00001
00002
00003
00004 #include <math.h>
00005 #include "decompose.h"
00006
00007
00008
00010 #define mat_pad(A) (A[W][X]=A[X][W]=A[W][Y]=A[Y][W]=A[W][Z]=A[Z][W]=0,A[W][W]=1)
00011
00013 #define mat_copy(C,gets,A,n) {int i,j; for(i=0;i<n;i++) for(j=0;j<n;j++)\
00014 C[i][j] gets (A[i][j]);}
00015
00017 #define mat_tpose(AT,gets,A,n) {int i,j; for(i=0;i<n;i++) for(j=0;j<n;j++)\
00018 AT[i][j] gets (A[j][i]);}
00019
00021 #define mat_binop(C,gets,A,op,B,n) {int i,j; for(i=0;i<n;i++) for(j=0;j<n;j++)\
00022 C[i][j] gets (A[i][j]) op (B[i][j]);}
00023
00025 void mat_mult(HMatrix A, HMatrix B, HMatrix AB)
00026 {
00027 int i, j;
00028 for (i=0; i<3; i++) for (j=0; j<3; j++)
00029 AB[i][j] = A[i][0]*B[0][j] + A[i][1]*B[1][j] + A[i][2]*B[2][j];
00030 }
00031
00033 float vdot(float *va, float *vb)
00034 {
00035 return (va[0]*vb[0] + va[1]*vb[1] + va[2]*vb[2]);
00036 }
00037
00039 void vcross(float *va, float *vb, float *v)
00040 {
00041 v[0] = va[1]*vb[2] - va[2]*vb[1];
00042 v[1] = va[2]*vb[0] - va[0]*vb[2];
00043 v[2] = va[0]*vb[1] - va[1]*vb[0];
00044 }
00045
00047 void adjoint_transpose(HMatrix M, HMatrix MadjT)
00048 {
00049 vcross(M[1], M[2], MadjT[0]);
00050 vcross(M[2], M[0], MadjT[1]);
00051 vcross(M[0], M[1], MadjT[2]);
00052 }
00053
00054
00055
00056
00057 Quat Qt_(float x, float y, float z, float w)
00058 {
00059 Quat qq;
00060 qq.x = x; qq.y = y; qq.z = z; qq.w = w;
00061 return (qq);
00062 }
00063
00064
00065 Quat Qt_Conj(Quat q)
00066 {
00067 Quat qq;
00068 qq.x = -q.x; qq.y = -q.y; qq.z = -q.z; qq.w = q.w;
00069 return (qq);
00070 }
00071
00072
00073
00074
00075 Quat Qt_Mul(Quat qL, Quat qR)
00076 {
00077 Quat qq;
00078 qq.w = qL.w*qR.w - qL.x*qR.x - qL.y*qR.y - qL.z*qR.z;
00079 qq.x = qL.w*qR.x + qL.x*qR.w + qL.y*qR.z - qL.z*qR.y;
00080 qq.y = qL.w*qR.y + qL.y*qR.w + qL.z*qR.x - qL.x*qR.z;
00081 qq.z = qL.w*qR.z + qL.z*qR.w + qL.x*qR.y - qL.y*qR.x;
00082 return (qq);
00083 }
00084
00085
00086 Quat Qt_Scale(Quat q, float w)
00087 {
00088 Quat qq;
00089 qq.w = q.w*w; qq.x = q.x*w; qq.y = q.y*w; qq.z = q.z*w;
00090 return (qq);
00091 }
00092
00093
00094
00095
00096
00097 Quat Qt_FromMatrix(HMatrix mat)
00098 {
00099
00100
00101
00102
00103
00104 Quat qu = {0,0,0,0};
00105 register float tr, s;
00106
00107 tr = mat[X][X] + mat[Y][Y]+ mat[Z][Z];
00108 if (tr >= 0.0) {
00109 s = sqrt(tr + mat[W][W]);
00110 qu.w = s*0.5f;
00111 s = 0.5f / s;
00112 qu.x = (mat[Z][Y] - mat[Y][Z]) * s;
00113 qu.y = (mat[X][Z] - mat[Z][X]) * s;
00114 qu.z = (mat[Y][X] - mat[X][Y]) * s;
00115 } else {
00116 int h = X;
00117 if (mat[Y][Y] > mat[X][X]) h = Y;
00118 if (mat[Z][Z] > mat[h][h]) h = Z;
00119 switch (h) {
00120 #define caseMacro(i,j,k,I,J,K) \
00121 case I:\
00122 s = sqrt( (mat[I][I] - (mat[J][J]+mat[K][K])) + mat[W][W] );\
00123 qu.i = s*0.5f;\
00124 s = 0.5f / s;\
00125 qu.j = (mat[I][J] + mat[J][I]) * s;\
00126 qu.k = (mat[K][I] + mat[I][K]) * s;\
00127 qu.w = (mat[K][J] - mat[J][K]) * s;\
00128 break
00129 caseMacro(x,y,z,X,Y,Z);
00130 caseMacro(y,z,x,Y,Z,X);
00131 caseMacro(z,x,y,Z,X,Y);
00132 }
00133 }
00134 if (mat[W][W] != 1.0f) qu = Qt_Scale(qu, 1/sqrt(mat[W][W]));
00135 return (qu);
00136 }
00137
00138
00139 static HMatrix mat_id = {{1,0,0,0},{0,1,0,0},{0,0,1,0},{0,0,0,1}};
00140
00142 float mat_norm(HMatrix M, int tpose)
00143 {
00144 int i;
00145 float sum, max;
00146 max = 0.0;
00147 for (i=0; i<3; i++) {
00148 if (tpose) sum = fabs(M[0][i])+fabs(M[1][i])+fabs(M[2][i]);
00149 else sum = fabs(M[i][0])+fabs(M[i][1])+fabs(M[i][2]);
00150 if (max<sum) max = sum;
00151 }
00152 return max;
00153 }
00154
00155 float norm_inf(HMatrix M) {return mat_norm(M, 0);}
00156 float norm_one(HMatrix M) {return mat_norm(M, 1);}
00157
00159 int find_max_col(HMatrix M)
00160 {
00161 float abs, max;
00162 int i, j, col;
00163 max = 0.0; col = -1;
00164 for (i=0; i<3; i++) for (j=0; j<3; j++) {
00165 abs = M[i][j]; if (abs<0.0) abs = -abs;
00166 if (abs>max) {max = abs; col = j;}
00167 }
00168 return col;
00169 }
00170
00172 void make_reflector(float *v, float *u)
00173 {
00174 float s = sqrt(vdot(v, v));
00175 u[0] = v[0]; u[1] = v[1];
00176 u[2] = v[2] + ((v[2]<0.0) ? -s : s);
00177 s = sqrt(2.0f/vdot(u, u));
00178 u[0] = u[0]*s; u[1] = u[1]*s; u[2] = u[2]*s;
00179 }
00180
00182 void reflect_cols(HMatrix M, float *u)
00183 {
00184 int i, j;
00185 for (i=0; i<3; i++) {
00186 float s = u[0]*M[0][i] + u[1]*M[1][i] + u[2]*M[2][i];
00187 for (j=0; j<3; j++) M[j][i] -= u[j]*s;
00188 }
00189 }
00191 void reflect_rows(HMatrix M, float *u)
00192 {
00193 int i, j;
00194 for (i=0; i<3; i++) {
00195 float s = vdot(u, M[i]);
00196 for (j=0; j<3; j++) M[i][j] -= u[j]*s;
00197 }
00198 }
00199
00201 void do_rank1(HMatrix M, HMatrix Q)
00202 {
00203 float v1[3], v2[3], s;
00204 int col;
00205 mat_copy(Q,=,mat_id,4);
00206
00207 col = find_max_col(M);
00208 if (col<0) return;
00209 v1[0] = M[0][col]; v1[1] = M[1][col]; v1[2] = M[2][col];
00210 make_reflector(v1, v1); reflect_cols(M, v1);
00211 v2[0] = M[2][0]; v2[1] = M[2][1]; v2[2] = M[2][2];
00212 make_reflector(v2, v2); reflect_rows(M, v2);
00213 s = M[2][2];
00214 if (s<0.0) Q[2][2] = -1.0;
00215 reflect_cols(Q, v1); reflect_rows(Q, v2);
00216 }
00217
00219 void do_rank2(HMatrix M, HMatrix MadjT, HMatrix Q)
00220 {
00221 float v1[3], v2[3];
00222 float w, x, y, z, c, s, d;
00223 int col;
00224
00225 col = find_max_col(MadjT);
00226 if (col<0) {do_rank1(M, Q); return;}
00227 v1[0] = MadjT[0][col]; v1[1] = MadjT[1][col]; v1[2] = MadjT[2][col];
00228 make_reflector(v1, v1); reflect_cols(M, v1);
00229 vcross(M[0], M[1], v2);
00230 make_reflector(v2, v2); reflect_rows(M, v2);
00231 w = M[0][0]; x = M[0][1]; y = M[1][0]; z = M[1][1];
00232 if (w*z>x*y) {
00233 c = z+w; s = y-x; d = sqrt(c*c+s*s); c = c/d; s = s/d;
00234 Q[0][0] = Q[1][1] = c; Q[0][1] = -(Q[1][0] = s);
00235 } else {
00236 c = z-w; s = y+x; d = sqrt(c*c+s*s); c = c/d; s = s/d;
00237 Q[0][0] = -(Q[1][1] = c); Q[0][1] = Q[1][0] = s;
00238 }
00239 Q[0][2] = Q[2][0] = Q[1][2] = Q[2][1] = 0.0; Q[2][2] = 1.0;
00240 reflect_cols(Q, v1); reflect_rows(Q, v2);
00241 }
00242
00243
00244
00245
00246
00247
00248
00249
00250
00251
00252 float polar_decomp(HMatrix M, HMatrix Q, HMatrix S)
00253 {
00254 #define TOL 1.0e-6
00255 HMatrix Mk, MadjTk, Ek;
00256 float det, M_one, M_inf, MadjT_one, MadjT_inf, E_one, gamma, g1, g2;
00257 int i, j;
00258 mat_tpose(Mk,=,M,3);
00259 M_one = norm_one(Mk); M_inf = norm_inf(Mk);
00260 do {
00261 adjoint_transpose(Mk, MadjTk);
00262 det = vdot(Mk[0], MadjTk[0]);
00263 if (det==0.0) {do_rank2(Mk, MadjTk, Mk); break;}
00264 MadjT_one = norm_one(MadjTk); MadjT_inf = norm_inf(MadjTk);
00265 gamma = sqrt(sqrt((MadjT_one*MadjT_inf)/(M_one*M_inf))/fabs(det));
00266 g1 = gamma*0.5f;
00267 g2 = 0.5f/(gamma*det);
00268 mat_copy(Ek,=,Mk,3);
00269 mat_binop(Mk,=,g1*Mk,+,g2*MadjTk,3);
00270 mat_copy(Ek,-=,Mk,3);
00271 E_one = norm_one(Ek);
00272 M_one = norm_one(Mk); M_inf = norm_inf(Mk);
00273 } while (E_one>(M_one*TOL));
00274 mat_tpose(Q,=,Mk,3); mat_pad(Q);
00275 mat_mult(Mk, M, S); mat_pad(S);
00276 for (i=0; i<3; i++) for (j=i; j<3; j++)
00277 S[i][j] = S[j][i] = 0.5f*(S[i][j]+S[j][i]);
00278 return (det);
00279 }
00280
00281
00282
00283
00284
00285
00286
00287
00288
00289
00290
00291 HVect spect_decomp(HMatrix S, HMatrix U)
00292 {
00293 HVect kv;
00294 float Diag[3],OffD[3];
00295 float g,h,fabsh,fabsOffDi,t,theta,c,s,tau,ta,OffDq,a,b;
00296 static char nxt[] = {Y,Z,X};
00297 int sweep, i, j;
00298 mat_copy(U,=,mat_id,4);
00299 Diag[X] = S[X][X]; Diag[Y] = S[Y][Y]; Diag[Z] = S[Z][Z];
00300 OffD[X] = S[Y][Z]; OffD[Y] = S[Z][X]; OffD[Z] = S[X][Y];
00301 for (sweep=20; sweep>0; sweep--) {
00302 float sm = fabs(OffD[X])+fabs(OffD[Y])+fabs(OffD[Z]);
00303 if (sm==0.0) break;
00304 for (i=Z; i>=X; i--) {
00305 int p = nxt[i]; int q = nxt[p];
00306 fabsOffDi = fabs(OffD[i]);
00307 g = 100.0f*fabsOffDi;
00308 if (fabsOffDi>0.0) {
00309 h = Diag[q] - Diag[p];
00310 fabsh = fabs(h);
00311 if (fabsh+g==fabsh) {
00312 t = OffD[i]/h;
00313 } else {
00314 theta = 0.5f*h/OffD[i];
00315 t = 1.0f/(fabs(theta)+sqrt(theta*theta+1.0f));
00316 if (theta<0.0) t = -t;
00317 }
00318 c = 1.0f/sqrt(t*t+1.0f); s = t*c;
00319 tau = s/(c+1.0f);
00320 ta = t*OffD[i]; OffD[i] = 0.0;
00321 Diag[p] -= ta; Diag[q] += ta;
00322 OffDq = OffD[q];
00323 OffD[q] -= s*(OffD[p] + tau*OffD[q]);
00324 OffD[p] += s*(OffDq - tau*OffD[p]);
00325 for (j=Z; j>=X; j--) {
00326 a = U[j][p]; b = U[j][q];
00327 U[j][p] -= s*(b + tau*a);
00328 U[j][q] += s*(a - tau*b);
00329 }
00330 }
00331 }
00332 }
00333 kv.x = Diag[X]; kv.y = Diag[Y]; kv.z = Diag[Z]; kv.w = 1.0;
00334 return (kv);
00335 }
00336
00337
00338
00339
00340
00341
00342
00343
00344
00345
00346 Quat snuggle(Quat q, HVect *k)
00347 {
00348 #define SQRTHALF (0.7071067811865475244f)
00349 #define sgn(n,v) ((n)?-(v):(v))
00350 #define swap(a,i,j) {a[3]=a[i]; a[i]=a[j]; a[j]=a[3];}
00351 #define cycle(a,p) if (p) {a[3]=a[0]; a[0]=a[1]; a[1]=a[2]; a[2]=a[3];}\
00352 else {a[3]=a[2]; a[2]=a[1]; a[1]=a[0]; a[0]=a[3];}
00353 Quat p;
00354 float ka[4];
00355 int i, turn = -1;
00356 ka[X] = k->x; ka[Y] = k->y; ka[Z] = k->z;
00357 if (ka[X]==ka[Y]) {if (ka[X]==ka[Z]) turn = W; else turn = Z;}
00358 else {if (ka[X]==ka[Z]) turn = Y; else if (ka[Y]==ka[Z]) turn = X;}
00359 if (turn>=0) {
00360 Quat qtoz, qp;
00361 unsigned neg[3], win;
00362 float mag[3], t;
00363 static Quat qxtoz = {0,SQRTHALF,0,SQRTHALF};
00364 static Quat qytoz = {SQRTHALF,0,0,SQRTHALF};
00365 static Quat qppmm = { 0.5f, 0.5f,-0.5f,-0.5f};
00366 static Quat qpppp = { 0.5f, 0.5f, 0.5f, 0.5f};
00367 static Quat qmpmm = {-0.5f, 0.5f,-0.5f,-0.5f};
00368 static Quat qpppm = { 0.5f, 0.5f, 0.5f,-0.5f};
00369 static Quat q0001 = { 0.0f, 0.0f, 0.0f, 1.0f};
00370 static Quat q1000 = { 1.0f, 0.0f, 0.0f, 0.0f};
00371 switch (turn) {
00372 default: return (Qt_Conj(q));
00373 case X: q = Qt_Mul(q, qtoz = qxtoz); swap(ka,X,Z) break;
00374 case Y: q = Qt_Mul(q, qtoz = qytoz); swap(ka,Y,Z) break;
00375 case Z: qtoz = q0001; break;
00376 }
00377 q = Qt_Conj(q);
00378 mag[0] = (float)q.z*q.z+(float)q.w*q.w-0.5f;
00379 mag[1] = (float)q.x*q.z-(float)q.y*q.w;
00380 mag[2] = (float)q.y*q.z+(float)q.x*q.w;
00381 for (i=0; i<3; i++) if (neg[i] = (mag[i]<0.0)) mag[i] = -mag[i];
00382 if (mag[0]>mag[1]) {if (mag[0]>mag[2]) win = 0; else win = 2;}
00383 else {if (mag[1]>mag[2]) win = 1; else win = 2;}
00384 switch (win) {
00385 case 0: if (neg[0]) p = q1000; else p = q0001; break;
00386 case 1: if (neg[1]) p = qppmm; else p = qpppp; cycle(ka,0) break;
00387 case 2: if (neg[2]) p = qmpmm; else p = qpppm; cycle(ka,1) break;
00388 }
00389 qp = Qt_Mul(q, p);
00390 t = sqrt(mag[win]+0.5f);
00391 p = Qt_Mul(p, Qt_(0.0,0.0,-qp.z/t,qp.w/t));
00392 p = Qt_Mul(qtoz, Qt_Conj(p));
00393 } else {
00394 float qa[4], pa[4];
00395 unsigned lo, hi, neg[4], par = 0;
00396 float all, big, two;
00397 qa[0] = q.x; qa[1] = q.y; qa[2] = q.z; qa[3] = q.w;
00398 for (i=0; i<4; i++) {
00399 pa[i] = 0.0;
00400 if (neg[i] = (qa[i]<0.0)) qa[i] = -qa[i];
00401 par ^= neg[i];
00402 }
00403
00404 if (qa[0]>qa[1]) lo = 0; else lo = 1;
00405 if (qa[2]>qa[3]) hi = 2; else hi = 3;
00406 if (qa[lo]>qa[hi]) {
00407 if (qa[lo^1]>qa[hi]) {hi = lo; lo ^= 1;}
00408 else {hi ^= lo; lo ^= hi; hi ^= lo;}
00409 } else {if (qa[hi^1]>qa[lo]) lo = hi^1;}
00410 all = (qa[0]+qa[1]+qa[2]+qa[3])*0.5f;
00411 two = (qa[hi]+qa[lo])*SQRTHALF;
00412 big = qa[hi];
00413 if (all>two) {
00414 if (all>big) {
00415 {int i; for (i=0; i<4; i++) pa[i] = sgn(neg[i], 0.5f);}
00416 cycle(ka,par)
00417 } else { pa[hi] = sgn(neg[hi],1.0f);}
00418 } else {
00419 if (two>big) {
00420 pa[hi] = sgn(neg[hi],SQRTHALF); pa[lo] = sgn(neg[lo], SQRTHALF);
00421 if (lo>hi) {hi ^= lo; lo ^= hi; hi ^= lo;}
00422 if (hi==W) {hi = "\001\002\000"[lo]; lo = 3-hi-lo;}
00423 swap(ka,hi,lo)
00424 } else { pa[hi] = sgn(neg[hi],1.0f);}
00425 }
00426 p.x = -pa[0]; p.y = -pa[1]; p.z = -pa[2]; p.w = pa[3];
00427 }
00428 k->x = ka[X]; k->y = ka[Y]; k->z = ka[Z];
00429 return (p);
00430 }
00431
00432
00433
00434
00435
00436
00437
00438
00439
00440
00441
00442
00443
00444
00445
00446
00447
00448
00449
00450
00451 void decomp_affine(HMatrix A, AffineParts *parts)
00452 {
00453 HMatrix Q, S, U;
00454 Quat p;
00455 float det;
00456 parts->t = Qt_(A[X][W], A[Y][W], A[Z][W], 0);
00457 det = polar_decomp(A, Q, S);
00458 if (det<0.0) {
00459 mat_copy(Q,=,-Q,3);
00460 parts->f = -1;
00461 } else parts->f = 1;
00462 parts->q = Qt_FromMatrix(Q);
00463 parts->k = spect_decomp(S, U);
00464 parts->u = Qt_FromMatrix(U);
00465 p = snuggle(parts->u, &parts->k);
00466 parts->u = Qt_Mul(parts->u, p);
00467 }
00468
00469
00470
00471
00472
00473 void invert_affine(AffineParts *parts, AffineParts *inverse)
00474 {
00475 Quat t, p;
00476 inverse->f = parts->f;
00477 inverse->q = Qt_Conj(parts->q);
00478 inverse->u = Qt_Mul(parts->q, parts->u);
00479 inverse->k.x = (parts->k.x==0.0f || parts->k.x==-0.0f) ? 0.0f : 1.0f/parts->k.x;
00480 inverse->k.y = (parts->k.y==0.0f || parts->k.y==-0.0f) ? 0.0f : 1.0f/parts->k.y;
00481 inverse->k.z = (parts->k.z==0.0f || parts->k.z==-0.0f) ? 0.0f : 1.0f/parts->k.z;
00482 inverse->k.w = parts->k.w;
00483 t = Qt_(-parts->t.x, -parts->t.y, -parts->t.z, 0);
00484 t = Qt_Mul(Qt_Conj(inverse->u), Qt_Mul(t, inverse->u));
00485 t = Qt_(inverse->k.x*t.x, inverse->k.y*t.y, inverse->k.z*t.z, 0);
00486 p = Qt_Mul(inverse->q, inverse->u);
00487 t = Qt_Mul(p, Qt_Mul(t, Qt_Conj(p)));
00488 inverse->t = (inverse->f>0.0) ? t : Qt_(-t.x, -t.y, -t.z, 0);
00489 }