on its estimated projected area.
By streaming a fraction of the scene geometry we already obtain a good overview of the visible part of the scene.

68 Bounding volume hierarchy construction was also studied
eo in the context of collision detection, for which Omohundro [8]
70 designed an efficient method using a priority queue based search
7 for construction of a hierarchy of bounding spheres. A similar
72 search strategy was recently used by Bittner et al. [9] in an al-
73 gorithm, which optimizes the BVH in a postprocess. This work
7« however gives no indication if the proposed optimization meth-
75 ods can also be used for the actual construction of high quality
7 BVHs.

77 The vast majority of currently used methods for BVH con-
78 struction use a top-down approach together with the surface
7o area heuristic [10]. These methods require sorting and thus gen-
s erally exhibit O(NlogN) complexity (N is the number of scene
st triangles). Several techniques have been proposed to reduce
e the constants behind the asymptotic complexity. For example
ss Havran et al. [11], Wald et al. [10], and Ize et al. [12] used
e« approximate SAH cost function evaluation based on binning.
ss Hunt et al. [13] suggested to use the structure of the scene graph
ss to speed up the BVH construction process. Dammertz et al. [14]
&7 proposed to use a higher branching factor of the BVH to better
g8 exploit SIMD units in modern CPUs. More recently, the par-
e allel build-up of a BVH has been demonstrated also on a GPU
% by Lauterbach et al. [15], using a 3D space-filling curve. Aila
or and Laine [1] targeted optimization of BVH traversal on the
o2 GPU. Wald studied the possibility of fast rebuilds from scratch
93 on an upcoming Intel architecture with many cores [16]. Pan-
s« taleoni and Luebke [17], Garanzha et al. [18], and Karras [19]
s proposed GPU based methods for parallel BVH construction.
9 These methods achieve impressive performance, but generally
o7 construct a BVH of lower quality than the full SAH builders.

9% Recently more interest has been devoted to methods, which
99 are not limited to the top-down BVH construction. Walter et
100 al. [20] propose to use bottom-up agglomerative clustering for
101 constructing a high quality BVH. Gu et al. [21] propose a paral-
102 lel approximative agglomerative clustering for accelerating the
10s bottom BVH construction. Kensler [22], Bittner et al. [9], and
104 Karras and Aila [23] propose to optimize the BVH by perform-
105 ing topological modifications of the existing tree. These ap-
16 proaches allow to decrease the expected cost of a BVH beyond
107 the cost achieved by the traditional top down approach. The
1s comparison of different BVH construction methods and new
109 quality metrics have been studied recently by Aila et al. [24].
10 Our paper makes use of the incremental BVH construction
11 in an application, which receives streamed scene data over the

112 network. This area has been thoroughly researched particularly
ns in the case of massive model visualizations [25, 26]. These
114 methods typically use specialized scene representations (such
15 as LODs, point clouds, or voxels) and work usually with the
116 rasterization paradigm rather than ray tracing. In our paper the
117 streaming component is used only as a particular use case of the
118 proposed incremental BVH construction and thus for more de-
19 tails about the remote and out-of-core visualization techniques
120 we direct an interested reader to the survey of Gobetti et al. [27].
121 The paper is further structured as follows: The overview
122 of the algorithm is given in Section 3. The incremental BVH
123 construction algorithm is described in Section 4 and its par-
124 allelization in Section 5. Section 6 presents the framework,
12s which exploits the proposed BVH construction for ray tracing
12 data streamed over the network. Section 7 presents the results
12z which are discussed in Section 8. Finally, Section 9 concludes
128 the paper.

129 3. Algorithm Overview

130 The core of our method is the incremental insertion of scene
131 geometry into the BVH. In the sequential version of the algo-
132 rithm we construct a new leaf node for each geometric primitive
133 (triangle), which is then inserted at an appropriate position into
13« the BVH. We use a branch and bound search to find a posi-
135 tion in the tree which minimizes the increase of the tree cost
136 evaluated using SAH. The new leaf is then linked to the tree
137 and the process continues with the next geometric primitive.
138 Apart from the sequential algorithm we propose two methods
139 of parallelization of the algorithm. The first method searches
140 for the best positions of the triangles in the BVH for a batch
141 of triangles in parallel. The second method subdivides the in-
122 put triangle stream into chunks for which small local BVHs are
143 constructed in parallel and then sequentially inserted into the
144 global BVH.

The final BVH quality depends on the order of inserted
146 primitives - for some orders the tree might get globally imbal-
17 anced with respect to the SAH cost metric. We compensate for
18 that by performing global tree updates by re-inserting selected
149 nodes at better positions in the BVH so the global BVH cost
150 is minimized. The selection of nodes for re-insertion is driven
151 by tracking the history of BVH modifications performed for the
152 inserted geometry.

145

153 The BVH construction can handle input geometry provided
154 in arbitrary order. We also discuss view dependent prioriti-
155 zation schemes which change the order in which the data is
156 streamed. These methods are based on evaluating the impor-
157 tance of scene primitives for the current camera view and using
158 either a deterministic or a stochastic approach for prioritizing

159 the data according to their importance.

10 4. Incremental BVH Construction

161 In this section we recall the SAH cost model and then we
162 present the incremental BVH construction, which forms a core
163 contribution of our paper.

10s 4.1. SAH Cost Model

165 The quality of the BVH for ray tracing purposes is com-
1ss monly measured using the SAH cost model, which expresses
167 the expected number of operations to process a ray intersecting
1es the scene. This cost can be expressed as:

ey

169

cr Y SN+ e) SN -1,

Neinner nodes Neleaves

170 where S (T') is the surface area of the bounding box of the scene,
171 S(N) is the surface area of the bounding box of node N, 1y is
172 the number of triangles in leaf N, and ¢y and c; are constants
173 representing the traversal and intersection costs. Note that the
174 cost of intersecting the triangles in the leaves is constant for a
175 given scene supposed there is a single primitive per leaf. Thus
176 the cost term which should be minimized when inserting new
177 primitives is the sum of surface areas of inner nodes in the tree
178 which corresponds to the traversal overhead of the interior part
179 of the tree (cr - Y, S (N)).

180 4.2. Inserting Primitives

181 The geometric primitives are inserted into the BVH incre-
122 mentally, one by one. For each primitive we first create a new
1s3 leaf node containing this primitive. Then we need to find an
184 appropriate position in the BVH where the node should be in-
185 serted. For this purpose we use the branch and bound algorithm
18e proposed by Bittner et al. [9], which was originally designed for
1e7 BVH optimization by repositioning its subtrees. This algorithm
188 searches for a node in the tree which will become the sibling of
189 the inserted node, such that the global cost increase given by
190 Eq. 1 is minimized.

191 4.3. Global BVH Updates

The primitive insertion step of the algorithm finds an opti-
1.3 mal position of the node with respect to the current BVH topol-
194 0gy, but without reflecting primitives that will be inserted later.
1ss Therefore, in general, the tree might get imbalanced with re-
196 spect to the SAH metric, since the order of insertions is also
17 important. We solve this problem by interleaving the primitive
198 insertion with a small number of global updates of the BVH. In
199 particular we perform a batch of insertion operations followed

192

insertions K updates ses insertions

time

Figure 2: Illustration of the interleaving of insertion and update operations.
The incremental insertion of nodes is searching for the best position of inserted
nodes, however the overall structure of the tree might get imbalanced. This
is corrected by BVH updates, which aim to globally optimize the current tree.
Note that unlike this illustration, the tree optimized according to SAH will typ-
ically not be balanced in terms of depths.

200 by a batch of tree update operations. The process of interleav-
201 ing insertions and updates is illustrated in Figure 2.

22 The global updates work by selecting a number of nodes
203 Whose children are removed from the tree and then reinserted
204 at better positions in the tree. The nodes are selected using a
20s metric which aims to identify those nodes that cause a cost over-
206 head and thus the re-insertion procedure applied on these nodes
207 has a higher chance for reducing the tree cost. Bittner et al. [9]
208 proposed to use a combined inefficiency measure. We observed
200 that this measure also works well for the optimization during
210 incremental BVH construction. As an alternative approach we
211 can use the surface area of the node as its inefficiency measure,
212 which gives only marginally worse results.

Node update cache. During the incremental construction it
214 s often the case that only some branches of the tree are modi-
215 fied by subsequent insertion operations. We exploit this obser-
216 Vation by keeping a cache of nodes for which their bounding
217 box has been modified by insertion in a given batch of insertion
218 operations. These nodes correspond to the union of paths in the
219 BVH from the inserted leaves towards the root (see Figure 3).
220 The update procedure then uses only the cached nodes when
221 selecting the nodes to be updated. We use two constants in our
222 algorithm: the first constant N, gives the number of modified
223 nodes, reaching which the batch of update operations is applied.
22« The second constant k,, is a fraction of nodes to be updated in
225 a batch: k,.N, nodes with the highest inefficiency metric are
226 updated in the given batch. Setting larger N, increases the size
227 of the length of the insertion batch, while the length of the up-
228 date batch is given by both constants. We used N, = 8000 and
220 k, = 1%, which works well for the tested scenes. We observed
20 that the proposed algorithm is generally not very sensitive to
231 these two constants.

213

22 4.4. Optimizations

Clustering subsequent primitives. Although the algorithm
24 stated above assumes no particular order of scene primitives,
235 it is often the case that these are already ordered in a spatially
23 coherent way. We can use a simple optimization which makes
237 use of such coherence to reduce the number of insertion oper-
238 ations. In particular we check whether two consecutively in-
230 serted primitives are spatially coherent and if this is the case we
240 connect the leaves representing these primitives to form a small

233

Figure 3: Selecting candidate nodes for topological updates. Several new leaves
were added to the tree (shown in red). The part of the tree for which the bound-
ing boxes have been modified corresponds to the candidate nodes for the update
(shown in blue). Note the unmodified part of the tree which does not serve for
candidate selection (shown in green).

241 subtree with a single inner node. Then this subtree is inserted
222 into the BVH using a single insertion operation. The coherence
213 of two primitives x, y is measured using the ratio of the surface
244 area of the union of their bounding boxes and the sum of surface
205 areas of the bounding boxes:

S(xUy)
S +SW
246 If Reon(x,¥) < Rypax (We used R, = 1.5), the primitives
247 are assumed to be coherent and they are connected to form a
248 subtree which is inserted into the BVH as a whole. This simple
249 Optimization brings up to 30% speedup for some scenes, while
250 reaching a very similar BVH cost.
BVH postprocessing. Another possible optimization is to
252 perform a larger batch of update operations after the incremen-
253 tal BVH construction has been finalized [9]. Note that we did
254 not use this optimization in order to present the raw results
2ss for the incremental BVH construction for the streamed trian-
256 gle data.

Reon(x, y) =

251

27 5. Parallel Incremental BVH Construction

The incremental BVH construction processing individual
250 triangles is inherently sequential, i.e. the BVH is constructed by
260 subsequently extending the current BVH one triangle at a time.
261 The amount of parallelism exploitable while inserting a single
262 triangle into the BVH is limited, since the branch-and-bound
263 search procedure performs localized search and thus does not
264 Visit too many nodes of the tree.

However if we subdivide the input stream into batches of
266 triangles of a given size, we can exploit parallelism while insert-
27 ing the triangle batch into the BVH. We propose two concep-
268 tually different ways of parallelizing the incremental BVH con-
260 Struction, parallel search and block parallel construction. Later
270 in the results section we will show that the choice of the method
271 depends on the properties of the input triangle stream and also
22 on the desired BVH quality. Note that both methods have been
273 designed to exploit multi core CPUs rather than GPUs. This
27« matches our target application that will be described in Sec-
275 tion 6, in which we aim to fully utilize the GPU for rendering
276 in order to maximize ray tracing performance.

258

265

277 5.1. Parallel Search

The most costly operation in the BVH construction is the
279 search for the position of the currently inserted node in the tree.

278

250 Thus by parallelizing this operation we can speed up the whole
2s1 BVH construction process. We execute the branch-and-bound
2s2 search algorithm in a number of threads for all nodes corre-
283 sponding to the triangles in the batch. As a result of this par-
2s4 allel operation each node is assigned a node in the BVH to be
255 connected with. Then the nodes are inserted into the BVH se-
2ss quentially. Using sequential linking into the tree prevents con-
2e7 flicts of threads inserting a node into the same position in the
2ss tree. The algorithm based on parallel search is illustrated in
289 Figure 4,

200 For implementing the method we have used Intel’s Thread
201 Building Blocks (TBB) library, which is extremely simple to
202 use and also handles efficient scheduling of the threads. Note
203 that it is beneficial to use a small batch size roughly correspond-
204 ing to the number of threads used for the search. Larger batch
205 sizes decrease the quality of the constructed BVH as the results
206 Of the search do not reflect the positions of the triangles from
207 the same batch.

allocate parallel search

nodes insert

cluster
pairs update

Figure 4: Illustration of parallelization of the search phase of the BVH construc-
tion algorithm. Note that the length of the white rectangles roughly corresponds
to the costs of the individual steps of the algorithm.

208 5.2. Block Parallel Construction

299 The parallelization scheme described above does not pro-
a0 vide a linear speedup. This is mainly due to the sequential
a01 insertion phase and the associated need of synchronizing the
a2 search threads. We can improve the scalability of the algorithm
as by using a different parallelization scheme in which the CPU
s« cores will get better utilized.

The idea of this parallelization scheme is to create a number
aos Of larger triangle batches for which we invoke parallel construc-
a07 tion of small BVHs representing the triangles in the batch. We
a8 denote these small trees bBVH (batch BVH). The bBVHs are
aoe fed to a thread which inserts them into the global BVH. In both
a0 cases we use the insertion based method. Note that in the case
ain of the bBVHs they can be constructed by any existing method
a1z since all triangles in the batch are known when the construction
ais of the bBVH is invoked. Apart from the input triangle buffer
ais the method uses two work queues: the first queue contains the
as batches for which bBVHs should be constructed. The second
a1e queue contains the already constructed bBVHs which should be
a7 inserted into the global BVH. The overview of this paralleliza-
a1 tion method is shown in Figure 5.

3t If the input triangle stream is coherent, we can create batches
a20 Of triangles just by grouping the consecutive triangles in the in-
a21 put stream. However for incoherent streams such method would
a22 lead to a low quality BVH as the bBVHs might contain inco-
a2s herent geometry and in turn the bBVHs would have significant
a2« spatial overlaps. We handle this issue by creating the triangle

305

build bBVHs

create
batches

search update

batch bBVH
queue queue
streaming building global BVH
thread threads thread
Figure 5: Illustration of the block parallel BVH construction algorithm.

Streaming thread creates coherent triangle batches, building threads construct
bBVHs for the batches in parallel, and the global BVH thread inserts the con-
structed bBVHs into the global BVH.

azs batches by spatial sorting the buffered input stream. The trian-
azs gles currently available in the buffer are sorted using a quick-
a27 sort like approach corresponding to spatial median splits.
Initially all currently buffered triangles form one batch. We
a2 evaluate whether the triangles in the batch B are sufficiently co-
ss0 herent using an extension of the above defined coherency mea-
331 SUIe:

328

e S(B) e
R (B) = S (i)\/IBI 1,
i€eB

332 where S (B) is the surface area of the bounding box of the
aw triangle batch, |B| is the number of triangles in the batch, S (i) is
au the surface area of the bounding box of the triangle i. Note that
s3s the extension is derived so that for two triangles R” , ({x, y}) =
s3s Reon(x,y) and for larger batches R, (B) ~ 1 if the bounding
a7 boxes of the triangles form cells of a regular 3D grid.

If R’ ,(B) is smaller than a threshold Ry, we consider the
a0 batch to be coherent and send it for processing without further
ss0 subdivision. Otherwise, if R} ,(B) = Ry, the batch is incoher-
a1 ent and needs to be subdivided. We use a cycling axis spatial
a2 median pivot (center of the bounding box of the batch in the
a3 current axis) to sort the triangles into two groups according to
aa the pivot. This process repeats until the coherency criterion is

xs met or we have a single triangle in the batch.

338

us 6. Ray Tracing Streamed Data

Our method is capable of adding new primitives to an al-
as ready built BVH without reducing its quality and therefore its
a9 possible application lies for example in rendering scenes that
aso are received in parts. This may involve either very large data
as1 sets, for which it is impractical to wait until the storage medium
a2 provides the whole set, or data streamed over a network, where
ass it may take a long time untill the next part arrives. In these cases
ss« our method can provide an interactive ray traced visualization
ass of the data set even when it is not complete.

347

a6 0.1. Application Architecture

We designed and implemented a pilot application, which is
ass capable of real-time ray tracing of data streamed over a net-
ase work. The application contains client and server parts. For

357

a0 each connected client the server provides the client the objects
as1 representing the scene data using a certain data prioritization
a2 scheme. The client application inserts all received objects into
as the BVH using the proposed incremental algorithm and renders
s« them using the GPU based ray-tracer by Karras et al. [28]. The
ass client also informs the server of any camera changes, since this
ass 1S necessary for the computation of some of the prioritization
a7 metrics. The overview of the application framework is shown
as in Figure 6.

network
000 0oo St:.eam {1 BVH [GdPU]
server client insert Icop’y renderer
" g 0O
ca—n_1é;a update render

Figure 6: Overview of the application framework for ray tracing streaming data
with the incremental BVH construction at its core.

30 0.2. Data Prioritization

In the early stages of the rendering session the visualized
ar1 scene data are incomplete. In order to evaluate our incremen-
ar2 tal construction we used different prioritization schemes for the
as streamed data. In particular we have tested the following four
a7a prioritization schemes:

The view direction prioritization scheme uses a dot product
a7z of the view direction and the vector from the camera position to-
a77 wards the object (triangle) as the priority of the object. We used
a7s a deterministic algorithm, which at each step selects a batch of
are k untrasferred objects with highest priorities using a partial sort.
The projected area prioritization uses the estimated pro-
as1 jected area of the object as its priority. For this scheme we
a2 used stochastic sampling algorithm that constructs a cumula-
ass tive distribution function (CDF) and uses it to randomly draw
ass the objects to be sent with probability proportional to the pri-
ass orities. To select an object to be sent we generate a uniformly
ass distributed random number which is mapped to a particular ob-
a7 ject index by using a binary search in the CDF.

388 The as is scheme involves no prioritization and is suitable
ase for the case when the camera parameters are not available at the
aso server side or when the server could get overloaded by evaluat-
a01 ing the view dependent client prioritization schemes.

The random scheme sends the scene objects in a random or-
ass der. This allows to test how the incremental construction han-
s dles incoherent data both in terms of speed and BVH quality.

370

375

380

392

305 7. Results

We have implemented the proposed incremental BVH con-
ae7 struction method in C++. The GPU ray tracing part is imple-
ase mented using CUDA. The results were evaluated on a PC with
ase Intel Xeon ES5-1620/3.60GHz CPU (4 cores) with 16GBytes
a0 RAM, equipped with NVIDIA GeForce GTX 580 GPU with
w01 3GBytes RAM. For measurements we used nine test scenes
s02 Which are summarized in Figure 7.

396

5

1] y

W)

Sibenik

Armadillo

Soda Hall

Hairball

San Miguel Power Plant

Figure 7: Snapshots of the tested scenes.

a3 7.1. Incremental BVH Construction

First we evaluated the proposed incremental BVH construc-
405 tion algorithms. We focused on the construction time and the
a0s resulting quality of the BVH. The quality was expressed using
a7 the SAH cost of the BVH and also by measuring the GPU ray
a0s casting performance. As reference methods we used a BVH
a00 constructed by a high quality sweep-based SAH builder (de-
410 noted SAH) and by spatial median splits (denoted Median). For
a1 our proposed algorithm we evaluated four versions: the first one
a1z (Incr) uses only insertion operations and performs no global
a3 updates, the second one (IncrU) uses the global updates, the
a1a third one (IncrUP) uses parallel search and global updates, and
a1s the fourth one (IncrUPB) uses block parallel construction with
a6 global updates. The parameters for the global updates were
a7 N, = 8000 and k, = 1%. We have used three different stream
a1 ordering methods: as is, view direction prioritization, and ran-
a1s dom. Note that the random order represents an extreme case
a20 for the incremental insertion build as there is almost no coher-
s21 ence among consecutive triangles in the stream. The measured
s22 results are summarized in Table 1.

Build time. The results show that even the sequential imple-
2« mentations of the proposed methods (Incr, IncrU) are always
s2s significantly faster than the full sweep SAH builder (SAH) in
426 terms of BVH construction speed. For coherent stream orders
«27 they are about twice slower than the spatial median algorithm
«2s (Median), but this gap gets larger for random ordering. We can
429 also observe that the IncrU method is faster than Incr for all
a0 cases except for the random stream order. This is due to the
sa1 fact that the method continuously works with a slightly more
a2 optimized BVH, which also reduces the cost of insertion opera-
a3 tions. The parallel search based implementation of the method
3¢ IncrUP is about 15 — 50% faster than IncrU, while the block
ass parallel method IncrUPB is up to 5 times faster than IncrU.
ss However for random stream order the speed benefit of the In-
4«57 crlUPB method reduces and it can even get slower than the In-
s crUP method.

404

423

439 BVH cost. Regarding the quality of the constructed BVH
a0 We can observe that in most cases both incremental construc-
a1 tion methods construct a BVH with even lower cost than the
a2 full top-down SAH builder. In particular the BVH constructed
a3 with IncrU method has usually about 10% lower cost than the
ss BVH constructed with full SAH. An exception when the BVH
s cost for the incremental construction is higher than SAH is the
s Happy Buddha scene. An interesting observation is that the
a7 random stream order leads to higher quality BVH for the incre-
1 mental methods. This is however paid by significantly longer
s construction times.

450 Streaming speed. We also expressed the average streaming
ss1 throughput for the incremental BVH construction expressed in
ss2 millions of triangles per second inserted into the BVH (MTris/s).
ss3 This throughput varies among the tested scenes in the range of
a4 0.1 - 0.8 MTris/s for the sequential implementation and 0.1 -
sss 2.9 MTris/s for parallel implementation. When comparing the
ss6 speed versus quality of the different incremental construction
ss7 methods we can observe that the IncrUP would be the method
sss of choice when the BVH quality is important. On the other hand
sso the IncrUPB method is a good choice when maximum stream-
a0 ing throughput is desired.

461 Ray tracing speed. Table 1 also shows the measured GPU
a2 ray tracing performance for the final BVH constructed by the

ss3 different methods expressed in millions of rays per second (MRays/s)

ss« for two different ray types (primary rays and ambient occlusion
aes rays). For all the proposed methods the measured performance
aes varies between 25-294 MRays/s and allows real-time ray trac-
a7 ing of the tested scenes. We can observe that the highest ren-
sss dering performance is mostly obtained using the IncrU or In-
sss crUP methods, while the block parallel InctUPB method usu-
s70 ally achieves slightly lower ray tracing performance.

ant Progress of the computation. To evaluate the progress of
a2 the incremental BVH construction we show the number of pro-
a73 cessed triangles as a function of time (Figure 8-left). We ob-
a74 served that the triangle insertion throughput slightly decreases

475 as the BVH contains more nodes, but this dependence is very
a7s weak. This conforms with the theoretic logarithmic decay of
477 the triangle insertion throughput. Figure 8-middle shows that
a7s the BVH cost has generally non uniform evolution as we can
479 observe also the sudden reductions of the BVH cost in time
ass0 Which are caused by a successful batch of update operations.
a1 Note that for the case of random triangle order the cost evo-
se2 lution curve is much smoother (see Figure 8-right). Figure 9
4ss shows a detailed comparison of the BVH cost evolution for dif-
ss¢ ferent streaming strategies on three selected scenes. To give an
sss idea how frequent the global BVH updates are we measured the
sss relative number of update operations expressed as the number
ss7 of update operations with respect to the number of triangles in
sss the scene. This value varies among 0.6-1.7%, so a relatively
s low number of update operations is able to keep the tree well
as0 balanced.

We also tested the influence of changing the number of up-
a2 dated nodes per batch (k,). When increasing k, from 1% to 5%,
ssa we observed a marginal increase of build time in order of 1%
404 t0 5% and also a reduction of the BVH cost in order of few
495 percent for vast majority of tests. In some cases the reduction
a6 of the BVH cost was even more significant (e.g. 20% lower
a97 cost for IncrU on Happy Buddha at 5% increase of build time).
ss However, in some other cases the time increase was higher, but
as0 it was not reflected in the higher cost reduction (e.g. 30% in-
so0 crease of build time with 2% cost reduction for IncrU at San
sot Miguel).

491

so2 7.2. Ray Tracing Streaming Data

In order to evaluate the sample application using network
sos Streaming we captured several videos showing the behavior of
sos the application depending on the data prioritization method and
sos network bandwidth (the videos are provided as a supplementary
so7 material for the paper). Several snapshots showing the applica-
sos tion at different stages of data streaming are shown in Figure 1.
The projected area based prioritization provides a very fast
s1o global overview of the scene structure, however due to its inher-
s11 ent stochastic nature the scene contains a lot of noise appearing
si2 as cluttered geometry. The view direction prioritization on the
s13 other hand quickly reveals the details in the area of camera fo-
s14 cus, while it takes longer to give the global scene structure. In
s1s our tests we generally found the view direction method more
st pleasant to use and very intuitive - when the user moves the
si7 camera the method automatically streams the part of the scene
s1s in the new camera focus.

We also measured the GPU ray tracing performance in de-
s20 pendence on the number of received triangles for the different
s21 streaming strategies (see Figure 10). We observed that for the
s22 projected area based prioritization the ray tracing speed reduces
s23 faster than for the other two methods. This follows from the
s24 fact that this prioritization technique is designed to fill the ren-
s2s dered image with objects as fast as possible (most rays intersect
s2 some visible objects at early stages of the computation). The
s7 other two methods fill the image more gradually, which as a
s side product is reflected in the slower reduction of the render-
s20 ing speed. Note that even for the final BVH with several mil-

503

509

519

so lion triangles, the rendering speed is sufficient for interactive
sa1 ray tracing of the scene as shown in Table 1.

1400 T T T
1200 7
% 1000 .
2
£ 800 .
=
3 600 7
o
Q.
@ 400 a
200 7
1 1 1 1 1 1 1
0 10000 30000 50000 70000
Triangles [-]
700 T T T T T T T
600
% 500
|
€ 400
¢ wff
3 300 \\\
[
Q
@200
100
1 1 1 1 1 1 1
0 1e+06 3e+06 5e+06 7e+06
Triangles [-]

view direction

asis projected area

Figure 10: Performance of the GPU ray tracing depending on the number of
triangles inserted into the BVH. The graph shows different streaming prioriti-
zation methods measured on the Sibenik (top) and San Miguel scene (bottom).

s32 8. Discussion and Limitations

533 BVH cost. The results show that the proposed method con-
s structs a very high quality BVH for most tested scenes. How-
sis ever we have observed that for some scenes with a simpler
s and more regular structure the methods performs slightly worse
ss7 than the top-down SAH (e.g. HappyBuddha, Armadillo). This
s can be compensated by subsequent update passes applied on
s39 such scenes [9].

540 Comparison to Goldsmith and Salmon. The only previously
se1 proposed and evaluated incremental BVH construction method
sz for ray tracing is the technique proposed in the highly influ-
543 ential paper of Goldsmith and Salmon [7]. This paper contains
ses rather vague description of the actual algorithm, however the re-
sss sults obtained by different implementations of the method [2, 3]
ss6 show that our technique creates more than an order of mag-
se7 nitude better BVH in terms of its cost, particularly for larger
sss scenes for which the method of Goldsmith and Salmon fails to
se9 construct a BVH comparable with the top-down SAH builders.
Construction Speed. The proposed methods achieve con-
ss1 struction speeds of 0.1-2.9MTris/s. This is on one hand much
ss2 higher than the equivalent speed of the reference full SAH builder,

550

sss on the other hand lower than the speed of the fast GPU builders [17,

ss« 18]. A benefit of the proposed method is that by performing the
sss construction on the CPU, the GPU can ray trace the scene in
sse real-time without being forced to offload its resources to the
ss7 BVH construction. Another important benefit is the reduced

7

350 |- - 350 |- .

L 1eH07 et 300 — 300 - .
- E el 12 20 . E 250 - .
B let06 - 4 S 200 - 4 S 2001 .
‘é E] E 150 |- — = E 150 |- -
100000 & . 100 S S 100 - :

F E 50 . 50 | //,_/ .

10000 bl el I) SRR S SRNY EER B

0.01 0.1 1 10 100 0.01 0.1 1 10 100 0.01 0.1 1 10 100 1000
Time [s] Time [s] Time [s]
Sibenik ——— Conference Armadillo HappyBuddha
SodaHall ----- Hairball Pompeii ----- SanMiguel PowerPlant - - -

Figure 8: (left) The number of inserted triangles as a function of time for all tested scenes using as is triangle order. (middle) The evolution of the BVH cost during
the BVH construction using as is triangle order. We can observe moments when the cost was decreased due to the global BVH updates. (right) The evolution of the
BVH cost during the BVH construction using random triangle order. Note the logarithmic scales of the graphs.

SodaHall Hairball
200 e 1600 e 220 — _ PowerPlant —
180 / / 1400 200
160 71/ 1200 / e |
T 140 = I = -
Y — | [/I/ = 1000 = 140
g 10 \ K‘M & s g 120 —
= 100 1 = / 2 100 / ’
Z 80 | z 600 z % B,
60 . 400 60
40
40 = 200 20]]
20 bl vl 0 = = I ol T A I B
0.01 0.1 1 10 100 0.01 0.1 1 10 100 0.01 0.1 1 10 100 1000
Time [s] Time [s] Time [s]
—asis — view direction — random

Figure 9: The evolution of the BVH cost during the BVH construction for the IncrU method measured on Soda Hall, Hairball, and Power Plant scenes. We can
observe moments when the cost was decreased due to the global BVH updates, especially in the case of as is stream order. Note that the random stream order causes
smooth BVH cost evolution and leads to slightly lower final BVH cost at the expense of higher computational time.

latency of the rendered image. In particular if the construc-
tion speed in MTris/s is higher or comparable to the streaming
throughput our method leads to minimal latency in the appear-
ance of the data on the screen regardless of the scene complex-
se2 ity. The latency is caused only by inserting either a single tri-
ses angle or a batch of triangles into the tree. Note that the latency
se« reduction is useful also for loading large data sets from the disk.
ses [t is often the case that the data is stored in a format which needs
sss decompression and parsing and thus the streaming throughput
se7 of the parser in MTris/s is similar to the speed of our incre-
ses mental construction algorithm. That means that as soon as the
seo parsing of the scene is finished, the BVH is already available
s70 and can be used for rendering.

571 Latency Analysis and Comparison. We conducted a com-
s72 parison, which aims at defining a use case for which the in-
sz cremental BVH construction outperforms the existing fast CPU
s7 and GPU builders. The comparison is based on the recent re-
s75 sults reported by Karras and Aila [23] and Gu et al.[21].

For the comparison we use the San Miguel scene with build-
s77 ing times and ray traversal performance reported in the original
s7s papers. For the method of Gu et al. we scaled the reported
s79 building performance to four core CPU to make the results com-
ss0 parable to the ones measured on our hardware. We evaluate the
se1 latency of appearance of a batch of triangles once the batch is
se2 received by the test application. For the non-incremental meth-

55

©

55

©

56(

S

56

o

576

CPU insert | Cofy insert 1] cofy —

GPU ¢§ render —{ copy { render HcopyH render
latency CPU incremental
CPU rcv rcv
GPU $ render H copyH build H render
latency GPU full build

Figure 11: The main components of the latency of appearance of newly re-
ceived geometry. (top) Latency for CPU incremantal construction. Note that if
the newly inserted geometry is small enough the insertion time is completelly
hidden by the rendering time and thus the latency is given only by copy and
rendering times. (bottom) Latency for full build on the GPU.

sss 0ds we assume that the BVH is rebuilt from scratch when the
ss4 batch of triangles is received. The latency has three main com-
ses ponents: time for copying the new data to the GPU, time for
ses building/updating the BVH, and time for rendering the frame
se7 (see Figure 11). For the GPU builders (denoted Karras2013 and
sss LBVH) the latency can be approximated as: t; = 2(pNr/sc +
se0 (1 + p)Nr/sp+ Ng/sg), where p is the relative number of newly
so0 inserted triangles, Ny is the number of scene triangles, sc is
so1 the speed of copying the triangles from CPU to GPU, sp is
se2 the construction speed, N is the number of rays cast for one

8

ses frame, and sg is the speed of tracing the rays with the given
se BVH. For the CPU builder proposed by Gu et al. [21] (de-
ses noted Gu2013) the latency is expressed as #; = 2(pNy/sc +
sos max((1 + p)Nr/sp, Ng/sg)) since the CPU building and GPU
se7 rendering can run in parallel. For the proposed incremental
ses methods (IncrU and IncrUPB) the latency is expressed as t; =
so0 2(pN1/5c + max(pNr/sg, Ng/sg)) since the insertion and GPU
eo0 rendering runs in parallel and furthemore we only insert the new
eo1 triangles in the tree. Note that in the latency models we assume
eo2 that the triangle insertion speed and the ray tracing speed are
e0s constant for the given method, which does not hold especially
s« When p is large as both are influenced by the newly inserted tri-
eos angles. However, we target at the use case when p is small for
s Which this approximation is sufficient.

Latency [s] Latency [s]
31 — IncrU 31 — IncrU
— IncrUPB — IncrUPB
Gu2013 Gu2013
2 Karras2013 2 Karras2013
— LBVH — LBVH _—
1 / / 1 -
0.1 10 100 0.1 10 100
inserted [%] inserted [%)]
4M 30M
Method SB SR 1]
[MTris/s] | [MRays/s] [ms]
IncrU 0.44 99 359 605
IncrUPB 1.60 69 116 866
LBVH 107.0 55 294 | 1081
Karras2013 29.0 84 650 | 1272
Gu2013 14.8 92 | 1081 | 1234

Figure 12: The comparison of rendering latency for different BVH construction
methods when inserting a batch of new triangles in the scene. The plots and the
table show the latency in dependence on the size of the inserted batch for the
SanMiguel scene. (top) Casting 4M rays per frame. (middle) Casting 30M rays
per frame. (bottom) The table showing parameters used for compared methods
and the evaluated latency for the case of inserting 1% of new scene triangles
and tracing either 4M or 30M rays. sp is the construction speed, and sg is the
ray tracing speed, #; is the evaluated latency. Note that the CPU to GPU transfer
speed was set to s¢ = S00MTris/s for all methods.

607 The results of the comparison for small number of rays
eos per frame (4M) and larger number of rays per frame (30M)
oo are shown in Figure 12. We can observe that with 4M rays
et0 per frame the incremental construction (methods IncrU and In-
et crUPB) lead to significantly lower latency for small values of
ez p. Observe that for the incremental methods the latency is con-
e1s stant for small batches as it is solely given by copy and ren-
e1a dering times. Therefore the benefit of the incremental con-
e1s struction would become even more apparent if lower number
et Of rays would be cast. For larger batches (> 3% of scene size)
e17 the slower triangle throughput of the incremental insertion be-
s1s comes more apparent and the LBVH method leads to the small-
619 est latency among compared methods. For higher number of
e20 rays shown in the second plot the situation is similar for small
e21 batches of inserted triangles although the latency reduction is
e22 nOt that significant anymore as the tracing time becomes more

e23 significant. The incremental methods provide the best results
e2s until the batch size of 12% of scene size. For a short interval
e2s of batch sizes (12%-17%) the method of Gu et al. provides
e2s the best results as it is relatively fast and provides a high qual-
e7 ity BVH, while for the even larger batches again the LBVH
e2s method leads to the smallest latency. To summarize the latency
e29 analysis, we conclude, that our method significantly reduces the
e latency compared to the state of the art full-build methods for
sa1 the case of incrementally inserting batches of triangles forming
ez only a fraction of the scene size.

633
e« forward and particularly in its sequential version it is much sim-
es pler than that of the other high quality BVH builders. This
& makes the method a good choice for rapid prototyping of appli-
ea7 cations requiring high quality BVH. In more complex projects
e the method can coexist with other BVH construction / update
s implementations (running either on CPU or GPU) and the one
s«0 most efficient for target application should be used.

641 Limitations. As the main limitation of the method we see
es2 the need for synchronization of the insertion and update opera-
ess tions. The proposed parallelization methods are able to partially
s« remove this limitation. However, the parallel search method
ess does not scale well to larger number of threads. The block par-
ess allel construction scales well except for the random triangle or-
ee7 der and generally leads to trees of slightly lower quality. The
ess scalability of the method might be improved by a combination
es9 Of insertion based construction with a different build strategy,
es0 but we leave this as a topic for future work. Additional issue
st which would have to be addressed in the actual streaming based
es2 application is handling materials and particularly textures. As
es3 textures are typically defined over larger geometric groups the
es¢ streaming should take texture information into account when
ess determining a geometry order providing the fastest visual feed-
es6 back.

Data Prioritization. We used three basic strategies for data
ess prioritization in order to demonstrate the possibilities of the
eso proposed incremental BVH construction. There are numerous
eso alternatives how to prioritize the data and also how to incor-
es1 porate scalable geometric representation by using LOD tech-
es2 niques. A deeper evaluation of the different streaming strate-
ess gies and associated LOD methods goes out of the scope of our
es¢ paper, in which the core contribution is the incremental BVH
ees construction algorithm and its evaluation.

657

es 9. Conclusion

e7 We have proposed an incremental BVH construction algo-
ess rithm, which constructs a BVH with better or comparable qual-
eso ity than the traditional SAH based top-down BVH construction
70 methods. The proposed method debunks the myth of insertion
71 based BVH construction not being competitive with the top-
¢72 down BVH construction. The sequential implementation of the
e7s algorithm achieves construction speeds up to 0.8 million trian-
e74 gles per second, and the parallel algorithm achieves speeds up
e75 t0 2.9 million triangles per second on a 4 core CPU. This makes
e76 the proposed method significantly faster compared with the ref-
e77 erence implementation of the precise top-down SAH build.

9

Implementation. The implementation of the method is straight-

We have shown a possible application of the method for
e79 real-time ray tracing of scenes which are streamed over a net-
eso work. This application uses GPU ray tracing, while the net-
est working layer and the incremental BVH construction is imple-
ez mented on the CPU. We have used several simple prioritization
ess schemes allowing fast previewing of large data sets even in the
ess case of low network bandwidth. We believe that our method has
ess & prospective use in mobile setups when streaming data over the
ess network. In the future we would like to study other possible ap-
es7 plications of the incremental BVH construction such as LOD
ess methods or handling large scale online virtual worlds.

678

ss0 Acknowledgements

690 We would like to thank Marko Dabrovic for the Sibenik
o1 model, Greg Ward for the Conference model, Carlo H. Séquin
se2 for the Sodahall model, Samuli Laine and Tero Karras for the
ess Hairball model, Guillermo Llaguno for the San Miguel model,
eosa the UNC for the Powerplant model, and Stanford repository for
eos the Armadillo and Happy Buddha models.

We would also like to thank Tero Karras, Timo Aila, and
eo7 Samuli Laine for releasing their GPU ray tracing framework.
ess This research was supported by the Czech Science Foundation

696

735 [12]
736
737
738
739 [13]
740
741
742 [14]
743
744
745 [15]
746
747
748 [16]
749
750
751 [17]
752
753
754 [18]
755
756
757 [19]
758
759
760 [20]
761
762
763 [21]

e90 under research programs P202/11/1883 (Argie) and P202/12/2413%
765

70 (Opalis) and the Grant Agency of the Czech Technical Univer-
701 sity in Prague, grant No. SGS13/214/OHK3/3T/13.

72 References
[1] T.Aila, S. Laine, Understanding the Efficiency of Ray Traversal on GPUs,
in: Proceedings of HPG 2009, 2009, pp. 145-149.

V. Havran, Heuristic Ray Shooting Algorithms, Ph.d. thesis, Department
of Computer Science and Engineering, Faculty of Electrical Engineering,
Czech Technical University in Prague (November 2000).

J. P. M. Masso, P. G. Lopez, Automatic Hybrid Hierarchy Creation: a
Cost-model Based Approach, Computer Graphics Forum 22 (1) (2003)

703
704
705
706
707
708
709

[2]

[3]

710 5-13.

711 [4] S. M. Rubin, T. Whitted, A 3-Dimensional Representation for Fast Ren-
712 dering of Complex Scenes, in: SIGGRAPH ’80 Proceedings, Vol. 14,
713 1980, pp. 110-116.

714 [5] H. Weghorst, G. Hooper, D. P. Greenberg, Improved Computational
715 Methods for Ray Tracing, ACM Transactions on Graphics 3 (1) (1984)
716 52-69.

717 [6] T. L. Kay, J. T. Kajiya, Ray Tracing Complex Scenes, in: D. C. Evans,
718 R.J. Athay (Eds.), SIGGRAPH ’86 Proceedings), Vol. 20, 1986, pp. 269—
719 278.

(7]

720
721

J. Goldsmith, J. Salmon, Automatic Creation of Object Hierarchies for
Ray Tracing, IEEE Computer Graphics and Applications 7 (5) (1987)
14-20.

S. M. Omohundro, Five Balltree Construction Algorithms, Tech. Rep.
TR-89-063, International Computer Science Institute, Berkeley (Nov
1989).

J. Bittner, M. Hapala, V. Havran, Fast Insertion-Based Optimization of
Bounding Volume Hierarchies, Computer Graphics Forum 32 (1) (2013)
85-100.

I. Wald, On fast Construction of SAH based Bounding Volume Hierar-
chies, in: Proceedings of the Symposium on Interactive Ray Tracing,
2007, pp. 33-40.

V. Havran, R. Herzog, H.-P. Seidel, On the Fast Construction of Spatial
Data Structures for Ray Tracing, in: Proceedings of IEEE Symposium on
Interactive Ray Tracing 2006, 2006, pp. 71-80.

722
723 [8]
724
725
726
727
728
729
730
731
732
733
734

[9]

(10]

(1]

766 [22]
767
768
769 [23]
770
77
772 [24]
773
774
775
776

[25]

777
778
779
780

[26]

781
782 [27]
783
784
785 [28]

786

10

T. Ize, 1. Wald, S. G. Parker, Asynchronous BVH Construction for Ray
Tracing Dynamic Scenes on Parallel Multi-Core Architectures, in: Pro-
ceedings of Symposium on Parallel Graphics and Visualization *07, pp.
101-108.

W. Hunt, W. R. Mark, D. Fussell, Fast and Lazy Build of Acceleration
Structures from Scene Hierarchies, in: Proceedings of Symposium on
Interactive Ray Tracing, 2007, pp. 47-54.

H. Dammertz, J. Hanika, A. Keller, Shallow Bounding Volume Hierar-
chies for Fast SIMD Ray Tracing of Incoherent Rays, Computer Graphics
Forum 27 1225-1233(9).

C. Lauterbach, M. Garland, S. Sengupta, D. Luebke, D. Manocha, Fast
BVH Construction on GPUs, Comput. Graph. Forum 28 (2) (2009) 375—
384.

1. Wald, Fast Construction of SAH BVHs on the Intel Many Integrated
Core (MIC) Architecture, IEEE Transactions on Visualization and Com-
puter Graphics 18 (1) (2012) 47-57.

J. Pantaleoni, D. Luebke, HLBVH: Hierarchical LBVH Construction for
Real-Time Ray Tracing of Dynamic Geometry, in: Proceedings of High
Performance Graphics *10, 2010, pp. 87-95.

K. Garanzha, J. Pantaleoni, D. McAllister, Simpler and Faster HLBVH
with Work Queues, in: Proceedings of posium on High Performance
Graphics, 2011, pp. 59-64.

T. Karras, Maximizing Parallelism in the Construction of BVHs, Octrees,
and k-d Trees, in: Proceedings of the EUROGRAPHICS Conference on
High Performance Graphics 2012, 2012, pp. 33-37.

B. Walter, K. Bala, M. Kulkarni, K. Pingali, Fast Agglomerative Cluster-
ing for Rendering, in: IEEE Symposium on Interactive Ray Tracing 2008,
pp. 81-86.

Y. Gu, Y. He, K. Fatahalian, G. E. Blelloch, Efficient BVH Construction
via Approximate Agglomerative Clustering, in: Proceedings of High Per-
formance Graphics, ACM, 2013, pp. 81-88.

A. Kensler, Tree Rotations for Improving Bounding Volume Hierarchies,
in: Proceedings of the 2008 IEEE Symposium on Interactive Ray Tracing,
2008, pp. 73-76.

T. Karras, T. Aila, Fast Parallel Construction of High-Quality Bound-
ing Volume Hierarchies, in: Proceedings of High Performance Graphics,
ACM, 2013, pp. 89-100.

T. Aila, T. Karras, S. Laine, On Quality Metrics of Bounding Volume
Hierarchies, in: In Proceedings of High Performance Graphics, ACM,
2013, pp. 101-108.

W.T. Correa, J. T. Klosowski, C. T. Silva, Visibility-Based Prefetching for
Interactive Out-Of-Core Rendering, in: Proceedings of the IEEE Sympo-
sium on Parallel and Large-Data Visualization and Graphics (PVG’03),
2003, pp. 1-8.

C. Lauterbach, S.-E. Yoon, M. Tang, D. Manocha, ReduceM: Interactive
and Memory Efficient Ray Tracing of Large Models, Comput. Graph.
Forum 27 (4) (2008) 1313-1321.

E. Gobbetti, D. Kasik, S. Yoon, Technical Strategies for Massive Model
Visualization, in: Proc. ACM Solid and Physical Modeling Symposium,
2008, pp. 405-415.

T. Karras, T. Aila, S. Laine, Understanding the Efficiency of Ray Traver-
sal on GPUs; Google Code (2009).

Build |[BVH |Stream.| GPU | GPU (| Build | BVH|Stream.| GPU | GPU ||Build| BVH|Stream.| GPU | GPU
Method | time | cost | speed |primary| AO time | cost | speed |primary| AO time | cost | speed |primary| AO

O e e et B I I O e M et B

Sibenik, 80k triangles Conference, 283k triangles Armadillo, 307k triangles
SAH 0.44 | 82.3 n/a 137 191 1.93 | 130 n/a 124 198 1.98 | 86.3 n/a 159 86.5
Median | 0.06 | 391 n/a 18.7 273 || 0.20 | 842 n/a 14.4 30.8 || 0.24 | 144 n/a 93.8 61.1
as is
Incr 0.11 | 80.2 | 0.68 105 140 0.68 | 119 | 0.41 113 192 0.77 | 101 | 0.39 125 74.4
IncrU 0.12 | 73.8 | 0.66 127 176 0.68 | 109 | 0.41 123 215 0.87 [97.3| 0.35 130 75.5
IncrUP | 0.10 | 82.0 | 0.78 99.8 144 0.49 | 121 | 0.56 97.6 178 0.70 | 98.3 | 0.43 132 75.5
IncrUPB| 0.04 | 83.7 | 1.96 93.2 136 0.13 | 133 | 2.11 116 216 0.58 | 111 | 0.52 111 68.3
view direction
Incr 0.24 | 85.8 | 0.33 74.6 114 1.00 | 132 | 0.28 96.1 179 1.62 | 273 | 0.18 56.8 38.8
IncrU 0.22 {739 | 0.35 125 156 0.92 | 109 | 0.30 103 203 1.17 | 134 | 0.26 91.1 61.2
IncrUP | 0.18 | 74.8 | 0.42 101 142 0.72 | 108 | 0.39 112 216 0.88 | 133 | 0.34 90.0 61.9
IncrUPB| 0.04 | 96.0 | 1.67 58.3 116 0.19 | 128 | 1.42 72.4 143 0.22 | 126 | 1.38 102 64.6
random
Incr 0.24 1794 0.33 116 148 130 | 116 | 0.21 125 221 0.96 | 949 | 0.31 133 77.9
IncrU 0.29 | 71.7| 0.27 136 181 1.45 | 105 | 0.19 132 237 1.12 | 94.1 | 0.27 138 78.2
IncrUP | 0.23 | 71.4 | 0.33 125 179 1.13 | 105 | 0.25 121 238 093 (943 | 0.32 136 77.9
IncrUPB| 0.25 [91.6 | 0.32 100 133 1.37 | 139 | 0.20 68.0 117 1.08 | 105 | 0.28 114 73.1

HappyBuddha, 1,087k triangles SodaHall, 2,169k triangles Hairball, 2,880k triangles
SAH 891 | 165 n/a 355 82.6 || 22.5 | 217 n/a 113 156 || 24.1 |1415| n/a 13.6 36.9
Median | 0.82 | 276 n/a 203 449 | 1.88 |1396| n/a 8.11 8.96 || 2.42 |2447| n/a 8.18 21.2
as is
Incr 2.63 | 346 | 041 162 425 || 3.84 | 204 | 0.56 84.2 116 || 6.69 |1517| 043 9.23 25.6
IncrU 2351230 | 046 227 56.2 || 3.55| 183 | 0.61 75.1 157 || 6.19 | 1460 | 0.46 11.2 29.7
IncrUP | 1.76 | 242 | 0.61 210 52.2 11290 | 224 | 0.74 67.2 959 | 5.18 | 1908 | 0.55 7.60 22.8
IncrUPB| 1.56 | 271 | 0.69 170 499 | 0.76 | 229 | 2.85 86.2 113 1.08 |2115] 2.65 7.03 16.1
view direction
Incr 6.13 | 457 | 0.17 120 36.0 || 8.52 | 220 | 0.25 102 134 18.8 | 1772 0.15 8.68 22.7
IncrU 449 | 243 | 0.24 233 55.0 || 8.16 | 188 | 0.26 121 155 18.0 | 1571| 0.15 10.4 27.1
IncrUP | 3.39 | 240 | 0.32 226 55.0 || 6.54 | 189 | 0.33 81.8 158 14.1 |1569| 0.20 10.7 27.6
IncrUPB| 1.39 | 289 | 0.77 148 49.6 || 2.05| 238 | 1.05 38.0 87.8 || 8.08 |2601| 0.35 4.43 18.8
random
Incr 453 | 184 | 0.24 298 72.1 || 12.5] 198 | 0.17 112 135 17.7 | 1431| 0.16 11.8 31.5
IncrU 549 | 181 | 0.19 294 73.1 || 145|183 | 0.14 115 175 | 20.3 |1424| 0.14 12.0 31.7
IncrUP | 4.21 | 183 | 0.25 291 724 || 114] 185 | 0.19 107 157 15.8 | 1424 0.18 11.7 31.2
IncrUPB| 4.85 | 194 | 0.22 266 67.8 || 13.1 | 229 | 0.16 62.0 101 21.8 | 1853 | 0.13 9.71 26.4

Pompeii, 5,646k triangles SanMiguel, 7,881k triangles PowerPlant, 12,749k triangles

SAH 46.7 | 253 | n/a 24.7 364 || 107 | 181 n/a 44.0 95.5 || 209 | 116 | n/a 141 75.1
Median | 4.27 | 767 | n/a 8.59 129 || 7.96 | 1278 | n/a 4.32 8.62 || 14.6 | 661 n/a 8.82 9.44
as is
Incr 11.4 | 266 | 0.49 20.8 36.0 || 203 | 177 | 0.38 40.3 80.6 || 34.7 | 120 | 0.36 354 | 743
IncrU 10.6 | 231 | 0.53 245 | 424 || 179 | 158 | 0.44 48.6 | 993 || 275|104 | 0.46 139 82.0
IncrUP | 7.97 | 258 | 0.70 20.8 343 || 133 | 172 | 0.59 34.4 842 11203 | 118 | 0.62 101 61.4
IncrUPB| 2.13 | 272 | 2.64 20.2 353 || 492|192 | 1.59 34.0 69.3 || 4.63 | 117 | 2.75 87.6 64.6
view direction
Incr 27.7 1 274 | 0.20 19.7 342 | 49.7 | 212 | 0.15 254 589 | 121 | 132 | 0.10 96.9 59.5
IncrU 25.8 | 240 | 0.21 23.0 | 384 | 46.7 | 165 | 0.16 38.9 84.1 114 | 107 | 0.11 126 78.3
IncrtUP | 19.3 | 240 | 0.29 22.5 364 | 363 | 166 | 0.21 41.7 | 87.2 || 93.3| 108 | 0.13 118 772
IncrUPB| 4.53 | 348 | 1.24 15.7 274 | 163|205 | 0.48 26.5 584 | 448 | 149 | 0.28 60.5 40.7
random
Incr 41.1 | 241 | 0.13 235 38.7 || 58.8 | 169 | 0.13 33.5 86.9 | 115 | 107 | 0.11 131 76.6
IncrU 48.8 | 234 | 0.11 24.1 37.6 || 69.2 | 154 | 0.11 43.5 101 136 | 102 | 0.09 149 85.8
IncrUP | 357 | 233 | 0.15 249 | 40.2 || 523|153 | 0.15 45.6 102 || 935|103 | 0.13 140 86.5
IncrUPB | 46.6 | 313 | 0.12 17.4 322 || 64.6| 178 | 0.12 35.1 78.7 || 128 | 130 | 0.09 60.0 56.0

Table 1: Results of the incremental BVH build. The lowest BVH costs and the highest streaming and rendering speeds for the given scene and the stream order are
highlighted.

11

