
WORKSHOP 98 SECTION NAME

STATISTICALLY OPTIMIZED

TRAVERSAL ALGORITHM

FOR BSP TREES

V. Havran

CTU, Fac. of Electrical Eng., Dept. of Computer Science & Engineering

Karlovo nám. 13, 121 35 Praha 2

Key words: computer graphics, BSP tree, ray-tracing

A BSP (binary space partitioning) tree is a commonly used spatial subdivision data

structure in many graphics application. It is the analogue to binary search trees [4], but

it process n-dimensional data. The BSP tree is used to accelerate the search queries for

these data. A BSP tree hierarchically subdivides a volume containing a collection of ob-

jects. The tree is formed recursively subdividing the volume in two volumes, usually halves.

The resulting data structure is a binary search tree in which each interior node represents a

partitioning hyperplane and its children represent convex volumes determined by the parti-

tioning. The leaf nodes of the tree are thus convex are non-overlapping, occupied by objects

or vacant.

There are important applications of BSP tree in the �eld of image synthesis; to de-

termine the visibility of two points in space, that can be occluded by some objects and a

ray-casting problem [2]. Ray-casting is de�ned as follows: for a given ray �nd the closest

object which is intersected by the ray if such an object exists. In this paper we describe

the properties of common traversal algorithm for ray-casting problem and outline brie
y

a new statistically optimized algorithm. We refer to commonly used algorithm originally

published in [3] and described in more detail in [1] as traversal algorithm TA

A

.

The traversal of a ray through BSP tree is recursive operation. Each inner node rep-

resents one decision step during traversal. This decision is based on mutual geometrical

position of a ray and the isothetic bounding box of the inner node. At each traversal step

the child node closer to the origin of a ray must be determined. It is followed by computing

the mutual position of the ray and the splitting plane located inside the bounding box of the

inner node. Three examples of traversal cases are depicted in Fig. 1, there are 26 di�erent

positions of a ray and a inner node of BSP tree in general.

Figure 1: BSP tree traversal examples

The algorithm TA

A

is based on computation of the signed distance from the origin of

a ray to a splitting plane. It is computed as follows:

t =

splitV al� ray:loc:axis

ray:dir:axis

1



WORKSHOP 98 SECTION NAME

Subsequently, near and far children are determined. In Fig. 1 (A) near child is below

splitting plane and far child is above. If signed distance is smaller than zero or greater than

the signed distance of the exit point, then only the near child is selected. Otherwise, if the

signed distance to the splitting plane is smaller than the signed distance to the entry point,

only far child is selected. Otherwise, �rst near child and then far child must be visited

during traversal.

The result of a traversal step of a ray through an inner node is one of four cases:

� visit the left child only

� visit the left child �rst, the right child afterwards

� visit the right child only

� visit the right child �rst, the left child afterwards

Our analysis have shown, that the traversal algorithm TA

A

based on the computation

of the signed distance can fail if the origin of a ray is embedded into the splitting plane.

The consequence of this failure is the incorrect image synthesis, which come to light in the

form of disturbing pixels or even the missing parts in the resulting image.

The statistical analysis based on surface area heuristics and experimental analysis have

shown, that computation of signed distance is necessary only for 26.1 % cases in the worst

case, if a ray passes through both child nodes. This part of computation is the most time

consuming.

Further, we discuss the function and the properties of our new traversal algorithm, that

eliminates the shortcomings of algorithm TA

A

. We refer to the new algorithm as algorithm

TA

B

in this paper.

We outline the principle of decision for example given in Fig. 1 (A) for algorithm TA

B

:

If the projection of entry point corresponding to signed distance a to current axis is less

than or equal to the position of splitting plane (x

a

� x

sp

) and the projection of exit point

corresponding to signed distance b to current axis is less than or equal to position of splitting

plane (x

b

� x

sp

), then only left child is selected.

The detailed description and the statistical analysis of algorithm TA

B

is beyond the

scope of this paper. The algorithm TA

B

is optimal, because the decision between four

possible results is performed using only two comparisons (log

2

4 = 2). We implemented a

new traversal algorithm TA

B

and performed the benchmark tests. Our measurements have

shown, that speedup of the algorithm TA

B

reaches from 1.54 to 2.10 in comparison with the

algorithm TA

A

. Moreover, it handles all the singular cases correctly, for which algorithm

TA

A

fails.

References:

[1] Sung, K. { Shirley, P.: Ray Tracing with BSP Tree pp. 271{274. ACM-PRESS, New-

York 1992.

[2] Glassner, A. S.: An Introduction to Ray Tracing Academic Press, London 1991

[3] Jansen, F. W.: Data Structures for Ray Tracing in book Data Structures for Raster

Graphics, Springer Verlag, June 24-28, 1985.

[4] Cormen, T. H. { Leiserson, C. H. { Rivest, R. L.: Introduction to Algorithms The MIT

Press, Cambridge, Massachusetts, 1990.

2


