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Abstract

We present a new method for computing visibility from a polygonal region in the
plane considering a set of line segments as occluders. The proposed method provides
a comprehensive description of visibility from the given region. We represent sets of
occluded rays using a hierarchical partitioning of dual space (line space). The line
space partitioning is maintained by a BSP tree that provides efficient operations on
the sets of lines. The implementation shows that the method is suitable for com-
puting potentially visible sets in large scenes with various visibility characteristics.
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1 Introduction

Visibility is essential for many techniques of image synthesis and therefore it
has been studied intensively in the past. The traditional algorithms solve the
problem of visibility from a point (e.g. z-buffer), or visibility along a line (ray
shooting). The current research focuses on computing visibility from a region
(also called regional or from-region visibility) and global visibility. Regional
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visibility algorithms capture visibility along each ray intersecting the given
region, global visibility algorithms capture visibility along all rays intersect-
ing the scene. These methods are crucial for soft shadow generation, global
illumination, and real-time walkthroughs.

Our method is primarily targeted at walkthrough applications where visibility
preprocessing by means of regional visibility is commonly used to accelerate
rendering of large densely occluded scenes. In a preprocessing step the scene
is subdivided into regions (view cells) and for each view cell we determine a
potentially visible set of objects (PVS). In real time only the objects from the
PVS are rendered for any view point inside the current view cell.

Many complex real world scenes used in computer graphics have largely 2D or
2.5D nature. Consider for example a building interior where the structure of
the scene is predominantly given by the ground plan. Outdoor urban scenes
can often be considered a 2D height function [1]. Consequently, the corre-
sponding visibility computations can either be reduced to a set of 2D visibility
problems [2] or solved by specialized algorithms tailored to the scene struc-
ture [3,1]. Figure 1 shows a PVS computed for a view cell in a 2D footprint
of a large urban scene.

Fig. 1. Illustration of the from-region visibility in 2D. The scene represents a 2D
footprint of 25km? of Glasgow city containing 94460 line segments. The PVS formed
by the occluders visible from the given region is shown in red. The yellow lines depict
visibility discontinuities.

Recently, Bittner et al. [4] presented an efficient visibility preprocessing method
for 2.5D urban scenes that is based on a 2D regional visibility algorithm. In
this paper we thoroughly discuss formal aspects of the 2D visibility algorithm
used as a core of the 2.5D method [4]. The presented method determines vis-
ibility from a polygonal region in the plane considering a set of line segments



as occluders. We provide an analysis of 2D regional visibility using dual space
analogy and discuss an efficient hierarchical method for representing occlu-
sion and testing visibility. In contrast to conservative visibility preprocessing
algorithms [5,1] our technique is exact and yields comprehensive description
of visibility from a given region. The algorithm accounts for all types of oc-
cluder fusion [1,6] and it can easily handle large regions. The algorithm can
be applied to scenes with degenerate occluder configurations (overlapping and
intersecting occluders) and does not require explicit knowledge of occluder
connectivity. The method exhibits output sensitive behavior in practice [7],
i.e. its running time is proportional to the number of visible objects.

2 Related work

Visibility problems are studied in computer graphics, computer vision, robotics,
and other research areas. A comprehensive interdisciplinary survey was pub-
lished by Durand [8]. More recently, Bittner and Wonka [9] reviewed visibil-
ity problems and algorithms in computer graphics, and Cohen-Or et al. [10]
surveyed visibility algorithms for walkthrough applications. We first discuss
visibility algorithms for 3D scenes and then we review related 2D visibility
methods.

Computing exact regional visibility in 3D scenes is a very demanding task.
Plantinga and Dyer [11] partitioned the scene into regions with topologically
equivalent views (aspects). Teller [12], Drettakis and Fiume [13], and Stewart
and Ghali [14] dealt with the 3D regional visibility in the context of computa-
tion of shadow boundaries. Durand et al. [15] proposed the visibility skeleton
that captures all critical visual events. The currently known exact methods are
not directly applicable to large scenes due to their computational complexity
and numerical robustness problems.

Visibility culling techniques have been introduced to speedup rendering of
large scenes where only a fraction of the scene is actually visible [10]. Gener-
ally, we can distinguish between from-region and from-point visibility culling
algorithms. The from-point visibility algorithms require recomputation of vis-
ibility for each change of the view point. On the contrary, the from-region
visibility algorithms precompute visibility for each view point of the given
spatial region.

Greene et al. [16] proposed the hierarchical z-buffer that is a general discrete
from-point visibility algorithm. Zhang et al. [17] developed a similar method
that uses a hierarchical occlusion map and a depth estimation buffer. Continu-
ous from-point visibility algorithms were proposed by Luebke and Georges [18],
Coorg and Teller [19], Manocha et al. [20], and Bittner et al. [21].



Airey et al. [22] partitioned an indoor scene into cells and portals and for each
cell they computed an approximate PVS by identifying objects visible through
portal sequences. Teller and Séquin [3] developed a conservative variant of the
cell/portal visibility algorithm. The cell/portal techniques are restricted to
scenes with a natural cell /portal subdivision and cannot be applied for outdoor
urban scenes. Cohen-Or et al. [23] used ray shooting to sample occlusion due to
single convex occluder. Schaufler et al. [6] used blocker extensions to handle
occluder fusion, i.e. occlusion due to combined effect of multiple occluders.
Durand et al. [24] handled occluder fusion by extended occluder projections
and occlusion sweep. Wonka et al. [1] used occluder shadows for visibility
preprocessing in 2.5D scenes.

2D visibility was studied intensively in computational geometry as well as
in computer graphics. The visibility graph [25] is a well known structure for
capturing visibility in 2D scenes. Vegter [26] introduced the visibility diagram
containing more information than the visibility graph. Later, Pocchiola and
Vegter [27] proposed a similar structure called the visibility complex. The
visibility complex for polygonal scenes was studied by Riviere [28]. Hinken-
jann and Miiller [29] developed the hierarchical blocker trees, i.e. a discrete
structure similar to the visibility complex.

Our method is mostly related to the visibility diagram [26] and the visibility
complex [27,28]. We construct a hierarchical representation of a 2D cross-
section of the visibility complex involving objects visible from the given region.
In terminology of Vegter [26] our method provides a hierarchical representation
of the visibility function.

3 Algorithm overview

To compute visibility from a convex polygonal region we incrementally build
the occlusion tree that associates with each occluded ray emerging from the
region an occluder (line segment) that it first intersects.

The algorithm uses a kD-tree to organize the occluders; each leaf of the kD-
tree stores a list of occluders that intersect the corresponding region. The kD-
tree is used to generate an approximate front-to-back order of occluders with
respect to the given region. For each occluder, a line space blocker polygon is
constructed that represents rays intersecting the region and the occluder. The
blocker polygon is then inserted in the occlusion tree. The insertion yields parts
of the occluder that are currently visible. If the occluder is invisible, the tree
remains unmodified. The traversal of the kD-tree is interleaved with testing
visibility of its nodes using the current occlusion tree. If a node is classified
invisible, its whole subtree and the corresponding occluders are culled.



The rest of the paper is organized as follows: Section 4 discusses lines in-
tersecting a set of occluders and shows the corresponding configurations in
dual space. Section 5 describes the occlusion tree and algorithms for its con-
struction. Section 6 presents visibility tests using the occlusion tree. Section 7
outlines the complete hierarchical visibility algorithm. In Section 8 we evaluate
our implementation of the proposed methods. Finally, Section 9 concludes.

4 Sets of lines

Visibility is a phenomenon that can be defined by means of mutually unoc-
cluded points: Two points are mutually visible if the line segment connecting
them is unoccluded. From this definition we can observe that visibility is car-
ried by lines. Visibility from a given set of points is given by visibility along
lines intersecting these points. Our algorithm uses mapping of oriented 2D
lines to points in dual space, the line space. Such a mapping allows to handle
sets of lines much easier than in the primary space [27].

4.1  Parametrization of lines

To parametrize oriented 2D lines we use a 2D projection of Pliicker coor-
dinates [30]. This parametrization corresponds to an “oriented homogeneous
form” of the duality between points and lines in 2D [30]. Let [ be an oriented
line in E? and let u = (uy, uy) and v = (v,, v,) be two distinct points lying on
[. Line [ oriented from u to v can be described by the following matrix:

Ug Uy 1
M, = Y

Vg Uy 1
Pliicker coordinates {* of [ are minors of M;:
*
I = (uy — vy, Uy — Uy, Ugy — UyUy).

[* can be interpreted as homogeneous coordinates of a point in 2D oriented
projective space P2. Two oriented lines are equal if and only if their Pliicker
coordinates differ only by a positive scale factor. [* also corresponds to coef-
ficients of the implicit description of a line: I’ expressed as axz + by +c¢ = 0
induces two oriented lines I, I, with Pliicker coordinates Ij = (a,b,c) and
5= —(a,b,c).

Homogeneous coordinates are often normalized, e.g. I = (a/b,1,¢/b). The
normalization introduces a singularity: In our example vertical lines map to



points at infinity. To avoid singularities we embed P? in E*. Consequently, [*
represents a half-line in E® emerging from the origin. All points in E? lying
on the half-line [* represent the same oriented line /.

To sum up: An oriented line in 2D is mapped to a half-line beginning at the
origin in 3D. An example of the concept is depicted in Figures 2-(a) and 2-
(b). For the sake of clarity we will use 2D illustrations of line space (such as
in Figure 2-(c)). We will talk about planes and half-lines, but they will be
depicted as lines and points, respectively.

(c)

Fig. 2. (a) Four oriented lines in primal space. (b) Mappings of the four lines and
point p. Lines intersecting p map to plane p*. Lines passing clockwise (counterclock-
wise) around p, map to half-spaces p* (p* ). (c) The situation after projection to a
plane perpendicular to p*.

4.2 Lines intersecting a point
A pencil of oriented lines intersecting a point p = (ps, p,) maps to an oriented
plane p* in line space that is expressed as

p"={(z,y,2) € E* ‘Pwm +pyy +z = 0}.

This plane subdivides line space in two half-spaces p% and p*. Points in p*
correspond to oriented lines passing clockwise around p (see Figure 2). Points
in p% correspond to oriented lines passing counterclockwise around p. We
denote —p* an oriented plane opposite to p* that can be expressed as

—p" ={(z,,2) € B* \ —PaT —pyy — 2 =0}.
4.8 Lines intersecting a line segment

Oriented lines intersecting a line segment can be decomposed into two sets
depending on their orientation. Consider a configuration depicted in Figure 3.



The supporting line /g of a line segment S partitions the primal space into
half-spaces ST and S~. Denote a and b the two endpoints of S and a* and b*
their dual mappings. Lines that intersect S and are oriented from S~ to ST
can be expressed as an intersection of half-spaces a’; M b* in line space. The
opposite oriented lines intersecting S can be expressed as a* N b7 .

Fig. 3. (a) A line segment S and three oriented lines that intersect S. (b) The situa-
tion in line space: The projection of two wedges corresponding to lines intersecting
S. The supporting line [g of S maps to two half-lines that project to the point /%.
The line k intersects the point b and therefore its mapping lies in the plane b*. Lines
m and n map to the wedge corresponding to their orientation.

4.4 Lines intersecting two line segments

Consider two disjoint line segments such as those depicted in Figure 4-(a).
The set of lines intersecting the two line segments in a given order can be
described as an intersection of four half-spaces in line space. The intersection
of these half-spaces is a pyramid with the apex at the origin of line space.
The half-spaces are defined by mappings of the end-points of the two line
segments. The boundary half-lines of the pyramid correspond to mappings of
the four extremal lines induced by the two segments. Denote P(S,0) a line
space pyramid corresponding to lines intersecting line segments S and O in this
order. We represent the pyramid by a blocker polygon B(S,O) (see Figure 4-
(b)). The blocker polygon B(S,O) only represents the pyramid P(S,O) and
thus it need not be planar, i.e. its vertices may lie anywhere on the boundary
half-lines of P(S,0). We normalize the vertices of the blocker polygon to lie
on the unit sphere centered at the origin of line space.

In Figure 5-(a), the supporting line of cd intersects ab at point z. The set
of lines intersecting ab and cd consists of lines intersecting ax and cd, and
lines intersecting xb and cd. Lines intersecting ax and c¢d map to a pyramid
described by intersection of three half-spaces induced by mappings of a, x, and
d. Lines intersecting xb and cd can be described similarly. The configuration
in line space is depicted in Figure 5-(b).



Fig. 4. (a) Two line segments and the corresponding four extremal lines oriented
from S to O. The separating lines ad and bc bound the region of partial visibility
of S behind O (penumbra). The supporting lines ac and bd bound region where
S is invisible (umbra). (b) The blocker polygon B(S, O) representing the pyramid
P(S,0).

(b)

Fig. 5. (a) Degenerate configuration of line segments: The supporting line of cd
intersects ab at point z. There are five extremal lines. Note, that there is no umbra
region. (b) In line space the configuration yields two pyramids sharing a boundary
that is a mapping of the oriented line cd.

4.5 Lines intersecting a set of line segments

Consider a set of n 4+ 1 line segments. We call one line segment the source
(denoted by S) and the other n segments we call occluders (denoted by Oy,
1 < k < n). Further in the paper we will use the term ray as a representative
of an oriented line that is oriented from the source towards the occluders.

Assume that we can process all occluders in a strict front-to-back order with
respect to the given source. We have already processed £k occluders and we
continue by processing Oy1. Ok, can be visible through rays that correspond
to the pyramid P(S, Ok,1). However, some of these rays can be blocked by
combination of already processed occluders O, (1 < z < k). To determine if
Og41 is visible we subtract all P(S,O,) from P(S, O1):

V(S,0441) = P(S,0p11) — |J P(S,0,)

1<z<k



V(S, O41) is a set of pyramids representing rays through which Oy, is visible
from S. Consequently, all rays corresponding to V(.S, Ox,1) are blocked behind
Ogy1- IEV(S, Ok 1) is an empty set, occluder Oy 1 is invisible. This suggests an
incremental construction of an arrangement of pyramids A that corresponds
to rays blocked by the k processed occluders. We determine V(S, Ok, 1) and
Ap11 (A is empty):

V(S, Op+1) = P(S, Op+1) — A,
Ak_|_1 = .Ak U P(S, Ok—H) = .Ak U V(S, Ok—l—l)-

Figures 6-(a,b) depict a projection of an arrangement .43 of a source and three
occluders. Note that the shorter the source line segment the narrower are the
pyramids P(S, O) (st and s; get closer).

Fig. 6. (a) The source line segment S and three occluders. ;3 denote unoccluded
funnels. (b) The line space subdivision. For each cell, the corresponding visible
occluder is depicted. Note the cells @], )5 and ()3 corresponding to unoccluded
funnels.

Recall that the pyramid P(S, Oy) is represented by the blocker polygon B(S, Oy).
The construction of the arrangement A, resembles the from-point visibility
problem, more specifically the hidden surface removal applied to the blocker
polygons with respect to the origin of line space. However there is no notion of
depth in our definition of line space. The priority of blocker polygons is either
completely determined by the processing order of occluders or their depths
must be compared in primal space.

5 Occlusion tree

The occlusion tree is a binary space partitioning tree (BSP tree) maintaining
the arrangement A4;. Each node N of the tree represents a subset of line space
Q- The root of the tree represents the whole line space. If N is an interior



node, it is associated with a plane my. The left child of N represents Q% N7y,
the right child Q% N 7y, where 73 and 7y are half-spaces induced by 7y.

Leaves of the tree are classified in or out. If N is an out-leaf, Q} represents
unoccluded rays emerging from the source. If N is an in-leaf it is associated
with an occluder Oy that blocks the corresponding set of rays Q. Further
N stores an intersection of the blocker polygon B(S,Oy) and Qj, denoted
By. Q) represents a funnel Qy in primal space that is bound by points
corresponding to planes of the tree on the path from the root to N. N also
contains a line segment I that is an intersection of the occluder Oy and the
funnel Qy.

Consider a source and a single occluder such as in Figure 4-(a). The corre-
sponding occlusion tree has four interior nodes that represent the endpoints
of the two line segments. We call this tree the elementary occlusion tree for a

blocker polygon B(S,0), denoted e-OT(B(S,0)) (see Figure 7-(a)). A more
complex situation is depicted in Figure 7-(b).

®

[ out
M in

Fig. 7. (a) An elementary occlusion tree for a configuration shown in Figure 4-(a).
(b) An occlusion tree for the three occluders depicted in Figure 6-(a). The three
in-leaves correspond to rays blocked by the relevant occluders. The out-leaves @);
represent three funnels of unoccluded rays emerging from S in the direction of
occluders.

We need to perform polyhedra set operations on the arrangement Ay to ob-
tain both the arrangement Ay, and V(S, Ok41) that describes visibility of
occluder Ogy1. In particular we must determine the set difference of P(S, Oy1)
and Ay to obtain V(S, O1) and the union of Ay and V(S, O1) to obtain
Ay 1. The set difference operation can be performed easily using the BSP tree
by “filtering” P(S, Oky1) down the tree [31,32]. The filtering identifies the de-
sired set V(S, Ok + 1) that is then used to extend the tree so that it represents
the arrangement Ay ;.

10



5.1 Occlusion tree construction

Assume that we can determine a strict front-to-back order of occluders with
respect to the source S. When we process occluder Oy, all occluders O; (1 <
j < k) that can block visibility of Oy have been already processed before. On
the other hand Oy cannot block any occluder O; (1 < j < k).

The occlusion tree construction algorithm proceeds as follows: For an occluder
we construct a pyramid P(S,Oy) corresponding to rays blocked by this oc-
cluder. The pyramid is represented by a blocker polygon B(S,Oy), that is
then filtered down the tree. The algorithm maintains two variables: The cur-
rent node N, and the current blocker polygon B,.. Initially, N, equals to the
root, of the tree and B, equals to B(S, Oy).

If N.is not a leaf, we determine the position of B, and the plane 7y, associated
with N.. If B, lies in the positive half-space induced by my,, the algorithm
continues in the left subtree. Similarly if B, lies in the negative half-space
induced by 7y, the algorithm continues in the right subtree. If B, intersects
both half-spaces, it is split by 7y, into two parts B and B and the algorithm
proceeds in both subtrees of N, with appropriate fragments of B,.

If N, is a leaf node then we make a decision depending on its classification. If
N, is an in-leaf, all rays represented by B, are blocked by the occluder Oy,
referred in N.. If N, is an out-leaf, all rays represented B. are unoccluded.
Thus B, is a part of V(S, O). We replace N, by e-OT(B,) representing the
pyramid induced by B..

5.1.1 Handling approximate front-to-back order

Until now we have assumed that a front-to-back order of occluders with respect
to the source is determined. In practice it can be advantageous to determine
only an approximate front-to-back order. In the latter case we cannot guar-
antee the position of the currently processed occluder Oy with respect to the
already processed occluders. When reaching an in-leaf of the occlusion tree
we have to check the depth of the occluder O, with respect to the occluder
Oy, associated with the leaf. We use the line segments [, and Iy, that are
intersections of Oy and Oy, with the funnel Qy, (see I, and I; on Figure 8-
(a)). Denote an open half-space defined by Iy, that contains the source H+
and the opposite open half-space H~. The two line segments can be in four
mutual positions:

(1) I) behind Iy,: I lies completely in H~.
(2) I in front of Iy,: Iy lies completely in H™.
(3) I intersects I,: I lies in both Ht and H™.
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(4) Iy on Iy,: I does not intersect H* nor H .

In the first case all rays represented by B, are blocked by Iy,. Thus Oy is not
visible through these rays and no modification to the tree is necessary.

In the second case all rays represented by B, are not blocked by Iy,. Thus Oy
is visible and Oy, is not visible through these rays. We construct e-OT(B,)
and filter the “old” blocker polygon By, down this tree (see Figure 8). Finally,
we replace the N, by the constructed tree.

Fig. 8. (a) Occluder O, partially hides occluder O; that is already in the tree. The
funnel Q corresponds to the lines through which O, hides O;. Note that Op is
still completely visible from some points on S. (b) Situation in line space. (¢) The
original tree and the tree after inserting O. Note, the lower left node has both
descendants classified as in.

In the third case some lines of B, are blocked by Iy, and some block Iy,.
We determine the intersection point X of the line segments I and Iy,. The
point X maps to the plane X* in line space. We split B. by X* obtaining B,
and B, . Depending on the position of the endpoints of I, we decide which of
the two fragments corresponds to lines blocked by I, . This fragment can be
deleted as in the case 1. The other fragment is treated as in the case 2.

The solution of the fourth case depends on the application. For the sake of
simplicity we assume that Oy is invisible through rays represented by B..

5.2 Visibility from a region

The occlusion tree captures visibility with respect to a given line segment.
Visibility from a convex polygonal region can be determined by computing
visibility from its boundaries. A separate tree can be built to capture visibility
from each boundary line segment S; of source region Rg. Alternatively we
can build a single occlusion tree that captures visibility from all boundaries.
Inserting rays blocked by occluder Oy into the tree involves insertion of a

12



blocker polygon B(S;, Oy) for each boundary line segment S; of the source
region.

6 Visibility tests

In this section we describe algorithms that use the occlusion tree to test vis-
ibility of a line segment or a region with respect to the already processed
occluders.

6.1 Visibility of a line segment

To determine visibility of a line segment L we can use the algorithm from
Section 5.1, while avoiding the modifications to the occlusion tree. We collect
the set V(S, L) of visible fragments of the blocker polygon B(S, L). If this set
is empty, L is not visible from S. Otherwise, it is visible through the set of
rays that correspond to V(S, L).

6.2  Visibility of a region

Visibility of a region can be determined by checking visibility of it boundaries.
Visibility of each boundary is determined as described in the Section 6.1. In
the next section we describe a faster conservative visibility tests that sacrifices
accuracy for speed.

6.3 Conservative visibility of a region

The conservative visibility test aims to avoid testing each boundary of the
region separately. Instead it determines visibility of the region using a single
traversal of the occlusion tree.

The conservative visibility test proceeds as follows: Given a source region
Rgs and a polygonal region Rx we find supporting and separating lines of
the source region Rg and Rx (see Figure 9-(a,b)). We construct a blocker
polygon B(Rs, Rx) using mappings of the supporting and separating lines
as its vertices. This blocker polygon generally represents a superset of rays
intersecting Rg and Ry (see Figure 10-(a,b)). B(Rs, Rx) is filtered down the
occlusion tree as described in Section 5.1. Reaching an out-leaf we can conclude
that at least part of Ry is visible and terminate the algorithm. If the filtering

13



procedure reaches an in-leaf L we classify visibility of the current part of Rx
by testing the depth order of Oy and Ryx.

sep,
r Rx
Ra
P, r, R
2 b
r, SeR
s
S, S sup,
Sy .
Rs S,
(a) (b)

Fig. 9. (a) Two rectangular regions and the corresponding extremal lines. (b) In
line space there are four blocker polygons corresponding to four combinations of
the mutually visible boundaries of Rg and Rx. The vertices of the union of these
blocker polygons correspond to supporting (sup;, sup2) and separating (sepi, sepz)
lines of Rg and Ryx.

* * *
Ry ST S3 S2
*
sep, noo A4y I\ =
supt sepf
-
r, =~
sup, 2 = Sep, i
1 r3
S
33 VAl
i sup3
S sepr *
3 2 r3
Rs
(a) (b)

Fig. 10. (a) A configuration of Rg and Rx that leads to a conservative blocker poly-
gon. The blocker polygon represents lines intersecting the “virtual” line segments
show dashed. (b) The blocker polygon constructed from mappings of the supporting
and separating lines represents a superset of the rays intersecting Rg and Rx.

6.4 Mazximal visibility distance

We have assumed that the occlusion tree contains no information about the
depth of the occluders and the depth tests are conducted at the leaf nodes using
the occluders themselves. In this section we show how to include a conservative
hierarchical depth representation of occluded rays. This representation can be
used for quick visibility tests that eventually terminate near the root of the
tree.

Each node N of the occlusion tree is associated with the mazrimal visibility
distance (MVD) denoted dy. If N is an out-leaf, dy = oco. If N is an in-leaf,

14



dy is the maximal distance of the source region Rg and the part Iy of occluder
Oy intersecting the funnel Q. If N is an interior node of the tree, dy is a
maximum of MVDs of its children. MVDs are updated by propagating their
changes up the tree after each insertion of an occluder. The MVD of node N
can be used to quickly determine that an occluder O, is invisible with respect
to IV if the minimal distance of O, from Rg is greater than dy.

The described depth representation is similar to the hierarchical z-buffer [16]
used for the from-point visibility culling in 3D. The MVDs are conservative,
hierarchical, and piecewise constant representation of the depth map with
respect to the given region. In leaves of the tree the depth is represented
exactly by the associated occluder fragments Iy.

7 Hierarchical visibility algorithm

The above mentioned methods are used within a hierarchical visibility algo-
rithm. Occluders are organized in a kD-tree, in which a node N corresponds to
rectangular region Ry. The root of the kD-tree corresponds to the bounding
box of the whole scene. Leaves of the tree contain links to the occluders that
intersect the corresponding cells. The kD-tree is used for two main purposes:
Firstly, it allows to determine the approximate front-to-back order of occlud-
ers. Secondly, pruning of the kD-tree by hierarchical visibility tests leads to
output-sensitive behavior of the algorithm.

The occluders are processed in an approximate front-to-back order with re-
spect to the source region. We have used two ordering algorithms. The first
processes the kD-tree using a strict front-to-back ordering of kD-tree nodes
with respect to the center of the source region. The second uses a priority
queue, where the priority of node N is given by the minimal distance of Ry
from the source region. In both cases occluders stored within a leaf node are
processed in random order. The occlusion tree is constructed incrementally by
inserting blocker polygons B(S;, Oy) corresponding to the currently processed
occluder O, and the i-th boundary of the source region that faces Oy.

The occlusion tree construction is interleaved with visibility tests of region
Ry corresponding to the currently processed kD-tree node N. If Ry intersects
the source region it is classified visible. Otherwise the visibility test classifies
visibility of Ry with respect to the already processed occluders. If Ry is
invisible, the subtree of NV and all occluders it contains are culled. If Ry is
visible, we process the descendants of N recursively.

15



7.1 Achieving exact visibility classification

The hierarchical visibility tests provide a useful information about visibility
of whole scene regions. Nevertheless the visibility classification of hierarchy
nodes as described above is only conservative. Due to the approximate depth
ordering of the occluders and the kD-tree nodes it is possible that there is an
unprocessed region R; containing occluders which might occlude (or at least
partially occlude) the currently processed region Ry. Ry can be classified visi-
ble, although in fact it is invisible due to the influence of unprocessed occluders
from R;. For an exact classification of hierarchy nodes we have to perform ad-
ditional series of visibility tests on all leaves of the kD-tree that were previously
classified visible. This test eventually decides that the corresponding region is
invisible if all relevant occluders are considered.

8 Results

We have evaluated the presented algorithms on three types of scenes: A city
plan, a building interior, and random line segments. The scenes are depicted
in Figures 1, 11-(a), and Figure 11-(b), respectively. On each figure the blue
rectangle represents the source region. Yellow lines correspond to extremal
lines that bound the visible funnels (Qr,). Red line segments depict visible
parts of occluders (Ir,). Gray regions were culled by hierarchical visibility
tests. Table 1 summarizes measurements for several source regions.

Figure 1 depicts a 2D cut through the scene representing the city of Glas-
gow [33]. For the selected source region the majority of the scene was culled
by the hierarchical visibility tests and only few occluders corresponding to the
neighboring streets were found visible. Figure 11-(a) depicts a ground plan of
the Soda Hall of the University of Berkeley, Figure 12-(b) shows the corre-
sponding blocker polygons.

Scenes with random line segments allowed us to study the dependence of the
algorithm on the complexity of the scene. We could observe that the size of
the occlusion tree is proportional to the total number of funnels Qy, through
which occluders are visible from Rg. The behavior of the algorithm also de-
pends on the properties of the kD-tree. The more occluders are referred in each
leaf of the kD-tree the less precise front-to-back order is determined. Conse-
quently, the occlusion tree is slightly larger due to late insertions of visible
occluders. Additionally, more occluders are inserted in the tree, although they
could be culled by the hierarchical visibility test. Figure 12-(a) depicts the
dependence of the size of the occlusion tree on the number of inserted blocker
polygons. All the curves were measured for a scene with 10000 random line
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kD-tree Rg tested blocker oT visible
scene occ. nodes size kD-nodes | polygons | nodes | occluders | time
(-] (-] (%] (%] (-] (-] [%] [s]
13711 | 0.017 4.2 4400 1371 0.32 1.2
Glasgow | 94460 13711 0.21 6.8 6919 3233 0.75 3.5
13711 0.64 16 13142 7545 1.5 9.2
335 2.5 50 759 1045 19 | 0.31
Soda 873 2169 2.5 34 619 671 19 | 0.63
2169 6 65 1078 2605 44 2.2
Random 1000 61 5.1 62 1682 8639 54 1.3
1767 5.1 51 1018 4385 54 1.3
Random | 20000 7003 0.21 3.3 964 3185 2 | 0.61
7003 3.4 8.2 2602 | 19179 13 5.2
Table 1

Summary of the results of the visibility algorithm. The table contains the total
number of kD-tree nodes, the relative size of the source region with respect to the
bounding box of the scene, the number of nodes of the kD-tree on which the hierar-
chical visibility test was applied, the total number of blocker polygons constructed
for occluders, the total number of occlusion tree nodes, the percentage of occluders
that are visible, and the total running time of the visibility algorithm. Measured on
a PC with 950MHz Athlon CPU and 256 MB RAM.

segments. The curves A and B were measured for the kD-tree with 50 occlud-
ers per leaf. The curves C' and D correspond to the kD-tree with 5 occluders
per leaf. For the curves A and C' the front-to-back ordering with respect to
the center of Rg was used, whereas for the curves B and D the priority queue
front-to-back ordering was applied. Note that the “stairs” in graphs A and C
occur due to the processing of the kD-tree using a depth-first search. It follows
from the graphs that the best results were obtained using method D, i.e. the
finer kD-tree and the priority queue front-to-back order. The corresponding
curve also shows that once the occlusion tree represents enough blocked rays
its size does not grow.

9 Conclusion and Future work

We have presented an algorithm for computing visibility from a given region
in a 2D scene consisting of a set of line segments. The algorithm solves vis-
ibility by performing set operations in line space. The sets of occluded rays
are represented using hierarchical partitioning of line space maintained by an
occlusion tree. This technique provides an exact solution to regional visibility
in 2D. The method requires an implementation of only a few simple geomet-
rical algorithms. We have applied the method to computing a PVS in three
different types of scenes including a scene representing a footprint of a large
part of a city. The algorithm exhibited output-sensitive behavior for all tested
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scenes.

The presented method extends to 2.5D; it was already used as a core of a
visibility preprocessing algorithm for urban scenes [4]. We currently investigate
an approximate variant of the algorithm that exploits graphics hardware. The
algorithm could also be extended to compute a measure of visibility in line
space [34] corresponding to a form factor between the source region and the
occluder.
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Fig. 11. (a) The ground plan of the building of the Soda hall (873 occluders). 159
occluders are visible, the occlusion tree has 745 nodes. Computation took 190ms.
(b) A scene with 1000 random line segments. 540 segments are visible, the occlusion
tree has 8607 nodes. The green regions were reclassified invisible by the second pass
of visibility tests. The computation took 1.6s.
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Fig. 12. (a) Dependency of the number of occlusion tree nodes on the number of
processed blocker polygons for various settings of the algorithm (see Section 8). (b)
Visualization of blocker polygons of processed occluders. Note the spiky triangles
on the top-left. These triangles are blocker polygons of line segments supporting
line of which intersects Rg. The chains of blue vertices lay in planes corresponding
to mappings of vertices of Rg.
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