v WJAvVAANWAAAS A Ui NI L A4 A4 Aalvir g

Parallel merge sort
on shared memory multicomputer

V. Havran, P. Simek, M. Soch, P. Tvrdik

CTU, Fac. of Electrical Eng., Dept. of Computer Science and Engineering
Karlovo nam. 13, 121 35 Praha 2

Key words: sorting, parallel algorithm, shared memory

1 Introduction

This paper deals with Cole’s Merge Sort algorithm based on sequential merge sort algo-
rithm. Due to the requirement to achieve work optimality, the parallel version is a bit more
complicated than the Divide&Conquer approach of the well known Batcher’s Merge Sort.
The main goal of our work was to implement the algorithm on a shared memory machine,
test it, and evaluate the performance.

2 Sequential Merge Sort

This algorithm is very well-known. The solution is based on a recursive approach. The

input data sequence is divided to two subsequences. Subsequences are recursively sorted

and then merged together into one sequence. Recursion ends when the subsequences have

two elements only - they are sorted trivially by compare and exchange operation.
Sequential complexity of merging two subsequences of n elements is ©(n). The com-

plexity of the whole sequential Merge Sort for n data sequence is O(nlogn).

3 Cole’s Merge Sort

This section shows the idea behind the basic recursive step of Cole’s Merge Sort. The input
of the algorithm is two sorted sequences L and R and auxiliary sequence EM made by merging
elements from even positions of sequences L and R. The output is sorted sequence M.

The idea of the algorithm is based on the fact that is possible to precalculate deter-
ministicaly positions in output sequence M of elements at odd positions in input sequences
L and R. The output positions can be computed independently without conflicts by a set of
Processors.

The algorithm is scalable, its time complexity is O(log”n) on Q(@) processors and it
is cost optimal for @(@) Processors.

4 Implementation

During implementation of the algorithm we encountered and had to fix several interesting
issues. Merge Sort assumes input sequence of length n = 2* for some integer & > 0. On
real parallel machines, the number of processors, p, is always p < n and p is not necessarily
a power of 2. This makes no problem in the ascending phase where we precompute the
final positions of numbers at odd positions in L, R and merge 2 sorted sequences, since
the standard Cole’s algorithm is fully scalable (all computations on individual elements of
arrays are independent). However, in the descending phase, we end up with 21871 unsorted
blocks of 2F— %871 elements that should be sorted by p processors. A trivial solution is to

1

v WJAvVAANWAAAS A Ui NI L A4 A4 Aalvir g

distribute blocks evenly among processors so that each is assigned 1 or 2 blocks and sorts
them sequentially. Unfortunately, some processors have twice as much of work as the other
ones. Here, we propose an optimized solution for this sequential step, in which all processors
are always loaded uniformly.

The aim of the sequential part is to transform the input unsorted sequence of 2% elements
into 219871 sorted blocks of size 25~M°8Pl = 2% The number of compare-exchange operations
is 2Mogrl Sk ~1(9i _1).0k—i = oMlosr]. (k' —2).2K 1.2) = 2Moer].((k—[log p] —2)-2FToerl 1.2) =
2F . (k — [log p] — 2) + 2Mesrl+1,

If p is a power of 2, then 2M°8?1 = p_each processor is assigned exactly one block and
sorts it sequentially.

Assume now that p is not a power of 2. We proceed as follows: The input sequence of
2% elements is partitioned evenly into p subsequences s;, 1 < j < p, of sizes 2[2%/(2p)] or
2|2%/(2p)|, processor P; is assigned s;. Sorting is done in k — [log p] steps. Before step i,
1 < i< k—[logp] —1, each s; consists of sorted blocks of size 2°~!, where the leftmost
(rightmost) blocks may be cut by the boundaries between s; and s;_; (s;4+1, respectively).
In step 7, pairs of blocks of size 2'~! are merged into sorted blocks of size 2¢. If given block
of size 2° belongs to only one subsequence s;, then merging is done sequentially by processor
P;. Tf a block of size 2! is cut by the boundary between 2 adjacent sequences, say s; and s;41,
1 <7 < p—1, then the merge is done cooperatively of processors P; and P;; as depicted on
Fig. 1. Processor P; fills its left part of new blocks by taking elements rightward, whereas
P;44 fills the right part leftward. The concurrent merge is conflict-free. As a result, all
processors are uniformly loaded in every step of the sequential part.

The algorithm was implemented in C language using SHM library for shared memory

management.
P P P P
3 I+l 3 3 I+l
BEE SR B S -
2171 2171 2)

Fig. 1: Merging by two processors P; and Pji;.

5 Conclusion

We have modified Cole’s Merge Sort by optimizing its sequential part for arbitrary number
of processors. The algorithm was implemented and we have done some preliminary mea-
surements. The measurements have bee done on the Digital Alpha Server 8400 in ZCU
Pilsen on up to 8 processors. On average, the speedup was about 45% for the standard
Cole’s algorithm and over 50% for our optimized modification.

References:

[1] Cole, R.: Parallel Merge Sort. SIAM Journal of Computing, 17(4): 770-785, 1988.
[2] JaJa, J.: An Introduction to Parallel Algorithms. Addison-Wesley, 1992.

[3] Havran, V.: The Simulation of Optical Effects. Master Thesis, DCSE CTU Prague,
1996.

