
Exploiting coherence in hierarchical

visibility algorithms

By Jiřı́ Bittner* and Vlastimil Havran
..

We present a series of simple improvements that make use of temporal and spatial coherence

in the scope of hierarchical visibility algorithms. The hierarchy updating avoids visibility

tests of certain interior nodes of the hierarchy. The visibility propagation algorithm reuses

information about visibility of neighbouring spatial regions. Finally, the conservative

hierarchy updating avoids visibility tests of the hierarchy nodes that are expected to remain

visible. We evaluate the presented methods in the context of hierarchical visibility culling

using occlusion trees. Copyright # 2002 John Wiley & Sons, Ltd.

Received: 30 November 2001; Revised: 12 December 2001

KEY WORDS: visibility culling; coherence; 4D-tree

Introduction

Exploiting various types of coherence during image

synthesis is one of the main goals of modern computer

graphics. In the scope of visibility algorithms at least

three types of coherence can be used: object space,

image space, and temporal. Hierarchical visibility

algorithms make some use of the spatial coherence

inherently by utilizing a spatial hierarchy. For densely

occluded scenes they may achieve a great benefit by

quickly identifying groups of invisible objects that

need not be considered for rendering.

A typical hierarchical visibility algorithm uses a

visibility test, which classifies a node of the spatial hier-

archy as completely visible, partially visible or invisi-

ble, depending on the visibility of the spatial region

corresponding to that node. The visibility test is

applied recursively starting at the root node. As soon

as a node is found completely visible or invisible, the

current branch of the traversal can be terminated, since

visibility of all nodes in the current subtree is imposed

by the visibility of the current node. In this paper we

do not focus on the amount of image space or temporal

coherence, which may be exploited by the visibility test

itself. Instead we suggest a more general framework

that is rather independent of the particular visibility

algorithm.

Traditional hierarchical visibility algorithms traverse

the spatial hierarchy starting at the root node. Firstly,

we propose a method that saves up to half of the

visibility tests by skipping certain interior nodes of the

hierarchy (assuming the spatial hierarchy corresponds

to a binary tree). The skipping is guided by visibility

classifications obtained during the previous invocation

of the visibility algorithm. Secondly, we describe an

algorithm that increases the amount of spatial coher-

ence exploited. It reuses visibility classifications of

hierarchy nodes already processed in the current pass

of the algorithm. The nodes are processed in front-to-

back order and the algorithm tries to determine

visibility of the region corresponding to the current

node by combining visibility states of neighbouring

regions. If it fails, the usual visibility test is applied.

Finally, we propose a conservative method that aims to

avoid repeated visibility tests of nodes that probably

remain visible.

Related Work

Some visibility algorithms exploit temporal coherence

in a specialized way that reflects the principles of each

such algorithm. Greene et al.1 use the set of visible

objects from one frame to initialize the z-pyramid in the

next frame and so reduces ‘overdraw’ of the hierarchical

z-buffer. Coorg and Teller2 present a visibility algorithm

that uses relevant planes which form a subset of visual

events. They restrict the hierarchy traversal to nodes

*Correspondence to: J. Bittner, Center for Applied Cybernetics,
Czech Technical University in Prague, Karlovo náměstı́ 13, 121 35
Praha 2, Czech Republic. E-mail: bittner@fel.cvut.cz

Based on ‘Exploiting Temporal and Spatial Coherence in Hierarchical Visibility Algorithms’ by J. Bittner and V. Havran which
appeared in Proceedings of the Seventeenth Spring Conference on Computer Graphics, April 2001, Budmerice, Slovakia, edited by
Roman Durikovic and Silvester Czanner. # 2001 IEEE.

THE JOURNAL OF VISUALIZATION AND COMPUTER ANIMATION

J. Visual. Comput. Animat. 2001; 12: 277–286

Published online in Wiley InterScience (www.interscience.wiley.com). (DOI: 10.1002/vis.269)...

...
Copyright # 2002 John Wiley & Sons, Ltd.

corresponding to planes that were crossed between

successive viewpoint positions. Another method of

Coorg and Teller3 exploits temporal coherence by

caching occlusion relationships.

Slater and Chrysanthou4 have proposed a probabil-

istic scheme for view-frustum culling. They partition

objects into groups, which are sampled according to

their distance from the view-frustum. It is difficult to

generalize this method for visibility algorithms, since

the ‘visible volumes’ can be very complex, and usually

they are not explicitly reconstructed. Moreover, this

method is not conservative unless changes in viewing

direction and position of the viewpoint are restricted.

The methods proposed in this paper can make use of

temporal and spatial coherence in the scope of existing

visibility algorithms that utilize a spatial hierarchy.

Examples of these are algorithms based on hierarchical

occlusion maps,5 coverage masks,6 shadow frusta7 and

occlusion trees.8

Overview

In order to describe modifications of the visibility

algorithm we first restrict our discussion to one

particular approach: conservative hierarchical visibility

culling. Below, we give a short overview of the data

structures and algorithms that are used in the scope of

the proposed methods.

Spatial Hierarchy

Hierarchical visibility culling utilizes a spatial hierar-

chy that is built over all objects of the scene. We have

focused on kD-trees9 because of their high flexibility

and simplicity of building and traversal. A node of the

kD-tree corresponds to an axis-aligned bounding box.

Each leaf of the tree contains a list of references to

objects that intersect the corresponding box.

The Node Visibility Test

The elementary step of the hierarchical visibility

culling is the node visibility test, i.e., visibility classifica-

tion of a single node of the hierarchy using a certain

occlusion map. We assume that given a viewpoint and

a viewing direction the visibility algorithm classifies

visibility of the node as completely visible, partially visible

or invisible. Although in this paper we do not focus on

the visibility determination step itself, we give a brief

description of one such algorithm (see Bittner et al.8 for

further details).

For each position of the viewpoint several large

polygonal occluders are identified. These are used to

build an occlusion tree, which results from merging

‘shadow’ frusta of each individual occluder. Briefly,

the occlusion tree is a Binary Space Partitioning (BSP)

tree,10 which has its leaves classified as in or out, if they

are occluded or unoccluded, respectively. The node

visibility test is performed using constrained depth

first search (DFS) on the occlusion tree. The final

visibility classification is obtained by hierarchical

combination of visibility states of nodes reached by

the DFS.

Classical Approach

Classical hierarchical visibility culling proceeds as

follows: starting from the root node of the hierarchy,

view-frustum culling is applied on the current node.11

If the node is outside the view-frustum it is classified

as invisible. Otherwise, the node visibility test is

performed. If the node is found to be visible all its

descendants are visible. Similarly, if a node is invisible

all its children are invisible. Descendants of nodes

classified as partially visible are tested further to refine

their visibility (see Figure 1). When the visibility of all

leaves is known, objects from fully visible and partially

visible leaves can be gathered and rendered using a

low-level exact visibility solver (such as depth-buffer).

A simple improvement can be used to avoid visibi-

lity tests of hierarchy nodes that contain only few objects

and so the estimated cost of rendering the objects is

lower than the cost of the visibility determination. In

such a case the node can be simply classified as visible.

Modifications Overview

In order to give an overview of the proposed modi-

fications we first show how they are exploited in the

scope of the hierarchical visibility algorithm (see

Figure 2). The hierarchy updating test is applied first.

This test eventually decides to skip all the remain-

ing steps and to continue determining visibility of

descendants of the current node. The view-frustum

culling can report the node as invisible if it is outside

the view-frustum. Otherwise, visibility propagation is

applied, which can succeed in classifying the node as

visible or invisible. The conservative hierarchy updating

J. BITTNER AND V. HAVRAN
...Visualization&

Computer Animation

...
Copyright # 2002 John Wiley & Sons, Ltd. J. Visual. Comput. Animat. 2001; 12: 277–286278

classifies some nodes as visible with certain probabi-

lity. If all previous steps failed in determining a node’s

visibility, the node visibility test is applied. Note that

the steps are applied in order of increasing computa-

tional cost, reflecting the main idea of culling: use a

more complicated test only when the simple one fails

to find a solution.

The rest of the paper is organized as follows: In the

next section the hierarchy updating method is intro-

duced. The sixth section describes a conservative

modification of hierarchy updating. Visibility propaga-

tion is presented in the seventh section. Results and

comparisons are presented in the eighth section.

Finally, the ninth section discusses some topics for

future work and concludes.

Hierarchy Updating

The hierarchical visibility algorithm can be seen as a

traversal of the hierarchy, which is terminated either at

leaves or nodes classified either as visible or invisible.

Let us call such nodes the termination nodes and nodes

that have been classified as partially visible the opened

nodes. Denote sets of termination and opened nodes in

the i-th frame Ti and Oi, respectively. In the classical

approach Ti^Oi=Vi, where Vi is the set of all nodes

visited in the i-th rendering frame.

Imagine the viewpoint is fixed. Visibility of all nodes

of the hierarchy does not change and the sets Ti, Oi,

and Vi, are fixed as well. Nevertheless, the classical

algorithm repeatedly tests visibility of all nodes Vi.

Hierarchy updating is a modification that aims to

eliminate the repeated visibility tests of the set of

opened nodes from the previous frame. It skips all

nodes of Oix1 and applies node visibility tests only on

nodes of Tix1. In order to propagate eventual changes

in visibility up into the hierarchy the visibility states

determined at the termination nodes are pulled up

according to the following rule: the visibility state of

the node is updated as visible or invisible, if all its

children have been classified as visible or invisible,

respectively. Otherwise, it remains partially visible and

thus opened. The pseudo-code of the hierarchical

visibility algorithm with hierarchy updating is outlined

in Figure 4. Note that the set of termination nodes is

not maintained explicitly. Instead, each node contains

its previous visibility classification. The frame variable

is associated with each node that is used to identify

nodes below the current termination nodes.

PARTIALLY

OCCLUDED

OUTSIDE
VIEW FRUSTUM

INVISIBLE

VIEWPOINT

OCCLUDERS

}VISIBLE

Figure 1. An example of hierarchical visibility culling. The

node visibility test uses merged occlusion volumes of four

occluders.

ESTIMATED
COMPUTATIONAL

COST

TEST

SKIP
PROBABILISTIC

INVISIBLE

PARTIALLY

VISIBLE

DETERMINE VISIBILITY

CULLING

VISIBILITY
PROPAGATION

VISIBILITY

CONSERVATIVE

VIEWFRUSTUM

REFINE VISIBILITY

HIERARCHY UPDATING

HIERARCHY UPDATING

Figure 2. Series of steps determining visibility of a node of

the hierarchy. The novel methods are highlighted.

COHERENCE IN HIERARCHICAL VISIBILITY ALGORITHMS
...Visualization&
Computer Animation

...
Copyright # 2002 John Wiley & Sons, Ltd. J. Visual. Comput. Animat. 2001; 12: 277–286279

Consequently, the modification does not change the

final visibility classification, which is the same as that

obtained using the classical approach. The behaviour

of the modified hierarchical visibility algorithm is

illustrated in Figure 3. Note that if the pull-up did not

take place the algorithm could end up with the termi-

nation nodes being all leaves of the hierarchy. Hence, it

would lose the advantages of the hierarchical algo-

rithm.

For kD-trees |Oi|=|Ti|x1. Thus hierarchy updat-

ing can save almost a half of the visibility tests that

would be applied on the interior nodes of the

hierarchy.

Conservative Hierarchy
Updating

The hierarchy updating method ensures that on each

path to a leaf node of the hierarchy at least one node

is tested for visibility. We can further reduce the

expected number of node visibility tests at the cost of

the conservative behaviour of the modified algorithm.

The conservative hierarchy updating produces a super-

set of visible nodes determined by hierarchy updating

alone.

Due to the complexity of the occlusion volume it is

difficult to predict changes in visibility unless a specia-

lized visibility algorithm is involved.2 To keep the con-

servative behaviour of the algorithm we cannot classify

a node as invisible without really determining its

visibility. Nevertheless, assuming visibility does not

change significantly over successive frames, visibility

states of visible and partially visible nodes do not have

to be updated in each frame. We use a simple

probabilistic sampling scheme. Visibility of a termina-

tion node that was classified as visible or partially

visible in the last frame is updated with probability

1 – pskip.

With probability pskip the node visibility test is

skipped and the node is classified as visible. This

method reduces the number of visibility tests applied

on visible nodes of the hierarchy, but it does not

TESTED
NODES

TERMINATION NODES
T T0 1

PULL UP

FRAME 0 FRAME 1

Figure 3. Illustration of hierarchy updating. Initially the algorithm proceeds starting at the root of the hierarchy (left). In the

second frame the opened nodes O0 are skipped and the visibility tests are applied on the termination nodes T0 (and eventually

‘below’). Visibility changes are propagated up to the hierarchy and the new set of termination nodes T1 is established.

Algorithm Hierarchical Visibility (NODE)
1: begin
2: if NODE is leaf or NODE.visibility ≠ Partially
3: (* termination nodes*)
4: or NODE.frame < frame-1 then
5: begin
6: NODE.visibility ← Test Visibility (NODE);
7: NODE.frame ← frame;
8: end
9: case NODE.visibility of

10: VISIBLE : Render subtree of NODE;
11: PARTIALLY :
12: if NODE is leaf then Render NODE;
13: else
14: for all children C of NODE do
15: Hierarchical Visibility (C);
16: (* pull-up *)
17: if visibility of all children equals v then
18: begin
19: NODE.visibility ← v;
20: NODE.frame ← frame;
21: end
22: INVISIBLE : (* terminate the DFS *)
23: end
24: end

Figure 4. Pseudo-code of the hierarchical visibility culling

with hierarchy updating.

J. BITTNER AND V. HAVRAN
...Visualization&

Computer Animation

...
Copyright # 2002 John Wiley & Sons, Ltd. J. Visual. Comput. Animat. 2001; 12: 277–286280

immediatelly capture all changes in visibility. In such

cases more nodes are classified as visible and conse-

quently more objects are rendered comparedwith the

non-conservative hierarchy updating. Nevertheless we

show in the ‘Results and Discussion’ section that for

the tested scenes and corresponding walkthrough

paths we could determine such a pskip that the total

frame time was minimized.

Visibility Propagation

Hierarchical visibility culling already makes use of

spatial coherence by utilizing a spatial hierarchy (kD-

tree). However, we can further increase the amount of

coherence exploited by reusing visibility information

computed for neighbouring regions.

Suppose that the nodes of the spatial hierarchy are

processed in front-to-back order with respect to the

viewpoint. Using kD-tree this ordering is determined

in a simple way.10 First, we try to determine the

visibility of the currently processed node by combin-

ing visibility classifications of its relevant neighbours.

If the combination fails we revert to the node visibility

test.

Let us denote the box corresponding to node N as

BN. The visibility of N can be determined combining

the visibility of potentially visible faces FBN
of BN

(|FBN
|j3). Consequently, the visibility of a face

FsFBN
can be determined combining visibility of

appropriate neighbour nodes. If all faces of FBN
are

invisible the node N is invisible. Similarly, if all faces of

FBN
are visible and there is no occluder intersecting BN,

N can be classified as completely visible. Otherwise,

the visibility propagation fails and the usual node

visibility test must be applied. An example of a node

that can be classified as invisible is depicted in

Figure 5.

A neighbour node of N on a face F is a node U of

the kD-tree with BU lying in the opposite halfspace

(induced by F) to BN and having non-empty intersec-

tion with F. Naturally, we could keep a list of neigh-

bour nodes for each face. Instead, we have used

neighbour links (ropes) for kD-trees12 that have low

memory requirements and allow hierarchical visibility

propagation.

Within each face F we associate a link to a neigh-

bour node U that has a smallest box containing the

face completely (F\BU=F). When determining visibi-

lity of a face F there are three possible cases:

1. The link points to a node that is visible/invisible,

2. The link points to a node that is partially visible,

3. The link points to a node that has not been visited in

the current frame.

The first case is trivial; the visibility of the face can be

set immediately. In the second case we perform a

constrained DFS and combine visibility of reached

nodes. The search is constrained to nodes having non-

empty intersection with the face F and terminates at

the termination nodes Ti. This process is illustrated in

Figure 6. The visibility combination is performed using

the same rule as in the pull-up pass of hierarchy

updating (section on ‘Hierarchy Updating’). Never-

theless, we can terminate the DFS whenever the com-

bination results in partial visibility.

The third case is solved as follows: if the link is

pointing to a node that has not been visited in the

current frame, there must be some termination node on

INVISIBLE

VISITED

VIEWPOINT

N

Figure 5. Node N can be classified as invisible since all its

appropriate neighbours are invisible.

CONSTRAINED
DFS

ROOT

ROPE
U

N

32

U

NODES

1

N

TERMINATION

2

3

1

Figure 6. Hierarchical visibility propagation using ropes.

COHERENCE IN HIERARCHICAL VISIBILITY ALGORITHMS
...Visualization&
Computer Animation

...
Copyright # 2002 John Wiley & Sons, Ltd. J. Visual. Comput. Animat. 2001; 12: 277–286281

the path to the root. This path is followed until the

termination node is reached (see Figure 7). Note that if

the visibility states were propagated into subtrees of the

termination nodes, the third case would never occur.

Temporal Coherence

The visibility propagation does not always succeed in

determining the visibility of the processed node. In

such a case it introduces an additional overhead into

the visibility determination. However, we can use

information obtained in the previous frame to guide

the algorithm in the current frame.

Firstly, we avoid visibility propagation on nodes that

we expect to remain partially visible and thus the

visibility propagation would probably fail. To achieve

this we apply the visibility propagation only on nodes

that have not been classified as partially visible in the

previous frame. Secondly, if for a given node the

visibility propagation succeeded in the previous frame,

it is applied in the current frame as well. Otherwise, it

is applied with certain probability pvp<1.

Results and Discussion

We evaluated the proposed algorithms on two test

scenes. The first scene (scene I) is a model of the fifth

floor of the Soda Hall;* the second scene (scene II) is a

building interior with precomputed lighting. The

measurements were conducted using SGI O2 with

128 MB memory. In all measurements we used the

visibility culling algorithm based on occlusion trees.8

The following methods were evaluated:

A—the classical approach;

B—hierarchy updating applied;

C—hierarchy updating+visibility propagation with

probability pvp=0.5;

D—as C+conservative hierarchy updating with pro-

bability pskip=0.5.

For scene I the constructed kD-tree consisted of 1187

nodes, and of 1605 nodes for scene II. For each position

of the viewpoint 16 occluders were identified and used

to build the occlusion tree during walkthrough of

scene I. For scene II we used 32 occluders, since the

scene contained smaller patches resulting from the

radiosity precomputed lighting. In both scenes a pre-

determined walkthrough path was followed for each

measurement (see Figures 12 and 13 for scene snap-

shots). If not stated differently all presented values are

averaged per one frame of the walkthrough.

The first six plots illustrate the dependence of the

algorithms on the relative speed of the walk (Figures

8–10). A unit relative speed roughly corresponds to

normal walking speed. We have measured the num-

ber of node visibility tests, the time spent by the

hierarchical visibility determination and the total frame

time.

All evaluated methods exhibit a very slow growth of

the number of necessary node visibility tests. For a

walk of relative speed 1.0 the following savings in

average number of node visibility tests were achieved

(compared to A):

$ scene I—method B 47%, method C 50% and method

D 67%;
$ scene II—method B 49%, method C 51% and

method D 72%.

Hierarchy updating (method B) saves almost half of

ROOT

TERMINATION
NODES

ROPEN U

Figure 7. Lazy propagation of the visibility classification.

*http://graphics.lcs.mit.edu/ ybecca/research/SodaHall

J. BITTNER AND V. HAVRAN
...Visualization&

Computer Animation

...
Copyright # 2002 John Wiley & Sons, Ltd. J. Visual. Comput. Animat. 2001; 12: 277–286282

the node visibility tests, as expected. We have observed

that visibility propagation (method C) succeeds in

determining visibility of only a few nodes that usually

correspond to rather large regions. The D method signi-

ficantly decreases the number of node visibility tests.

This is paid by a higher number of nodes classified as

partially visible or visible (details follow further in the

text).

Figure 9 shows that the time spent by hierarchical

visibility culling was roughly proportional to the num-

ber of node visibility tests. Nevertheless, we can

observe that the time spent by visibility propagation

(method C) is not recovered by the savings in number

of node visibility tests. In particular, this follows from

the fact that the node visibility test using the occlusion

tree is almost as fast as the visibility propagation.

In Figure 10 we can observe the conservative

behaviour of method D. When the viewpoint moves

slowly, this method achieves better frame times than

the others. As the relative speed of the walk increases

the visibility states of many nodes change quickly.

Hence ‘reusing’ some previously visible nodes leads to

a larger set of nodes to render and the frame time is

increased.

Finally, we measured the behaviour of the conserva-

tive hierarchy updating algorithm in dependence on

the probability pskip (Figure 11). We can observe local

minima in the average frame time at pskip=0.5 for scene

I and pskip=0.6 for scene II. For probabilities greater

than this minimumsavings in visibility classification do

not recover the time necessary for rendering otherwise

invisible objects.

40

50

60

70

80

90

100

110

120

130

140

150

0 2 4 6 8 10 12 14 16 18 20
relative speed

A
B
C
D

te
st

ed
 n

od
es

40

60

80

100

120

140

160

180

0 2 4 6 8 10 12 14 16 18 20
relative speed

A
B
C
D

te
st

ed
 n

od
es

(a) (b)

Figure 8. Dependence of the number of node visibility tests on the relative speed of the walk for scene I (a) and scene II (b).

4

5

6

7

8

9

10

0 2 4 6 8 10 12 14 16 18 20
relative speed

A
B
C
D

vi
si

bi
lit

y
tim

e
[m

s]

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

0 2 4 6 8 10 12 14 16 18 20
relative speed

A
B
C
D

vi
si

bi
lit

y
tim

e
[m

s]

(a) (b)

Figure 9. Average time spent by the hierarchical visibility algorithm for scene I (a) and scene II (b).

COHERENCE IN HIERARCHICAL VISIBILITY ALGORITHMS
...Visualization&
Computer Animation

...
Copyright # 2002 John Wiley & Sons, Ltd. J. Visual. Comput. Animat. 2001; 12: 277–286283

It is worth mentioning that our aim was not to

evaluate the visibility algorithm itself, but rather to

document the impact of the proposed methods. It is

obvious that if the visibility algorithm was more

demanding, the proposed methods would decrease

the total frame time more significantly.

Conclusion and Future Work

In this paper we have introduced a series of modifica-

tions of the classical hierarchical visibility culling. The

hierarchy updating proved to perform well in practice

as it saves almost half of the visibility tests that would

have to be applied using the classical approach. The

savings would be less remarkable for hierarchies with

higher branching factors, but our preliminary results

indicate that kD-trees with arbitrarily positioned

partitioning planes are much more effective for

visibility culling than octrees or bounding volume

hierarchies.

Suprisingly, we have observed that visibility propa-

gation saves only a few visibility tests. This documents

that the spatial coherence is already well exploited in

the classical approach. Finally, we have shown that

conservative hierarchy updating can improve the

overall frame time for certain settings.

We have experimented with fixed probabilities used

in both conservative hierarchy updating and the

30

32

34

36

38

40

42

44

0 2 4 6 8 10 12 14 16 18 20
relative speed

A
B
C
D

fr
am

e
tim

e
[m

s]

166

166.5

167

167.5

168

168.5

169

169.5

170

170.5

171

0 2 4 6 8 10 12 14 16 18 20
relative speed

A
B
C
D

fr
am

e
tim

e
[m

s]

(a) (b)

Figure 10. Average frame time in dependence on the relative speed of the walk for scene I (a) and scene II (b).

31

32

33

34

35

36

37

38

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Pskip

A

fr
am

e
tim

e
[m

s]

166

167

168

169

170

171

172

173

174

175

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Pskip

A

fr
am

e
tim

e
[m

s]

(a) (b)

Figure 11. Dependence of the average frame time on the probability pskip using conservative hierarchy updating for scene I (a)

and scene II (b).

J. BITTNER AND V. HAVRAN
...Visualization&

Computer Animation

...
Copyright # 2002 John Wiley & Sons, Ltd. J. Visual. Comput. Animat. 2001; 12: 277–286284

probabilistic modification of the visibility propagation

algorithm. More elaborate methods could be used that

automatically adjust these probabilities according to

the history of visibility changes.

The algorithm as described determines whether a

node is visible or invisible. It could be extended to

estimate whether a node that was partially visible in

the previous frame remains partially visible. This

modification would be of benefit in sparsely occluded

environments where many small regions are classified

as partially visible.

ACKNOWLEDGEMENTS

This research was supported by the Czech Ministry of

Education under Project LN00B096 and the Aktion Kontakt

OE/CZ, grant number 1999/17.

References
1. Greene N, Kass M, Miller G. Hierarchical Z-buffer visibi-

lity. In Computer Graphics (Proceedings of SIGGRAPH ’93),

1993; pp 231–238.
2. Coorg S, Teller S. Temporally coherent conservative

visibility. In Proceedings of the Twelfth Annual ACM

Symposium on Computational Geometry, Philadelphia, PA,

May 1996.
3. Coorg S, Teller S. Real-time occlusion culling for models

with large occluders. In Proceedings of the Symposium on

Interactive 3D Graphics, New York, 27–30 April 1997. ACM

Press; 83–90.
4. Slater M, Chrysanthou Y. View volume culling using a

probabilistic caching scheme. In Proceedings of the ACM

Symposium on Virtual Reality Software and Technology

(VRST-97), New York, 15–17 September 1997. ACM

Press; pp 71–78.
5. Zhang H, Manocha D, Hudson T, Hoff III KE. Visibility

culling using hierarchical occlusion maps. In Proceedings of

SIGGRAPH 97, August 1997; pp 77–88.

Figure 12. (Left) The path used for a walk through the model of scene I. For relative speed of walk equal to 1.0 the walk consists

of 980 steps. (Right) An example of hierarchical visibility culling. The green regions are outside of the view-frustum. The few

yellow regions in the viewing direction are completely visible. Invisible regions are shown in dark blue. The light-blue regions

were found to be invisible by the visibility propagation algorithm. Partially visible regions are transparent.

Figure 13. (Left) A camera view on the test path through scene II. (Right) Top view showing the part of the scene classified as

invisible (dark gray).

COHERENCE IN HIERARCHICAL VISIBILITY ALGORITHMS
...Visualization&
Computer Animation

...
Copyright # 2002 John Wiley & Sons, Ltd. J. Visual. Comput. Animat. 2001; 12: 277–286285

6. Greene N. Hierarchical polygon tiling with coverage
masks. In Proceedings of SIGGRAPH ’96, August 1996;
pp 65–74.

7. Hudson T, Manocha D, Cohen J, Lin M, Hoff K, Zhang H.
Accelerated occlusion culling using shadow frusta. In
Proceedings of the Thirteenth ACM Symposium on Computa-
tional Geometry, Nice, France, June 1997.

8. Bittner J, Havran V, Slavı́k P. Hierarchical visibility culling
with occlusion trees. In Proceedings of Computer Graphics
International ’98 (CGI’98), IEEE, 1998; pp 207–219.

9. Samet HJ. Design and Analysis of Spatial Data Struc-
tures: Quadtrees, Octrees, and Other Hierarchical Methods.
Addison-Wesley, Reading, MA, 1989.

10. Fuchs H, Kedem ZM, Naylor BF. On visible surface
generation by a priori tree structures. In Proceedings of
SIGGRAPH ’80, July 1980; pp 124–133.

11. Rohlf J, Helman J. IRIS performer: a high performance
multiprocessing toolkit for real-time 3D graphics. In
Proceedings of SIGGRAPH ’94, July 1994; pp 381–395.

12. Havran V, Bittner J, Žára J. Ray tracing with rope trees. In
Proceedings of 13th Spring Conference on Computer Graphics,
Budmerice, 1998; pp 130–139.

Authors’ biographies

Jiřı́ Bittner currently works as a researcher at the
Center for Applied Cybernetics in Prague, Czech
Republic. He is a PhD candidate at the Department of
Computer Science of the Czech Technical University,
where he received his MS in 1997. His research
interests include efficient rendering techniques, global
illumination and computational geometry.

Vlastimil Havran received an MS in 1996 for com-
puter science and engineering and PhD in 2001 for
computer science, both at the Czech Technical Uni-
versity in Prague, Czech Republic. He was working
partly in industry in 1999–2001 at IGP Company,
Czech Republic. He currently holds a post-doctoral
research position at Max-Planck-Institut, für Infor-
matik, saarbrucken, Germany. Dr Havran’s current
research interests reside in efficient algorithms for
computer graphics, particulary algorithms in visibility
computation and global illumination.

J. BITTNER AND V. HAVRAN
...Visualization&

Computer Animation

...
Copyright # 2002 John Wiley & Sons, Ltd. J. Visual. Comput. Animat. 2001; 12: 277–286286

