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Abstract

We present a novel framework for efficiently computing the indirect il-
lumination in diffuse and moderately glossy scenes using density estimation
techniques. A vast majority of existing global illumination approaches ei-
ther quickly computes an approximate solution, which may not be adequate
for previews, or performs a much more time-consuming computation to ob-
tain high-quality results for the indirect illumination. Our method improves
photon density estimation, which is an approximate solution, and leads to
significantly better visual quality in particular for complex geometry, while
only slightly increasing the computation time. We perform direct splatting
of photon rays, which allows us to use simpler search data structures. Our
novel lighting computation is derived from basic radiometric theory and re-
quires only small changes to existing photon splatting approaches. Since our
density estimation is carried out in ray space rather than on surfaces, as in
the commonly used photon mapping algorithm, the results are more robust
against geometrically incurred sources of bias. This holds also in combi-
nation with final gathering where photon mapping often overestimates the
illumination near concave geometric features. In addition, we show that our
splatting technique can be extended to handle moderately glossy surfaces
and can be combined with traditional irradiance caching for sparse sampling
and filtering in image space.

Keywords
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Table 1: Main symbols used in this paper.
x0, x1, ... Light path vertices (photon hitpoints, x0 origin on light source)
y0, y1, ... Eye path vertices (eye samples)
θ, φ Polar angle and azimuthal angle relative to surface normal
ω Incoming light directions (θ, φ)
ω′ Outgoing light directions (θ′, φ′)
cos θx Cosine of angle θ between incoming direction and normal at x

M Total number of photon hits recorded in the scene
N Total number of eye path samples

(i.e. computed illumination points on scene surfaces)
K Number of nearest neighbors under the density estimation kernel
Φ(x, ω) Incoming flux (photon) at x from direction ω

L(x, ω′), L(x, ω) Radiance at x in direction ω′, from direction ω, respectively
E(x) Irradiance at x

h Density estimation bandwidth (splat kernel radius)
C Parameter determining the amount of noise in the density estimation
S Parameter determining the variance of h

R Maximum bandwidth scaling parameter, R ∈]0..1]
Kh(x, y) Normalized 2D Kernel function at x with bandwidth h:

Kh(x, y) = 1
hK

(
‖x−y‖

h

)
Kh(x, y, ω) Normalized 2D kernel function (Kh(x, y)) with domain oriented

perpendicular to ω

dσ(ω) Differential solid angle for direction ω

dA(x),∆A(x) Differential surface area at x, finite surface area at x

dA⊥
ω (x) Projected differential surface area, dA⊥

ω (x) = dA(x) · cos θ

V (x, y) Visibility predicate, if x and y are mutually visible then
V (x, y) = 1, else V (x, y) = 0

fs(xi−1, xi, xi+1) Bidirectional reflectance distribution function (BRDF) at xi

for scattering from xi−1 to xi+1

p(x) Probability density function (pdf)
ps, pe pdf for sampling BRDF and light source emission, respectively
p(y|x) Conditional pdf for sampling light path vertex y given vertex x

Y m
l (θ, φ) Spherical harmonics (SH) basis function of degree m for band l

with index i = l(l + 1) + m

cm
l (θ′, φ′) BRDF SH coefficients representing the incoming hemisphere

for the outgoing direction ω′ = (θ′, φ′)
λm

l SH coefficients representing incoming radiance
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1 Introduction

Many rendering applications used in industrial design and special effects in
movie productions require high quality global illumination solutions, which
are costly for complex scenes with general reflectance models. A common
choice in such applications is the photon mapping algorithm [11], in which
stochastic photon tracing is performed and the resulting photon hit points
on the scene surfaces are registered in the photon map. The nearest-neighbor
density-estimation method developed in statistics [25] is then employed to
reconstruct the lighting function based on the photon map. Since a finite
neighborhood is needed to collect a sufficient number of photons and to
reconstruct the lighting function with an acceptable noise level, all density
estimation methods are prone to a systematic error, so-called proximity bias
[23,25] (due to a convolution of the original lighting function with the density
estimation kernel). Photon mapping also suffers from other systematic errors:
boundary bias (i.e., underestimation of illumination near object boundaries),
topological bias [8, 23] (i.e., wrong estimation of the surface area on complex
surfaces). See the examples in Fig. 1.1.

Recently, Lastra et al. [17] and Havran et al. [8] have shown that a viable
alternative for the density estimation of photon hit points on the scene sur-
faces is an analogous operation performed directly for photon paths traveling
in the proximity of these surfaces. To compute the irradiance value at a given
surface point, its neighborhood is searched for photon rays that intersect a
disc in the tangent plane, which is centered at this point (see Fig. 1.1c).
The disc is extended until a minimum specified number of photon rays is
found or a maximum disc radius is exceeded. This leads to elimination of
boundary bias inherent to photon maps as well as a reduction of topological
bias for convex surfaces, since density estimation is computed for a disc in
the tangent plane and the real surface area (A in Fig. 1.1c) does not need
to be estimated. The disadvantage of these methods is that they need com-
plex and memory demanding data structures for nearest neighbor searches
of rays. Their algorithms rely heavily on the coherence in the search queries
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Figure 1.1: Bias sources in traditional photon density estimation: proximity
bias (a), boundary bias (b), topological bias (c). Light leaking (d), due to
wrong visibility assumptions, is a special case of proximity bias, which can
be partially detected by back-face culling of incident photons (group II in
(d)). Our algorithm eliminates boundary bias and topological bias.

and therefore only work for primary-ray hit points shot from the camera,
which we will refer to as eye samples. Another drawback of these methods is
that they cannot compute the correct tangent disc area for points on concave
surfaces, for example, in corners where a disc is partially intersected (see for
example Fig. 1.1d).

Direct rendering of lighting computed using either photon or ray mapping
leads to poor image quality, which give only a vague idea of the rendered
scene appearance and costly final gathering (the numerical integration of
incoming radiance over the whole hemisphere) is performed for all pixels [11].
These costs can be reduced by using the irradiance cache data structure to
interpolate irradiance samples sparsely in object space both for diffuse [34]
and moderately glossy [13] surfaces.

The goal of this work is to provide a framework for quickly computing
rendered previews of good quality, while also enabling the functionality of
final gathering and irradiance caching if even higher quality and more robust
results are needed. Our method shares all discussed benefits of ray den-
sity estimation, but neither requires the complex k-NN ray gathering as for
the ray maps technique nor relies on the coherence of the eye sample posi-
tions. We replace the line density estimation in the tangent plane by energy
splatting along photon rays to the eye samples. Our new density estimation
metric is capable of handling illumination on complex geometric topology
(e.g. wrinkled and bump mapped surfaces), which is not working in a di-
rect visualization of photon maps. It also reduces the low-frequency noise,
which is perceived as speckles in the final image (Fig. 7.3). Compared with
standard photon density estimation, we obtain better image quality with the
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same number of photons because more photons contribute to a pixel using
the same kernel width, which reduces variance. Further combined with multi-
stage filtering, our method leads to fast rendering of images with acceptable
quality for low-frequency indirect illumination.

Additionally, we show how our method can be extended with state-of-the-
art techniques in global illumination such as radiance caching and non-diffuse
lighting on moderately glossy BRDFs. In the following section we review
previous work concerning an operation central for our algorithm: photon
energy splatting onto the image plane.
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2 Previous Work

Photon mapping with direct photon splatting into the image plane has al-
ready been investigated by Lavignotte et al. [18]. They focus on off-line
rendering and avoid the boundary bias by precise computation of the area
covered by the splat footprint over each mesh element. On the other hand,
they do not solve this problem for arbitrary topology. Since they only con-
sider hit points of photons on meshes, their approach fails when it comes to
estimation of the illumination on small surfaces. Furthermore, they allow
only for diffuse scattering of light towards a camera. In order not to smear
over object boundaries, they keep an item buffer with object IDs, which
introduces further dependencies on a scene model.

Another interesting photon splatting approach has been subject in the
research report of Bekaert et al. [1]. Their work aims at high-quality ren-
dering of various kind of surface material and illumination conditions using
photon density estimation. They achieve this by correcting the error in the
neighborhood of a photon hit point, which is mainly caused by wrong vis-
ibility assumptions within the splatting footprint of the photon. However,
their method needs to estimate the solid angle subtended by the splatting
footprint at the photon’s origin, which is generally difficult and therefore only
coarsely approximated in their method.

Splatting has also been used in the context of different global illumination
algorithms such as path tracing [6] and bidirectional path tracing [28], but
there the main motivation was noise reduction. Suykens and Willems [28]
propose an iterative procedure with adaptive filter-size control taking into
account the density of samples and their energy contributions. This technique
inspired us to control the splat size as a function of photon-path probability
density including BRDF sampling density and number of photon bounces,
which is neglected in gathering density estimation techniques only operating
on a local neighborhood.

Splatting is also commonly used in recent GPU-based global illumination
techniques, which are often designed for games and are usually limited to a
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single bounce of indirect lighting for purely Lambertian environments. For
example Dachsbacher and Stamminger [3] use an extended shadow map to
deposit secondary light sources directly on lit scene surfaces and then splat
energy from these sources to neighboring pixels without care of visibility
in the indirect light. Splatting is also used to deposit lighting energy from
reflections, refractions, and caustics [24, 29, 38]. In all those solutions the
main goal is maximizing the rendering speed at the expense of reduced image
quality.

Another class of algorithms are hybrid GPU-CPU off-line techniques that
are designed for high quality rendering where the GPU role is merely to
speed up some critical computation parts. Gautron et al. [7] use the GPU
for the irradiance cache computation by rasterizing directly illuminated scene
geometry (similar to [16]). In addition, the GPU is employed for splatting
irradiance caches into the splat buffer (effectively the image plane).

Our method differs from previous splatting approaches in the way that a
photon splats its energy along its path rather than in the neighborhood of
its hit points only. This avoids boundary bias and reduces topological bias
inherent to photon maps [11], which has been demonstrated in [8] and [17].
In contrast to [8] and [17] our photon ray splatting approach decouples the
density estimation footprint entirely from the surface topology by applying
a new density estimation metric over photon rays.

Our metric has also a similarity with instant radiosity [12] in the sense
that a photon’s energy contribution to a pixel is explicitly weighted by the
cosine of the incoming photon direction. However, to be efficient, the remain-
ing part of the geometric term including visibility and BRDF is stochastically
sampled using a random photon walk with density estimation operating on
a local neighborhood. This way we can still compute indirect glossy light
transport (caustics) and handle a larger number of photons compared to
instant radiosity.
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3 Algorithm Overview

This section is intended to give an overview of the major processing steps in
our photon-ray splatting architecture (refer also to Fig. 3.1). More detailed
descriptions are provided in the following sections.

The basis of our method is a bidirectional path tracing algorithm com-
bined with density estimation that samples eye and light paths (photons)
whereby the eye paths are kept short to avoid the expensive final gathering
through BRDF sampling. No indirect eye paths are sampled except for deter-
ministic reflections (ideal specular surfaces). Instead, the main computation
is carried out for the light paths via density estimation (photon splatting).
The rendering algorithm consists of four passes:

Initialization: At the beginning of the algorithm the rendering and ray
tracing system is initialized. This comprises scene parsing, construction of
a ray tracing acceleration data structure, and optionally precomputing the
coefficient tables of BRDF data in the spherical harmonics (SH) basis if the
splatting is performed in the SH basis. For each BRDF the SH coefficients are
precomputed for a constant number of discrete outgoing directions uniformly
distributed over the hemisphere and stored in a coefficient lookup table [14].

Eye pass: After initialization primary rays are shot from the eye (cam-
era) and eye sample records are stored at the hit points on the scene surfaces
storing position, normal, BRDF index, incoming direction, pixel index, and
weight for RGB components. In addition to the eye samples a discontinu-
ity buffer [20, 32] for each pixel is maintained, which can be regarded as an
extension to the classical z-buffer storing not only the nearest distance per
pixel to the camera viewpoint but also the compressed normal in spherical
coordinates. We use this buffer for discontinuity-preserving filtering in image
space (Sections 6.2,6.3). Next, a kd-tree is constructed over the eye samples
storing several eye samples per a leaf (see Section 5).

Light pass: After the eye pass the light pass starts with photon sam-
pling. The photons are emitted from the light sources until the desired
number of direct, caustics, and diffuse indirect photons are recorded. Since
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the photon paths can be quite incoherent, all paths are stored and a kd-tree
is constructed over the photon rays sorting the rays in spatial and directional
domain (5D). Each photon ray is assigned a splatting kernel width, which is
computed based on the entire photon path (Section 4.2).

Photon splatting: In the next phase all photons are splatted sequen-
tially to neighboring eye samples in the vicinity of the photon rays (Section 4)
using a density estimation kernel as described in Section 4.2. For an efficient
nearest eye sample search along a photon ray the kd-tree over eye samples is
traversed for a conical search domain (Section 5.2). In order to reconstruct
glossy light transport at eye sample hit points, photon energy contributions
are accumulated in an intermediate 4D data structure, which we call the
radiance map, before being rendered to a final pixel. The radiance map con-
sists of a number of radiance images with the same resolution as the final
image, which represent spatial (pixel position) and directional (image index)
information of incoming light.

As a comparison we have implemented two different methods for com-
puting light transport towards pixels. In our first approach radiance is direc-
tionally discretized and accumulated in a directional histogram (histogram
splatting) from which the pixel radiance is computed by BRDF importance
sampling. In our second approach incoming radiance and BRDF are mapped
onto the spherical harmonics (SH) basis (SH splatting). Except for pixels
that cover specularly reflected eye samples, each pixel in the map corresponds
to one camera-visible eye sample. In addition to the photon’s energy contri-
bution in the radiance map, a 2D image storing splat information per pixel
is updated during the splatting phase. This image records the harmonic
mean distance of incident photon rays and the sum of density-estimation
kernel weights for each pixel and is used for determining the local filter size
per pixel in each radiance image (Section 6.2) as well as the radiance cache
spacing (Section 6.3).

Final integration with BRDF evaluation: When the light pass
is finished, the radiance images can be prefiltered before the final image is
composed through BRDF evaluation. The main purpose of the radiance
image filtering is to speed up the algorithm and efficiently reduce noise in
the radiance distribution due to photon splatting at the expense of increasing
bias. Our filtering method is based on fast adaptive convolution in image
space using a summed area table (SAT) that preserves discontinuities in the
2D filter footprint. The final image is then composed from the radiance
images either in the spherical harmonics basis or in the primary domain
via BRDF sampling. The main algorithm flow for the spherical harmonics
splatting without radiance caching is illustrated in Fig. 3.1.

9



Input Data Set

Primary Ray Shooting 
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Figure 3.1: The processing flow in our photon splatting architecture (spher-
ical harmonics ray splatting).
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4 Photon Density Estimation
in Ray Space

Standard photon-density estimation methods gather (or spread) photon en-
ergy in the neighborhood of a point inside a sphere using a normalized sym-
metric density estimation kernel [11, 25]. This ignores photon-path density
changes (e.g. illumination gradients) in the neighborhood. Instead it is as-
sumed to have an unbounded perfectly planar surface around the density
estimation point y, which is only true in the limit for a differential surface
area. To correct for this error, it is necessary to measure changes in path
probability density (including visibility) with respect to corresponding pho-
ton hit point xi. Such an approach has been proposed by Bekaert et al. [1].
However, their approach is computationally expensive and introduces a dif-
ferent sort of bias due to the approximation to the solid angle subtended by
the density estimation footprint of a photon hit point. In our method, we
partially correct the density estimation and still keep performance high. Let
us first consider the probability density pr for sampling the next photon hit
point xi+1 from a particular photon location xi. This pdf is proportional to

pr(xi → xi+1) ∝ V (xi, xi+1)p
⊥
s (xi−1, xi, xi+1)

cos θxi+1

‖xi − xi+1‖2 , (4.1)

where p⊥s (xi−1, xi, xi+1) = ps(xi−1, xi, xi+1) ·cos θ′xi
is the pdf for sampling the

cosine weighted BRDF at point xi. Refer to Table 1 for explanation of the
symbols used in the paper.

Considering Eq.(4.1) we can draw some conclusions about the photon
sampling density (i.e. flux density or irradiance) changes at hit point xi+1. If
we assume the density estimation footprint at hit point xi+1 to be relatively
small with respect to the squared distance ‖xi − xi+1‖2 (such that visibility
V (xi, xi+1) = 1 is likely within the footprint) and the BRDF sampling density
ps at xi to be of low-frequency, then the change in photon sampling density in
the neighborhood of xi+1 mainly depends on the change in surface orientation
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(cos θi+1) in the vicinity of point xi+1. In normal photon mapping this factor
is simply ignored, assuming the density estimation domain is planar and
continuous in the neighborhood of xi+1, which results in visible bias in corners
and on curved surfaces (see Fig. 1.1). We tackle this error by using a new
density estimation metric that preserves the orientation when computing
the contribution to each neighboring sample. Instead of computing density
estimation for photon-ray intersections with surfaces as in photon mapping
[11] and ray maps [8], we compute the density estimation in ray space.

Recall that radiance is a 5-dimensional quantity depending only on the
position and direction in space. It is defined over differential projected area
dA⊥

ω (y) and differential solid angle dσ(ω)

L(y, ω) =
d2Φ(y, ω)

dA⊥
ω (y)dσ(ω)

=
d2Φ(y, ω)

dA(y) cos θ dσ(ω)
, (4.2)

which is independent of surface orientation. However, it is measured on
surfaces since radiant energy (photons) is absorbed and reflected on surfaces
(our sensors). Inversely, in order to compute the radiance from the measured
photon density on a surface with area dA(y), the photon density is projected
in the direction ω. This gives us the number of photons passing through a
differential area dA⊥

ω perpendicular to ω (see Fig. 4.1).

L x ,

dA
⊥



x



dA
⊥

cos

d 

Figure 4.1: Radiance is defined as the incoming photon flux density per unit
time in a projected differential area dA⊥

ω and differential solid angle dσ(ω).
Intuitively this can be understood as all the photons with direction in a
certain solid angle crossing dA⊥

ω per time unit.
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Equivalently, if we know the radiance L(y, ω) for the differential area dA⊥
ω ,

we can compute its contribution to the irradiance of an arbitrarily oriented
surface with area dA by multiplying L(y, ω) with the cosine of the angle θ
between surface normal and ω (see Fig. 4.1).

To compute the irradiance E(y) at a point y on a surface the incoming
radiance is integrated over the upper hemisphere Ω+ at y

E(y) =

∫
Ω+

L(y, ω) cos θ dσ(ω) =

∫
Ω+

dΦ(y, ω)

dA(y)
. (4.3)

Intuitively, this can be understood as accumulating the flux of all photons
arriving in a small surface area around a point y, which leads us to the
well-known photon mapping algorithm. In photon mapping we replace the
differential quantities by finite ones and compute an approximation Ẽ1(y) to
the real irradiance via density estimation

E(y) ≈ Ẽ1(y) =
K∑
i

Kh(y, xi)
∆Φi(xi, ωi)

∆A(y)
, (4.4)

where Kh(x, y) is the density estimation kernel that satisfies
∫

S
Kh(x, y)dy =

1,∀x. Hence, in photon mapping we skip the computation of radiance by
directly computing photon density on a surface. With this approach changes
in surface orientation in the neighborhood of y are neglected in the density
estimation.

To avoid this problem, we propose to estimate the photon density in ray
space from the nearest photon rays and project the result onto the local
surface to obtain the irradiance contribution. This requires only a small
change to Eq.(4.3) to compute the irradiance as

E(y) =

∫
Ω+

dΦ(y, ω)

dA⊥
ω (y)

cos θ

≈
K∑
i

Kh(y, xi, ωi)
∆Φi(xi, ωi)

∆A⊥
ωi

(y)
cos θi, (4.5)

where K is the total number of photons arriving in the hemisphere centered
at y. Combining Eq.(4.5) with a BRDF function to compute the reflected
radiance L(y, ω′) towards the camera leads to the more general description

L(y, ω′) ≈
K∑
i

fs(ωi, y, ω′)Kh(y, xi, ωi)
∆Φi(xi, ωi) cos θi

∆A⊥
ωi

(y)
,
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where fs(ωi, y, ω′) is the BRDF at surface point y for incoming radiance
direction ωi and outgoing radiance direction ω′. Kh(y, xi, ωi) is a normalized
2D Kernel function whose domain is oriented perpendicular to the direction
ωi. Hence, the kernel evaluates the distance ri of point y to the ray (xi, ωi)
rather than the distance to the ray-intersection xi in the local tangent plane
(see Fig. 4.2).

x j
y

 ji

r j

N y

h

Khr 

ri
y

h xi

(a) (b)

i

N y
 j

K hr 

r j ri

x j xi

Figure 4.2: Photon density estimation via ray gathering visualized in 1D
for two incoming photon rays: (a) when gathering in the tangent plane (ray
disc intersection) only ray i contributes; (b) with our new metric, all rays
intersecting the sphere with radius h centered around y contribute to the
irradiance at y.

4.1 Photon Splatting Instead of Gathering

Instead of computing the photon density at an eye sample point y by gath-
ering all neighboring photon rays, we can also utilize a splatting approach to
estimate the photon density at all eye sample points. In splatting methods a
photon computes its contribution weighted by a normalized kernel to a num-
ber of eye samples at once. This corresponds to kernel density estimation
(KDE) in statistics [25].

Variable KDE with adaptive kernel width is preferable over k-nearest
neighbors (K-NN) density estimation [25]. This is intuitively clear if we
consider a large density gradient (e.g. shadow boundary): in the case of
K-NN density estimation the filter kernel will expand to a large neighbor-
hood in the low density region (shadow) “stealing” energy from the high
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density region, which results in blurred slowly vanishing illumination. In
case of variable KDE with a kernel width proportional to the local photon
density, photons in low density regions spread their energy in a wider kernel
increasing the error in the high density regions (which is however relatively
small). Conversely, the high density photons spread their energy in a narrow
kernel preventing strong light leaking into the shadow region, which results
in “sharper” gradients particularly noticeable in density estimation for direct
illumination and caustics.

If we consider now a constant bandwidth for kernel K, then searching at
each eye sample point all the photons that intersect the bounding sphere (see
Fig. 4.2b) is equivalent to searching for each photon all eye sample points
in the cylinder centered along the photon’s ray (xi, ωi). However, instead of
a cylinder we use a conical frustum as search domain because it is better
suited for our bandwidth selection scheme proposed in Section 4.2. Each
photon splats its energy weighted by a 2D kernel, which is aligned with its
ray direction, to the found eye samples (see Fig. 4.3).

In practice the difficulty in this approach is to define where to end the
splatting traversal, in particular for rays arriving at a grazing angle. We pro-
pose a simple heuristic: for eye samples located beyond the photon hit point
the splatting footprint is reduced to a hemisphere (Fig. 4.3). This heuristic
simplifies the search and prevents excessive light leakage as we do not evalu-
ate the visibility for eye samples within the splatting footprint. Nonetheless,
it can increase the noise since the splatting radius reduces gradually (poten-
tially to zero) at the end of the cone. Therefore, the bandwidth of the density
estimation kernel should stay above the minimum radius to avoid occasional
noise artifacts. In practice, this noise is hardly visible in the indirect illu-
mination as it only affects rays arriving at a grazing angle, which have low
contribution.

Naturally, a photon can only contribute to eye samples that are oriented
towards the photon ray (i.e. have a negative dot product of normal and ray
direction).

More details of the photon ray splatting algorithm are presented in Al-
gorithm 2. An example of the whole concept is visualized in Fig. 4.3.

4.2 Choice of Splat Kernel and Bandwidth

Selection

According to statistical studies [25], the shape of the kernel K is rather
unimportant for the bias reduction in density estimation. Therefore, we
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have used a computationally efficient 2D kernel function: the Epanechnikov
kernel [23, 25]:

K(t) =

{
2
π
· (1− t2) |t| < 1

0 otherwise.
(4.6)

As an alternative we have also tested the biweight or quartic kernel [25],
which is continuous at the boundary but increases the low-frequency noise.

A more important issue in density estimation is the choice of the kernel
width or bandwidth (see [25]). The optimal width depends on the kernel func-
tion, the total number of samples, and the local fluctuations in the density
we want to estimate (i.e. the second derivative of the irradiance function).
The latter is difficult to estimate and consequently often replaced by various
heuristics. However, in computer graphics, we are often more interested in
computing results with low variance rather than noisy images. Therefore
most photon mapping algorithms are based on k-nearest neighbors (K-NN)
density estimation where the bandwidth is directly related to the local density
of the samples. K-NN density estimation only attempts to reduce variance
careless of introducing bias, which may result in strongly “blurred” images
in particular for caustics.

For photon splatting, it is difficult to have a bandwidth selection pro-
portional to the local sample density, which is not explicitly known during
photon tracing. What we know is the path density and the contribution
of individual photon paths. In case of perfect BRDF importance sampling
(p⊥s ∝ fs · cos θ′) and light source sampling proportional to its energy con-
tribution (pe ∝ Le), the photons are distributed according to the irradiance
function and have all the same power. Intuitively, this means we sample more
densely in the domain of the path space where the radiance contribution is
high and sample more sparsely where it is low. In such a case, the photons
are distributed according to the density

p(X) = pe(x0, x1)g(x0, x1)
n−1∏
i=1

p⊥s (xi−1, xi, xi+1)g(xi, xi+1), (4.7)

where X denotes the full light path, xi the i-th vertex of the path. The

geometric density g(xi, xi+1) = V (xi, xi+1)
cos θxi+1

‖xi−xi+1‖2 including visibility is

inherently solved by the ray tracing operator.
Based on Eq.(4.7), we relate the bandwidth h(xi) to the path density of

a photon, which has some desirable bias reduction properties. First, photons
from a small number of bounces obtain a smaller bandwidth better pre-
serving shadow boundaries and high illumination gradients while photons of
multiple bounces spread their energy in a larger area, which reduces variance
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(i.e. low-frequency noise). Second, caustic photon paths yield a high path
density since BRDF sampling density is high resulting in a relatively small
bandwidth. Suykens et al. [28] use a similar metric for computing the den-
sity estimation bandwidth for filtering samples in a bidirectional path tracer.
They suggest using a bandwidth that is inversely proportional to the square
root of the estimated function value at the sample location. To accommodate
for different weights due to multiple importance sampling, the bandwidth is
also scaled proportional to the square root of the sample weight, which is
determined by the path sampling densities.

Since we do splatting in ray space with projected area measure, the path
density is independent of the surface orientation at xi+1 and the cosine term
cos θxi+1

cancels out. Moreover, the path density p(xi|xi−1) can be arbitrarily
small and arbitrarily large due to the distance term ‖xi−xi+1‖2 and we need
to clamp it before being used in the bandwidth selection:

p̃(xi+1|xi) =

{
pe(x0,x1)
D(x0,x1)

i = 0

p̃(xi|xi−1) · p⊥s (xi−1,xi,xi+1)
D(xi,xi+1)

i > 0,
(4.8)

where D(x, y) = max(D̃2, ‖x − y‖2) is the squared length of the photon
ray clamped at a scene dependent distance threshold D̃2. Bounding the
geometric term is also commonly applied, in a different context, to instant
radiosity algorithms [12].

Using the bounded path probability density defined in Eq.(4.8), we com-
pute the bandwidth h(xi) per photon ray by the following heuristic

h(xi) =
C

6
√

M

w√
p̃(xi|xi−1)S

,∀i > 0, (4.9)

where h(x0) = 0, C is the user defined “smoothness” parameter, and S ∈]0..1]
is the user defined bandwidth sensitivity controlling the variance of h(xi) (if
S is set to 0, the bandwidth h(xi) is constant for all rays).

According to the optimal bandwidth for minimizing the mean integrated
square error, h(xi) should be inversely proportional to the sixth root of the
total number of samples M [25]. In our implementation the number of stored
photons M is set for direct, indirect diffuse, and caustics photons separately.
The square root comes from the fact that p̃ is related to the area rather
than the radius of the splat footprint. The normalization coefficient w is
automatically precomputed in an initial pilot shooting phase, which estimates
the mean r̄ of the term r = 1/

√
p̃(xi|xi−1)S. Coefficient w is then computed

as
w = m0

µC

r̄
, (4.10)

17



where the scene size dependent parameter

µC = a · D̄(x, y) (4.11)

is computed from the average path segment lengths D̄(x, y) also estimated in
the pilot shooting phase. We set the constant a = 0.2, and m0 =

6
√

105 ≈ 6.8
functions as a calibration factor for h(xi) such that the mean bandwidth
h̄ = C ·µC for M = 105. For the sake of robustness, the resulting bandwidth
h(xi) is clamped at a minimum and maximum boundary value derived from
a user defined maximum bandwidth scaling R ∈]0..1] such that for all rays

C
6√M

· µC ·R ≤ h(xi) ≤ C
6√M

· µC/R holds.

Each photon ray (xi−1 → xi) stores the initial bandwidth h0(xi) =
min{h(xi), h(xi−1)} and the differential bandwidth per ray length dh(xi) =
max{0, h(xi)− h(xi−1)}/‖xi− xi−1‖, which determines the angle of the con-
ical frustum. Note that the bandwidth selection with all its parameters is
defined in meters. For scenes defined in a different unit (e.g. feet, inches), we
convert the ray length to meters and the bandwidth back to the scene unit.
In Fig. 4.4, the precomputed bandwidth per photon splat is shown for 2 to
4 photon bounces (a - c) in a false-color mapping, where red corresponds to
the smallest width and blue to the largest.
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Figure 4.3: Density estimation via photon ray splatting to stored eye samples
(y1, y2, y3) in 1D. Photon j splats its energy within a certain kernel support
(shaded area) of a function K(r) to y1 and y3, but not to back-facing y2.
The resulting energy contribution is either added to the spherical stratum
whose discrete direction matches best the global incoming photon direction
(histogram) or the contribution is added directly in the spherical harmonics
basis to a number of radiance coefficients. In case of histogram splatting (see
Section 6.1.1) photon ray i is mapped to stratum S3 while photon j splats
its energy to stratum S5. Note that the splatting footprint (conical frustum)
reduces to a hemisphere (dashed line) for eye samples beyond the photon hit
point culling a part of the frustum (red cross-hatched region) as shown for
ray j.

19



0.1m 1.0m0.1m0.1m
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Figure 4.4: Color-coded splatting size (bandwidth) per photon in our simple
test scene, red corresponds to minimum, blue to maximum bandwidth. (a)
indirect photon-ray hits from one discrete direction for second bounce, (b)
third bounce, (c) fourth bounce, and (d) all photon hits from all directions.
For visualization purposes all photons splat their color-coded bandwidth in
a small constant radius directly to the pixels. Note the small bandwidth
associated to the indirect caustics photons passing through the glass sphere,
which have a higher path probability density because of the two specular
refractions in the glass sphere.
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5 Efficient Nearest Neighbor
Search Using a KD-Tree

All kernel density estimation methods require a search for the nearest neigh-
bors at the sample points. Particularly in standard photon mapping [11], a
search is performed for the k-nearest neighbor (K-NN) photon hit points in
a sphere centered at each primary or secondary-ray hit point along the eye
path. This is considered as the most time consuming operation in the illu-
mination computation in particular for final gather rays. Therefore efficient
hierarchical data structures were developed to query the nearest neighbors
(NN) in sub-linear time. The probably most popular data structure for spa-
tial searching of point data is the kd-tree. It enables searches for the K-NN
in O(K + log M) time complexity.

In the context of photon-ray splatting we face a similar problem. Previous
approaches to photon-ray density estimation in the tangent plane are based
on gathering the K-NN photon rays and need complex search data structures
to manage the increased dimensionality of the ray data (5D) [8,17]. Since we
utilize a splatting approach, we can still restrict our method to the classical
and well-researched problem of searching point data.

We use a kd-tree over 3D points (eye samples), which can be constructed
very efficiently. However, we need to modify the search for finding the nearest
neighbor points in a volume associated with a photon ray. Rather than
searching in a sphere as in normal photon mapping, we search the neighbor
samples along the photon ray in a conical frustum with parameters depending
on the photon’s bandwidth as explained in Section 4.2.

5.1 The Splat KD-Tree Layout

We have chosen a standard axis-aligned kd-tree [9, 31] with splitting planes
positioned at the spatial median of a node’s associated bounding box or at
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the sample point nearest to the spatial median if either half space is empty.
The kd-tree is constructed from top to bottom until the termination criteria
are met. The termination criteria are met if: the number of samples per
node is smaller than 16 or the diagonal of the node’s bounding box is smaller
than a scene-size-dependent boundary threshold.

The kd-tree consists of four node types: interior nodes, leaf nodes, empty
nodes, and backface-culling nodes. Each node uses 8 Bytes. The interior
node encodes 1D splitting plane, offset to the right child node, node type
and splitting axis. The left child node is always found at the next position
(index + 1) in the array of kd-tree nodes. In case of a leaf node, the 1D
splitting plane encodes the number of elements and offset represents the
index into the array of eye samples. Empty nodes (stopping nodes) are
stored whenever the sub-tree does not contain any eye samples and must not
be traversed any further. Additionally, we insert special nodes similar to [8]
that we call backface-culling nodes. Such nodes allow for early culling of
entire sub-trees containing infeasible backfacing eye samples with coherent
normals. The difference to [8] is that we store not only the reference normal in
the node but also the maximum angular deviation from the reference normal
(see Fig. 5.1). This yields higher efficiency of successfully culling rays in
particular on planar surfaces where the angular deviation of the normals is
zero.

D

Infeasible 
ray directions

Feasible 
ray directions

Covered surface 
normals

Reference 
normal

D

D D

Figure 5.1: Clustering eye samples with coherent surface normals (left) by
a directional node that stores the average normal and the angle Dθ of the
normal bounding cone that contains all surface normals (right). All photon
rays with a direction in the red range can be discarded conservatively since
they are back-facing to all eye samples of the node.
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We insert a backface-culling node into the tree if all eye samples in the
current sub-tree have “similar” normals. Since testing for similarity during
kd-tree construction is not for free, we only attempt to insert a backface-
culling node if the number of samples per node is less than a maximum
allowed threshold (20.5 log N), and no backface-culling node has already been
inserted above that sub-tree. If these criteria are met (then we have a high
chance of finding coherent normals), we compute the average normal (the
reference normal NR) from all eye sample normals in the sub-tree and the
maximum angular deviation Dθ from NR (see Fig. 5.1). If Dθ is smaller
than a constant threshold (15◦), we insert a backface-culling node storing
NR (compressed) and the maximum feasible dot product (Cmax = sin(Dθ))
of reference normal with incoming ray directions. The backface-culling node
has only one child and does not subdivide space. Although using this node
increases the kd-tree traversal depth by one and is also relatively expensive
to traverse, we achieve a speedup of factor 1.2 to 1.3.

5.2 Photon Ray KD-Tree Traversal

The tree is traversed from top to bottom as in standard ray tracing algorithms
with node traversal in 1D ray space. The difference is that we need to consider
a volume associated with the ray. A kd-tree traversal algorithm for a similar
problem, however in a different context, has been proposed by Dahmen [4].
He uses a kd-tree for accelerating the ray tracing of point data represented
as oriented discs.

We start computing the minimum and maximum ray distance t0 and
t1 by clipping the ray at the bounding box of the kd-tree extended by the
ray’s splat radius. Then we test t0 and t1 with the splitting plane of the
current tree node. This plane is virtually moved to its left and right by
the maximum splat radius R1 of the photon ray. A child node needs to be
traversed if a ray intersection with its virtual plane lies between t0 and t1.
If the front-facing child node needs to be traversed, t1 and R1 are updated,
respectively if the back-facing child node is scheduled for traversal, t0 and
R0 are updated. This search algorithm is conservative but not optimal and
can lead to unnecessary feasibility tests inside a leaf. For our tested scenes
the average ratio of infeasible to feasible eye sample candidates found per
ray traversal is between 27% and 52%, which depends on the ray’s splat
radius (the smaller the splat radius the more efficient becomes the search).
Nevertheless, due to its simplicity the 1D-traversal algorithm performs better
than accurate traversal algorithms in 2D [4]. The simplified pseudo code in
Algorithm 1 describes the basic recursive version of the algorithm.
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The complete traversal step of one interior node is shown in Fig. 5.2.
There, the ray needs to visit both front and back child-nodes. Fig. 5.3 shows
two examples where only the front respectively back half-space needs to be
traversed.

Once the ray traverses a leaf node all eye samples associated with the node
are tested for feasibility, i.e. distance to ray is smaller than splat radius, the
normal of the eye sample is front facing, and its position is in front of the
surface at the ray’s origin. If feasible, the eye sample’s weight is computed by
the 2D kernel multiplied with the cosine between normal and ray direction
according to Eq.(4.5).

In the proceeding splatting phase the photon ray splats its energy contri-
bution to all pixels corresponding to the eye samples gathered during kd-tree
traversal. The splatting is further described in Section 6.1

We also implemented a slightly different approach to the kd-tree search,
where all traversed leaf nodes rather than individual eye samples are added
to a queue of candidate leaves. The photon ray and its candidate queue
are added to a shared buffer that is processed by a separate system thread
which computes the actual density estimation testing each eye sample asso-
ciated with a candidate leave for feasibility. This approach exploits better
the modern computer architecture where the load can be shared between two
CPU-cores. However, we achieved only a minor speedup (≈ 15% to 20%)
compared to the single threaded search since our search is relatively efficient
compared to the time spent in photon splatting (Algorithm 2).
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Figure 5.2: Traversal of a kd-tree node given the photon ray and its associated
splat radius h. The dashed vertical line represents the 1D splitting plane and
the thin dotted lines the virtual extensions of the node’s corresponding voxel.
The red frame depicts the currently traversed node. If t1 > tα, we descend
to the back child node. If t0 < tβ, we traverse to the front child node.
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Figure 5.3: If t1 ≤ tα only the front child node needs to be traversed (a).
If t0 ≥ tβ only the back child node needs to be traversed (b). Note that
there is a small space near the corners where the ray traversal is not optimal.
The ray only needs to traverse either half space if it intersects the indicated
cross-hatched region. Due to the box approximation it may visit the front,
back half-space respectively even if the conical frustum cannot intersect it.
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Algorithm 1 KD-Tree Traversal
TraverseTree(ray, in, t0, t1)

node := nodes[in]
if (node.type = EMPTY) then

return
else if (node.type = LEAF) then

test all samples in leaf and add to candidate list
return

else if (node.type = DIRCULL) then
if (ray.dir • node.normal > node.Cmax) then

return
else

TraverseTree(ray, in + 1, t0, t1)
end if

else if (node.type = INTERIOR) then
a := node.axis
if (ray.dir[a] < 0) then

invert order of traversal /* omitted here! */
end if
R1 := ray.h0 + ray.dh · t1 /* compute splat radius at t1 */
/* compute ray length ∆t between virtual plane and splitting plane */
∆t := R1 / ray.dir[a]
t := (node.plane1D − ray.org[a]) / ray.dir[a]
/* compute ray lengths tα and tβ to virtual planes α and β */
tα := t−∆t
tβ := t + ∆t
if t0 < tβ then

/* traverse front */ TraverseTree(ray, in + 1, t0, min(tβ , t1))
end if
if t1 > tα then

/* traverse back */ TraverseTree(ray, node.offset, max(tα, t0), t1)
end if
return

end if
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6 Algorithmic Extensions

Like photon mapping [11], ray splatting is a very general method. It can
be extended with many state-of-the-art techniques. Next we present some
examples that we have implemented and tested.

6.1 Extension to the Directional Domain

First density estimation methods recorded photon flux in bins of a histogram,
which has the advantage of low memory usage and fast rendering using graph-
ics hardware. However, it is not capable of handling non-diffuse BRDFs.
Jensen [10] showed that it is advantageous to keep the incoming direction
of each individual photon in the photon map. With photon mapping it is
possible to evaluate arbitrary BRDFs and render illumination on all kinds
of surfaces with low-frequency BRDFs. Stürzlinger et al. [27] additionally
combines the spatial density estimation kernel with a directional filter kernel
to render moderately glossy illumination with photon density estimation.

In the spatial domain we use variable kernel density estimation as in
standard photon splatting approaches [9,18]. However, we consider not only
the spatial domain of incoming photon flux but also the directional domain.
For testing purposes we have implemented and practically evaluated two
different methods for representing directional information of incoming light.

First method is based on a histogram approach. This means we accumu-
late flux on a surface in discrete directional strata with constant solid angle,
which provides information about the average incoming radiance for a finite
solid angle at a point on the eye path (see for example Fig. 4.3).

The second approach uses a different basis for representing incoming ra-
diance in frequency space. We have chosen spherical harmonics (SH) [19,21],
since they are well suited for low-frequency signals over the sphere. First we
describe the histogram approach and then the splatting in the SH basis.
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6.1.1 Ray Histogram Splatting

To do density estimation in the spatial and directional domain even more
photons are needed in order to have enough information for evaluating the
BRDF at any point on a surface for a particular incoming direction. Since
we only account for moderately glossy BRDFs, high angular frequencies in
the incoming radiance are filtered by the BRDF [21]. Therefore a histogram
of low resolution subdividing the incident sphere into P strata is sufficient if
it does not undersample the BRDF.

We discretize the sphere to an icosahedron, which consists of 20 equally
sized triangles. When subdividing it further to 80 triangles the efficiency
of splatting decreases quickly while the memory consumption increases four
times (80 images of screen resolution need to be stored).

Each stratum records incoming photon flux from a global discrete direc-
tion arriving in the neighborhood of the corresponding density estimation
point (see Fig. 4.3). For postprocessing purposes the radiance for one global
stratum is stored in one individual image for all eye samples such that each
image corresponds to one discrete direction.

A directional filter kernel can be applied [27] such that each photon splats
its energy to several neighboring strata with precomputed filter weights for
PD discrete photon directions, with PD � P . However, this results in poor
performance due to incoherent memory access. Therefore, we use a nearest
neighbor approach where each photon contributes to only one stratum, the
nearest neighbor stratum. The entire splatting algorithm for the general case
with directional filtering is shown in Algorithm 2.

How do we benefit from the additional directional information? First,
BRDF evaluation is simpler than for photon maps. We do not need to
evaluate the BRDF (which can be expensive) for every photon with low
contribution, but for the average accumulated radiance from a stratum of a
discrete direction. Second, the filter kernel size for density estimation cannot
only be adapted in spatial but also in the directional domain. Third, each
radiance image can be adaptively filtered efficiently in 2D image space.

6.1.2 Ray Splatting in the Spherical Harmonics Basis

Using uniformly distributed strata over the hemisphere is efficient for com-
puting the splatting, but on the other hand, it is not adaptive and can lead
to aliasing artifacts if a BRDF contains too high frequencies. Therefore, we
have also implemented a different approach using spherical harmonics (SH)
basis functions to represent illumination as well as BRDFs by a small number
of coefficients.
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Algorithm 2 Photon Ray Splatting
SplatPhotonRay(ray, candidates)

id := MapDirectionToStratum(ray.dir)
W := coeffTab[id]
for all eye samples (es) in candidates do

cosθ := ray.dir • es.normal
if (cosθ ≥ 0) then

skip back facing sample
end if
Des := es.pos− ray.org
zn := Des • ray.normal
z := Des • ray.dir /* compute projected distance along the ray */
h := ray.h0 + ray.dh · z /* compute splat radius h (Section 4.2) */
r2
es := ‖Des × ray.dir‖2 /* compute squared distance to ray */

if (z < 0) or (zn < 0) or (z > h + ray.length) or (r2
es > h2) then

/* outside the splat footprint → */ skip sample
end if
if (z > ray.length) then

h2 := h2 − (z − ray.length)2

if (r2
es > h2) then

skip sample
end if

end if

w := 2
πh2 · (1− r2

es

h2 ) /* evaluate Epanechnikov kernel */
I := ray.flux ∗ w · cosθ /* compute irradiance contribution */
/* optionally compute irradiance gradient contribution, omitted here! */
L := 0
/* compute contribution to all directions using precomputed weights */
for c = 0 to P do

L[c] := I ∗W [c]
end for
/* Add photon’s contribution to radiance map */
UpdateRadianceMap(es.pixel,L)
/* Update harmonic mean distance and weights for filtering and radiance caching */
UpdateSplatImage(es.pixel,w,1/z)

end for
return
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The mapping onto the SH basis is entirely discretized. All BRDF data
is initially precomputed for a number of discrete outgoing directions (θ′o, φ

′
o)

mapped to SH coefficients, which are stored in a table [14]. The BRDF
SH coefficients cm

l (θ′o, φ
′
o) for every outgoing direction are precomputed by

evaluating the integral

cm
l (θ′o, φ

′
o) =

∫
Ω+

fs(θ
′
o, φ

′
o, ω) · Y m

l (ω) dσ(ω). (6.1)

Note that this can be simplified for isotropic BRDFs in particular for the
Phong reflection model. Since we do the splatting directly in the SH basis,
we also keep a table of precomputed real SH basis functions Y m

l (ωi) for
PD incoming ray directions ωi. Since a photon contributes to many SH
coefficients (and not only to the nearest-neighbor stratum in a histogram),
we now keep one image storing the SH coefficients for the cosine-weighted
incident radiance in each pixel. The radiance SH coefficients λm

l for a certain
pixel are computed as

λm
l =

∫
Ω+

L(ω) · cos θ · Y m
l (ω) dσ(ω)

=

∫
Ω+

dΦ

dA⊥
ω dσ(ω)

· cos θ · Y m
l (ω) dσ(ω)

=

∫
Ω+

dΦ

dA⊥
ω

· cos θ · Y m
l (ω)

≈
K∑
i

∆Φi

∆A⊥
ωi

· cos θi · Y m
l (ωi), (6.2)

where K is the number of neighboring photon splats contributing to the
corresponding pixel. Note that we can also encode the cosine term cos θ in the
BRDF SH coefficients instead. However, then we would need at least 9 BRDF
SH coefficients (3 bands) to represent diffuse cosine weighted BRDFs [21]
with small error. For our strategy, only 1 coefficient (DC component) is
needed for diffuse surfaces.

The photon ray splatting is then processed as follows. With each eye sam-
ple hit point we additionally store outgoing directions towards camera and
normal in discrete spherical coordinates. Search and splatting is carried out
as explained in Section 5. The difference is that the photon ray directly splats
to the radiance SH coefficients of an eye sample. To do so the global incoming
ray direction ω̃i = (θ̃i, φ̃i) is rotated to local coordinates of the eye sample
identified by its discretized normal (θN , φN). The real SH basis functions
Y m

l (θi, φi) for the local incoming ray direction (θi, φi) = Rot[θN ,φN ](θ̃i, φ̃i) are
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looked up in the precomputed SH table for each eye sample included un-
der the density estimation kernel. Each photon’s radiance contribution is
then scaled by the vector of SH basis functions and added to the radiance
coefficients of the corresponding pixel in the SH radiance image

λm
l := λm

l +Khi
(y, xi, ωi)

∆Φi(xi, θi, φi) cos θi

∆A⊥
ωi

· Y m
l [θi, φi]. (6.3)

The final pixel radiance is easily computed via a dot product of BRDF SH
coefficients and radiance SH coefficients due to the orthogonality property of
spherical harmonics.

L(θ′o, φ
′
o) =

∫
Ω+

fs(θ
′
o, φ

′
o, ω) · cos θ · L(ω)dσ(ω)

≈
n∑

l=0

m=l∑
m=−l

cm
l (θ′o, φ

′
o) · λm

l , (6.4)

where (θ′o, φ
′
o) is the local discrete outgoing direction.

6.2 Radiance Filtering in 2D Image Space

The ray splatting complexity depends linear on the search neighborhood
and therefore on the size of the splat footprint. Instead of increasing the
splat footprint, effectively the radius of the cone, we can also use a second
pass filter in 2D image space to filter noise in the radiance images. To
preserve discontinuities during filtering of the radiance images we only filter
over geometrically continuous image region. In contrast to image processing
approaches we have the geometric information behind all pixels available for
free, which allows us to use a discontinuity buffer storing distance (length of
primary ray shot from the camera) and normal per pixel [20,32].

Even the simplest algorithm is still computationally expensive since it
performs a convolution for a large number of pixels for all radiance images.
The filter support can be large (up to 50× 50 pixels). However, since we use
a uniform kernel with rectangular support, we can significantly reduce the
complexity of that algorithm by making use of a summed area table (SAT).
One might argue that a filter with uniform kernel and rectangular filter sup-
port is too aggressive. However, first we do not filter visible radiance but
indirect radiance for each direction or spherical harmonics band separately,
which is only visible through BRDF modulation [21]. And second, the filter
support for each pixel adapts to the number of photons that contributed to
the pixel. Thus, the filter bandwidth is approximately inversely proportional
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to the photon density per pixel similar as in the K-NN density estimation
method.

A global SAT over the whole image does not suffice since we need to
preserve discontinuities (e.g. edges). Thus, we construct local SATs over ge-
ometrically continuous image regions and separate those regions by applying
a segmentation of the discontinuity buffer. We apply a seed-growing algo-
rithm in image space for segmenting pixels that cover topologically continu-
ous surfaces. Adjacent pixels are considered to be continuous if the second
derivative (finite difference approximation) in primary-ray hit distance and
the hit-normal deviation are below user-defined thresholds. Each segmented
surface is assigned a unique ID which is stored in all its subtended pixels in
the discontinuity image.

The algorithm has linear complexity and is efficiently computed. The
outcome is the scalar discontinuity image IID where each pixel (i, j) is as-
signed an index k to the corresponding segment in the segment list. Each
element in the segment list stores lower left corner (oi, oj), width, and height
of the segment’s bounding rectangle in image space.

In the next step we copy each pixel (i, j) of the currently processed ra-
diance image to the corresponding segment image IS[k] at location IS[k](i−
oi, j − oj) with index k := IID(i, j). Pixels in the segment’s bounding rect-
angle that do not belong to the segment are set to zero. Next we build the
SAT over each segment image. The final filtering is then computed in con-
stant time per pixel. This discontinuity segmentation is also exploited in the
radiance caching scheme (Section 6.3).

6.3 Extension to Radiance Caching

In the following we show how our algorithm is extended to radiance caching
in the spherical harmonics basis and exploits all benefits from the traditional
caching scheme [7, 14,34].

It is well known that (ir)radiance caching significantly speeds up compu-
tation of diffuse (glossy) indirect illumination computed with final gathering
because the image plane is adaptively sampled [14, 34]. The cache sampling
density adapts to an relative error estimate. The cache density in the origi-
nal irradiance cache algorithm [34] adapts to the harmonic mean distance to
the surrounding objects. The user provides a maximum error ε that deter-
mines the overall sampling density. However, choosing ε and the number of
rays for final gathering is crucial and can lead to visible artifacts if set too
relaxed. On the other hand, setting too conservative values may lead to long
computation times with little progression in image quality.
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Motivated by the radiance caching technique of Křivánek [14], we also
perform the caching in the spherical harmonics basis. However, the difference
lies in the illumination computation. While Křivánek [14] computes a high-
quality solution of the incoming radiance by Monte Carlo final gathering of
the incident hemisphere, we estimate the incoming radiance directly from
neighboring photon-ray splats.

Our caching algorithm, initially intended to speed up the computation, in-
herently filters noisy photon splats as a by-product. In contrast to traditional
(ir)radiance caching, reducing the cache error ε below a certain minimum er-
ror will not give any quality improvements since bias is already introduced
in the cached samples, which are computed via photon-ray density estima-
tion. On the other hand, since the irradiance is already low-pass-filtered and
therefore well-suited for interpolation, we can reduce the complexity of the
ray-splatting algorithm by sparse sampling the image plane and interpolating
in-between pixels.

We utilize a multi-pass radiance caching algorithm that exploits the kd-
tree build on top of the eye samples (see Section 5.1). Only a sparse number
of eye samples from the lower levels of the kd-tree is cached and computed via
photon ray splatting. The radiance caching and extrapolation is carried out
in image space via cache splatting similar to [7]. However, the disc-shaped
splat footprint of each cache record is computed in world space and projected
to image space as visualized in Fig. 6.5b.

The initial world-space radius r of each cache splat is computed from the
harmonic mean distance R(yc) [34], which we measure only from incoming
photon rays (xi, ωi) during ray splatting.

r(yc) = ε ·R(yc), (6.5)

R(yc) = max

{
R−(yc), min

{
R+(yc),

1∑K
i=1

1
zi

}}
, (6.6)

where ε is the user-defined cache error [34], R−, R+ are respectively the min-
imum, maximum allowed harmonic mean distance, corresponding to 2 times,
50 times the projected width of the pixel that maps to the cache location
yc [13, 14, 30]. To update the harmonic mean distance at all cache records
in the splat footprint of a single photon ray, we need to compute the eu-
clidean distance l of the cache records yc to the ray origin xi. Because this
is computationally intensive in particular for larger ray splat footprints, we
approximate this distance by the projected distance zi = (yc − xi) • ωi along
the ray direction ωi (see Fig. 6.1). This approximation is sufficient for our
purposes and is computed as a by-product in the density estimation.
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Figure 6.1: Approximating the harmonic mean distance (HMD) at two cache
records (green dots) from the incoming photon rays (here shown for one ray
in 2D only). Instead of computing the exact distances l1 and l2 to the neigh-
boring cache records in the ray splatting footprint, the projected distances
z1 and z2 are used to update the HMD, which are computed as a by-product
of the density estimation.

Since one photon ray contributes to many neighboring cache records (see
Fig. 6.1), short distances to nearby objects are less likely to be missed than
for final gathering with hemisphere sampling where one ray contributes to one
record only. This way, additional neighbor clamping [15] becomes obsolete.
Nevertheless, due to the sparse number of photon rays in the vicinity of
a cache record it is still possible to miss short distances to small objects.
Therefore, we need to be more conservative in the cache error setting.

During cache splatting in image space a weight wc is computed for each
eye sample y that maps to the projected bounding rectangle of the cache
footprint in image space. For filtering purposes we do not use Ward’s orig-
inal weighting function derived from the split-sphere model [34] since it is
unbounded and has a singularity at the cache location (see Fig. 6.3), which
creates spiky artifacts as shown on the top left in Fig. 6.2. Instead we have
chosen a smooth filter function, which goes to zero at the maximum cache
distance ε ·Rc:

wc(y) =

(
max

{
1− ||yc − y||2

ε ·R(yc)
· 1

(N •Nc)4
, 0

})2

. (6.7)

The term 1
(N•Nc)4

penalizes cache records with deviating surface normal Nc,
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Figure 6.2: Irradiance cache results using Ward’s weighting function (left)
and our weighting function (right) used for cache interpolation. Note the
artifacts in the left image due to unfiltered pixels corresponding to the cache
locations. For both images approximately 2700 cache records are computed
and at least 6 cache records contribute to a pixel.

where the exponent 4 was chosen for efficiency reasons. A comparison of
Ward’s weighting function with our weighting function is shown in Fig. 6.3
in 1D. If the weight wc(y) is greater than zero, the eye sample receives the
weighted energy of the cache record, which is added to the cache splat image
together with the weight.

After each cache splatting pass the cache splat image, which stores the
sum of cache weights w and counts the number of contributing cache records
per pixel, is processed in scanline order and every pixel is tested against a
minimum required number of contributing caches Nc per pixel. For most
scenes 4 to 10 contributing caches per pixel are sufficient. If a pixel has not
yet accumulated enough weight (i.e. cache counter < Nc), its corresponding
sub-tree of the kd-tree containing the pixel’s eye sample is refined. One
possible sampling pattern we have used for refinement is to pick every i-th
eye sample from a sub-tree that needs to be refined and in the following pass
every i/2 eye sample. The caching starts with one sample from each sub-tree
that contains at most

⌊
20.3·log2 N

⌋
samples. This results in a sparse cache

distribution with relatively low discrepancy in image space.
The previous steps are repeated for all newly generated cache records in

each pass until no more cache records are created (i.e. all pixels have got
sufficient weight and cache counts after scanlining the cache image). As an
example of the iterative cache refinement in the sibenik scene see Fig. 6.4.

To improve the search for eye samples during photon ray splatting in
repeating passes, we store references to the rays that traversed the initial
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Figure 6.3: Comparing Ward’s traditional cache-weighting function [34] (red
solid curve) derived from the split sphere model with our continuous weight-
ing function (blue dashed curve). Ward’s weighting function has a singular-
ity at the cache location and therefore does not allow filtering of the cache
records, i.e. only one cache contributes at the cache location. Note that
the weighting functions do not need to be normalized since the interpolated
pixels are divided by the sum of weights afterwards.

nodes in the first pass. In following passes only the nodes’ sub-trees need to
be traversed and tested against the newly created cache records in the leafs
and the upper search in the kd-tree is eliminated.

In the final pass, after all cache records have extrapolated their radiance
SH coefficients to neighbor pixels, the SH coefficients λm

l in all pixel samples
y are divided by the accumulated weight per pixel, which has been stored in
the cache splat image:

λm
l (y) =

∑
c∈Cy

λm
l (yc) ∗ wc(y)∑

c∈Cy
wc(y)

, (6.8)

where the C(y) = {c|wc(y) > 0} is the set of contributing cache records to
pixel sample y. Note that we do not apply a rotation of the cached spheri-
cal harmonics (SH) coefficients [14] to align them with the local coordinate
frame at y since the computational overhead of the SH rotation is too in-
tensive compared with the computation of a new cache record in our frame-
work. Therefore, we simply increase the cache density on curved surfaces
(see Eq.(6.7)).
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(I) (II) (III) (IV)

Figure 6.4: Iterative refinement of the radiance caching algorithm in the
sibenik scene. In the initial pass (I) the cache records (red points) are
uniformly distributed over the image plane. In the following passes (II –
IV) the cache records are refined and splatted to neighboring pixels inside
the projected splat footprint. The cache weights are accumulated in the
cache image (top row). The cache weights depend on the estimated cache
error computed from the harmonic mean distance and normal variation [34].
Hence the cache record density adapts to the cache error and more records
are added to darker regions of the cache image shown in the top row. The
bottom row shows the results after each pass (for demonstration purposes
in form of pixel radiance which has been modulated with the BRDF SH
coefficients).
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(a) (b) (c)

Figure 6.5: Results of photon ray splatting (direct and indirect light) with
radiance caching in spherical harmonics basis for the glossy Appartment
scene, (a) shows the noisy direct visualization resulting from a small splat
size given as initial input to the radiance caching algorithm, (b) the radiance
cache splats after first pass (for visualization purposes a smaller cache error
was chosen), and (c) the final image after radiance caching with 3 passes.
The time for computing photon ray splatting and cache splatting in 3 passes
took 15 seconds for 500, 000 photons and 500× 500 pixels.

6.3.1 Illumination Gradient Estimation

When using (ir)radiance caching the cache-record density adapts to the geo-
metric gradient magnitude estimated from the split-sphere model [34], which
is well established and commonly applied to most irradiance caching algo-
rithms. However, this model is only valid for indirect illumination since it
adapts to a geometric upper bound of the indirect gradient. Moreover, it
often underestimates strong indirect illumination sources and overestimates
near corners. As a remedy Ward et al. [35] proposed to compute the “real”
irradiance gradient at each cache location in the local tangent frame as a
by-product of final gathering (i.e. importance sampling the BRDF), which is
then used for higher order cache interpolation. Furthermore, the irradiance
gradient can also be used to control cache density [14]. If the magnitude
of the irradiance gradient is larger than the estimated geometric gradient
magnitude, the cache density is increased by reducing the cache’s influence
radius accordingly.

Our goals are similar. However, because we cannot estimate the gradient
magnitude accurately enough, we do not want the noisy gradient to influence
the cache interpolation since such interpolation [35] is very sensitive to the
gradient. Instead we stick to our simple cache interpolation combined with
additional filtering (see previous section). Nonetheless, the gradient helps to
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control the cache density and therefore the filter width in order not to over-
smooth illumination boundaries (e.g. shadow boundaries).1 Since we do not
perform view-dependent final gathering, we need a new approach for the
gradient computation. Estimating the gradient ∇E(y) by central differences
is cumbersome and too sensitive to noise. Fortunately, the gradient can be
directly derived by differentiating the density estimation equation in Eq.(4.5):

∂

∂u
E(y) ≈

K∑
i=1

∆Φi(xi, ωi)

∆A⊥
ωi

∗ [
∂

∂u
{Kh(y, xi, ωi)} · cos θi+

Kh(y, xi, ωi) ·
∂

∂u
{cos θi}]

=
K∑

i=1

∆Φi(xi, ωi)

∆A⊥
ωi

∗ [
∂

∂u
{Kh(y, xi, ωi)} · cos θi], (6.9)

since ∂
∂u
{cos θi} = 0 in our metric, which assumes that the ray direction is

constant within the density estimation footprint. The first derivative of the
Epanechnikov kernel along direction u is a linear function in ray distance
||~r||:

∂

∂u
Kh(y, xi, ωi) =

∂

∂u

{
2 ·

(
1− ||~r(y, xi, ωi)||2

h2
i

)}
=

{
− 2

h2
i
(2ru) ||~r||2 < h2

i

0 otherwise,
(6.10)

where ~r(y, xi, ωi) = {~ωi × (y − xi)} × ~ωi is the distance vector to the photon

ray and ru = ~r • ~U is the projection into the local coordinate-frame axis ~U
at y. ~ωi is the ray direction in euclidean coordinates. Note that the term
∆Φi(xi,ωi)

∆A⊥ωi

as well as the bandwidth hi are assumed to be independent of the

density estimation point y and therefore do not change when displacing y
along ~U2. For a better understanding see the schematic draft in Fig. 6.6.
And similarly for the V dimension:

∂

∂v
E(y) ≈

K∑
i=1

∆Φi(xi, ωi)

∆A⊥
ωi

∗ [
∂

∂v
{Kh(y, xi, ωi)} · cos θi], (6.11)

1Increasing the cache density according to the gradient magnitude and at the same
time also using the gradients for higher order cache interpolation seems slightly redundant
since the gradient based interpolation already compensates for linear changes in lighting.
A better choice would be to compute the second derivative for steering the cache density
and to use the gradient for interpolation.

2Actually hi is only independent of y if the bandwidth is constant along the ray, i.e.
cylindrical splatting footprint.
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Figure 6.6: Quantities needed for computing the gradient along ~U .

with ∂
∂v
Kh(y, xi, ωi) = − 2

h2
i
(2rv), where rv = ~r • ~V .

Having computed the irradiance gradient ∇E(y) =
[

∂
∂u

E(y), ∂
∂v

E(y)
]
, we

are able to steer the cache density by controlling the cache splat radius.
Wherever the geometric gradient ||E(y)/R(y)|| estimated from the harmonic
mean distance R(y) (see previous section) is less than ||∇E(y)||, we decrease
R(y) by setting it to:

R(y) :=
E(y)

||∇E(y)||
, (6.12)

which consequently results in an increased cache density around y (see Fig. 6.8).
The images in Fig. 6.8 show the results for the estimated irradiance with and
without using the irradiance gradient for controlling the cache density. The
overhead for computing the irradiance gradient during the ray splatting is
negligible ( 2−4% increased computation time) but significantly improves the
results in particular for direct lighting. A minor drawback of the proposed
gradient computation in Eq.(6.9) is that the computed gradient might van-
ish for high-frequency illumination patterns where the gradients have similar
direction but opposite orientation. A remedy is to estimate the gradient in
a smaller neighborhood and then use 2× 2 structure tensors [22] to filter the
noisy gradients without cancellation effects [37].

6.4 High Quality Rendering with Final Gath-

ering

In photon density estimation the visibility within the density estimation foot-
print is neglected and high frequency indirect lighting due to occlusion cannot
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be reproduced and may lead to energy leaking for complex scenes. To ad-
dress this problem, the global photon map is only queried for secondary eye
rays, refered to as final gather rays (FGRs), generated using Monte Carlo
sampling of the BRDF (final gathering) [11]. Final gathering balances the
local error in the photon map estimate across all pixels and produces high
quality indirect illumination (except for caustics, which are computed from
a direct visualization of the caustics photon map). Nevertheless, final gath-
ering with photon mapping has its shortcoming for concave surfaces where
many FGRs hit the local neighborhood resulting in overestimated illumi-
nation, see Fig. 6.7(a). In such cases secondary final gathering is initiated
drastically increasing the computation cost of the corresponding pixel. This
is especially problematic for (ir)radiance caching [34] where the cache sam-
ples are concentrated near concave features such as corners. Combining our
method with final gathering, we can mostly avoid secondary final gathering
and also speed up the nearest neighbor search compared to photon mapping.
This requires only a small change in the algorithm described in Section 3.
Instead of primary ray hit points, we need to store all FGR hit points. To
handle the increased memory demands, the image plane is rendered in tiles
utilizing multiple splatting passes with the same photon ray distribution as
proposed in [9]. Further, we do not use the radiance map (Section 6.1),
which would be too memory consuming, but directly splat photon energy to
the corresponding pixels weighted by the FGR contribution and the BRDF
at the FGR hit point.

(a) (b) (c)

Figure 6.7: Comparing indirect lighting results in the conference scene for
(a) photon mapping with 600 final gather rays per pixel, (b) ray splatting
with 600 final gather rays per pixel, and (c) path tracing with 2000 paths
per pixel. The full images are shown in Fig. 7.3(d).
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Figure 6.8: Irradiance caching results for sampling with geometric gradients (1.
column) and sampling with our irradiance gradients computed during ray splatting
(2. column). First row (from left to right): irradiance cache locations adapting to
the geometric gradient [34], irradiance cache locations adapting to our irradiance
gradient, our gradient magnitude (3 f-stops brighter). Cache sampling according to
the geometric gradient results in 13, 116 caches records, while sampling according
to our irradiance gradient yields 14, 272 cache records and preserves the shadow
boundaries by reducing the filter bandwidth near the strong gradients according
to Eq.(6.12). The rendering times are about 6 seconds for splatting 750, 000 photon
rays and 14, 000 cache records. The bottom right image shows the color-coded
difference between the bottom left and bottom middle image.
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7 Results

We have evaluated our method for the scenes shown in Fig. 7.2 and Fig. 7.3.
The scene Appartment is copyrighted by Laurence Boissieux c© INRIA
2005. All results were computed on a single PC (AMD Opteron 2.4 GHz) with
a Linux operating system installed. Our algorithm has been implemented in
C++ with STL on top of an existing rendering system. For compilation we
used g++ 3.4 with -O2 optimization. No low-level code optimization has
been applied.

We compared our method with standard K-NN density estimation using a
direct visualization of the photon map [11]. The rendering times are given in
Table 7.1. The times Tinit and Tray are the same for all methods. The times
for photon tracing Tlight and photon kd-tree construction Tbuild are slightly
faster in photon mapping because for ray splatting Tlight includes bandwidth
selection and Tbuild comprises kd-tree construction over eye samples as well
as kd-tree construction over photon rays. As there is no postprocessing in a
direct visualization of the photon map, the times Tcache and Tbrdf are zero. For
a fair comparison we have used the same data structures and algorithms for
sampling and searching for photon mapping as for ray splatting. To achieve
the same level of noise in the result we had to set the number of k-nearest
neighbors (K-NN) from at least 400 up to 1, 200 photons. In certain cases
of glossy light-transport reconstruction from the photon maps [10], our ray
splatting method outperformed the photon map since searching for a large
number of K-NN and evaluating the BRDF for all K-NN photons becomes
the bottleneck in photon mapping. This holds also for ray splatting if no
radiance map is used (direct ray splatting). Moreover, the search for the
exact K-NN photons can be quite time consuming for a large number of K,
which is in particular problematic if the photon map queries are incoherent
(e.g. for final gathering).

The ray splatting approach also scales well with image resolution and with
number of photons. The time and memory dependencies on image resolution
and photon number are shown in Fig. 7.1. The graphs show the measured
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rendering times (columns a and b) and memory usage (column c) of four
different methods for the cornell box (column a) and the Appartment
scene (column b): direct ray splatting (RS direct) to the image, direct visual-
ization of the photon map with k-NN density estimation (PM k-NN), photon
ray splatting to directional histogram (RS histogram), the ray splatting in
spherical harmonics basis with radiance caching (RS+SH caching), and its
cache computation time only (RS only). For fair comparison of our method
with photon mapping, we also measured the time for direct ray splatting (red
curve) to the image without the additional optimizations, i.e. no radiance
map, no radiance caching, no filtering.

From the graphs one can observe that the behavior of ray splatting is
similar to density estimation from the photon map in case of diffuse scenes.
For glossy scenes the BRDF evaluation for all photon rays to eye sample
candidates dominates the rendering time and the direct photon ray splatting
becomes less efficient because of its larger density estimation footprint com-
pared to photon mapping. However, the histogram splatting (blue curve) and
the spherical harmonics splatting with radiance caching (black solid curve)
significantly speedup the algorithm in particular for the non-diffuse Appart-
ment scene (column b) on the expense of increased memory utilization.

Due to the directional and spatial coherence in the photon ray splatting
and the automatic bandwidth selection, the rendering time is sub-linear in
the number of photons even though the photon rays are splatted sequentially.
Ray splatting is faster than photon mapping if the number of photons is much
smaller than the number of eye samples (pixel samples) as is usually the case
for final gathering (see Table 7.1). It becomes less efficient if the number of
photons increases because in ray splatting we search for each photon ray in
a tree over eye samples whereas for photon mapping we search for all eye
samples in a tree over photons (see [9] for more details).

Combining ray splatting with radiance caching (black curve), the pure
splatting time dependency (black stippled curve) on image resolution is close
to constant since the cache records are distributed in world space and are
thus independent of the image. Moreover, the kd-tree traversal in the upper
levels of the tree is eliminated for all subsequent cache passes because we
keep references to the photon rays that traversed the initial kd-tree nodes
in the first pass, which on the other hand boosts the memory requirements
(column c).

The overall rendering times of our method range from about 30 seconds to
1 minute for a single image with a resolution of 500 × 500 pixels and 500, 000
photons. In this setting the memory requirements for splatting and radiance
map are about 100 to 160 MBytes independent of the scene complexity. Note
that the memory requirements can be reduced significantly if photon rays are
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not explicitly stored during photon tracing but are progressively splatted to
screen pixels.

The ray density estimation and search in a conical frustum (Section 5)
is approximately 1.5 to 2 times slower than for photon density estimation in
a spherical footprint with the same precomputed radius (i. e. without K-NN
search). This holds also for a larger number of eye samples, for example
when final gathering is used storing several hundred eye samples per pixel.

The bandwidth smoothing parameter C determines the noise level in the
density estimation, while the sensitivity S controls the variance (S = 0 results
in a constant bandwidth). Since we normalize the bandwidth term using an
initial pilot estimate (Section 4.2), C is relatively independent of scene size
and complexity. Therefore, C varies around 1.0. Parameter S depends on
the lighting conditions. For direct lighting and caustics we set S around
0.5, while for indirect lighting values between 0.2 and 0.3 yield satisfying
results. In case of final gathering (Section 6.4), C and S should be set to
smaller values than the ones used for a direct visualization in order to keep
performance high and reduce the overall bias.

In order to compute glossy light transport, we have implemented and
tested three different approaches: the “naive” direct ray splatting with BRDF
evaluation for every photon ray, the histogram splatting, and the splatting
in the SH basis. For the histogram method we used 20 strata and for the SH
method 16 coefficients per pixel, which yields similar results. The splatting to
the histogram is more efficient. However, the final BRDF evaluation is more
expensive since we apply BRDF sampling for all non-diffuse eye samples.
For the SH method the final step reduces to a simple dot product of SH
coefficients. The SH splatting method itself is computationally expensive
but works well in combination with radiance caching.

The additional radiance caching scheme further reduces the rendering
time by one order of magnitude but requires to find a good combination
of smoothness parameter C for splatting (Section 4.2) and cache error ε
(Section 6.3). These two parameters are correlated. Noise is filtered when
either choosing a large C and small ε or a small C and larger ε. However, the
latter is more efficient and can, surprisingly, even enhance the visual quality
of the results (see Fig. 7.2d). As a rule-of-thumb, when applying radiance
caching, setting the value of C to its half leads to satisfying and fast results.
For filtering purposes, the minimum number of extrapolated cache records
contributing to a pixel was set to at least 4 to 7.

The optional radiance filtering in image space using the discontinuity
segments takes 10 to 20 seconds for 20 radiance images, while for filtering
the radiance SH coefficients the times are between 6 and 10 seconds. The
segmentation of the discontinuity buffer is computed in approx. 50 ms for
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an image of 500 × 500 pixels.
The proposed extensions: directional histogram, the SH radiance caching,

and the radiance image filtering, can also be applied to standard photon
mapping.

In Fig. 7.2 we compare our method quality-wise with photon mapping
using k-nearest neighbor (K-NN) density estimation. The left image shows
the reference solution obtained by final gathering with 1200 final gather rays
per pixel, where the radiance along final gather rays is computed from the
photon map. The second column (b) shows the solution from a direct photon
map visualization with approximately 500 nearest neighbor photons per pixel.
The third column (c) was rendered with our proposed photon ray splatting
method in the spherical harmonics basis with the smoothness parameter C
(see Section 4.2) chosen to have on average a similar density-estimation kernel
width (splat radius) as in the photon map solution. The fourth column (d)
shows the filtered radiance cache solution that is based on a noisy photon
ray splatting input (see for example Fig. 6.5). For all solutions we have used
the same photon sampling algorithm with 500, 000 stored photon samples
in total whereby only those photon rays were stored that intersected the
enlarged viewing frustum.
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Figure 7.1: Scalability of photon ray splatting (red curve) compared to pho-
ton map K-NN density estimation (green curve) for the Cornell box scene
(column a) and the Appartment scene c© INRIA 2005 (column b). First
row shows the rendering time in dependence on the number of stored pho-
tons for x = 5, 000 to x = 1, 280, 000 photons with constant image resolution
(500 × 500). The second row shows the rendering time depending on the
image resolution ranging from x = 100 × 100 to x = 1, 000 × 1, 000 pixels
with constant number of stored photons (500, 000). The used memory for
the Appartment scene excluding geometry and ray tracing data structures
is shown in column (c). The red curve represents the direct photon ray splat-
ting (RS direct) to the image, i.e. evaluating BRDF for all eye samples in
the ray’s footprint, the blue curve (RS histogram) represents the directional
histogram method, and the black solid curve represents the ray splatting in
spherical harmonics basis with adaptive radiance caching. The stippled black
curve shows only the fraction of time spent in computing the radiance cache
records. Note that the scaling of the x-Axis is non-linear.
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Scene Method Tinit Tray Tlight Tbuild Tsolve Tcache Tbrdf
∑

T

Cornell Box Photon Map (800 K-NN) 0.01 0.33 1.80 0.28 49.58 − − 52.00

(100% diffuse) Histogram (C = 1.0, S = 0.4) 0.01 0.33 1.91 0.33 51.10 − 0.15 53.80

NPrim = 18 SH Basis (C = 1.0, S = 0.4) 0.06 0.33 1.90 0.33 77.50 − 0.04 79.20

SH Cache (C = 0.6, S = 0.2) 0.11 0.34 1.90 0.34 4.90 2.6 0.06 10.25

Scene settings 500× 500× 1; M = 500, 000; (0.3, 0.7, 0.0); R = 0.2

Cornell Box Photon Map (400 K-NN) 0.13 1.74 1.50 0.20 64.80 − − 68.37

(wave) Histogram (C = 1.0, S = 0.4) 0.14 1.75 1.60 0.25 55.30 − 3.20 62.24

(98 % diffuse) SH Basis (C = 1.0, S = 0.4) 0.16 1.75 1.62 0.26 87.50 − 0.06 91.35

NPrim = 19, 635 SH Cache (C = 0.6, S = 0.3) 0.20 1.76 1.62 0.26 8.10 3.8 0.10 15.86

Scene settings 500× 500× 4; M = 200, 000; (0.3, 0.6, 0.1); R = 0.2

Corner Room Photon Map (600 K-NN) 0.01 0.71 3.74 0.66 59.50 − − 64.60

(0 % diffuse) Histogram (C = 1.2, S = 0.5) 0.01 0.70 3.97 0.71 35.70 − 21.06 62.00

NPrim = 59 SH Basis (C = 1.2, S = 0.5) 0.07 0.69 3.96 0.70 125.00 − 0.09 130.50

SH Cache (C = 0.7, S = 0.4) 0.10 0.70 3.94 0.70 6.20 3.0 0.09 14.70

Scene settings 500× 500× 1; M = 1000, 000; (0.0, 0.95, 0.05); R = 0.2

Sibenik Photon map (500 K-NN) 0.32 0.53 3.84 0.31 26.20 − − 31.20

(99 % diffuse) Histogram (C = 0.9, S = 0.3) 0.32 0.54 5.30 0.35 25.70 − 0.57 32.80

NPrim = 78, 362 SH Basis (C = 0.9, S = 0.3) 0.40 0.55 5.29 0.34 31.40 − 0.05 38.00

SH Cache (C = 0.5, S = 0.2) 0.43 0.55 5.30 0.35 7.40 6.6 0.05 20.70

Scene settings 500× 500× 1; M = 500, 000; (0.0, 1.0, 0.0); R = 0.2

Appartment Photon map (600 K-NN) 0.37 0.65 3.80 0.29 61.60 − − 66.70

(47 % diffuse) Histogram (C = 0.9, S = 0.4) 0.37 0.63 4.18 0.36 45.10 − 14.10 64.70

NPrim = 73, 668 SH Basis (C = 0.9, S = 0.4) 0.41 0.64 4.19 0.35 104.00 − 0.11 109.70

SH Cache (C = 0.5, S = 0.3) 0.44 0.63 4.19 0.34 9.50 5.9 0.11 21.10

Scene settings 500× 500× 1; M = 500, 000; (0.0, 0.9, 0.1); R = 0.2

Conference Photon map (70 K-NN) 0.77 2.45 2.47 0.36 35.8 − − 41.85

(86 % diffuse) Ray Splat (C = 0.6, S = 0.2) 0.78 2.47 2.59 0.86 25.6 − − 32.00

NPrim = 265, 880 PM-FG (600 FGRs) 0.78 991.00 2.49 0.16 4114.00 − − 5108.00

RS-FG (600 FGRs, 5× 5 tiles) 0.83 997.00 2.58 111.00 2714.00 − − 3825.00

Scene settings 700× 700× 4; M = 160, 000; (0.3, 0.6, 0.1); R = 0.4

Table 7.1: Computation times for all rendering phases of our algorithm for 6
scenes using either a direct visualization of the photon map, the histogram, the
spherical harmonics (SH) approach, the direct ray splatting (Ray Splat), photon
mapping with final gathering (PM-FG), or direct ray splatting with final gathering
(RS-FG) for computing the radiance at eye samples. The computed images are
shown in Fig. 7.3. NPrim is the number of primitives in the scenes. Tinit is
the time for preprocessing (e.g. kd-tree construction for ray tracing, discontinuity
segmentation), Tray is the time spend for casting primary rays and storing eye path
samples, Tlight is the time for tracing M photons, Tbuild is the kd-tree construction
time for eye samples and time for presorting photon rays (5D-tree construction),
Tsolve is the time for photon ray splatting (including search), Tcache is the time
for radiance cache splatting, Tbrdf is the time for computing the outgoing pixel
radiance at each eye sample, i.e. BRDF evaluation and eye sample weighting.
And

∑
T is the total time spend to compute a single frame. In case of the photon

map approach Tbuild corresponds to the construction of the kd-tree over photons
and Tsolve is the K-NN density estimation time including BRDF evaluation on
non-lambertian surfaces. The scene settings are: image resolution × number of
super-samples per pixel; total number of stored photons (M); the fraction of direct,
indirect diffuse, caustics photons; the bandwidth clamping parameter R.
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(a) 3950 s (b) 29 s (c) 35 s (d) 20 s

Figure 7.2: Comparing our splatting method with photon maps K-NN den-
sity estimation relative to a reference solution for indirect light in the diffuse
sibenik scene. The first row shows the results of: (a) photon maps with
1200 final gather rays per pixel and 50 nearest neighbor photons per ray, (b)
the direct visualization of photon maps with 500 nearest neighbors (c) our
photon ray splatting in spherical harmonics basis (d) photon ray splatting
with additional radiance caching and filtering. All methods use 500, 000 pho-
ton samples. The second row shows the relative error color-coded from blue
(< 5% error) to green (15% error) to red (≥ 30% error) with respect to the
reference image. Note the reduced bias near the boundaries and on curved
surfaces for the ray splatting approach. Note also that the filtering due to
radiance caching (image d) further reduces low-frequency noise and leads to
better visual quality.
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(a) (b) (c)

(d) (e) (f)
Figure 7.3: Comparing our method (top images) with k-NN photon density es-
timation in 6 scenes with different illumination conditions (the rendering times
are given in Table 7.1). The number of k-NN photons was chosen to have on
average a gather radius similar to the splat radius used for ray splatting. (a) clas-
sic Cornell Box (b) the glossy Cornerroom with difficult lighting conditions
that generate indirect caustics on a slightly glossy floor, (c) the Appartment
scene c© INRIA 2005, which exhibits indirect diffuse and glossy light transport,
(d) bumpy Cornell Box with full global illumination, (e) diffuse Sibenik scene,
and (f) the indirect diffuse Conference scene rendered with final gathering using
600 rays per pixel.
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8 Discussion and Future Work

Our proposed algorithm leaves space for further optimization and extensions
of various kind. First, our radiance map implementation is not adaptive to
the “glossiness” of a surface. Using a different basis with adaptive number of
coefficients per pixel can increase the quality of glossy light reflections while
decreasing computation time.

Second, we would like to extend our method into the temporal domain
by reusing radiance information from previous frame(s). Inspired by [26] we
believe that temporal coherence in the radiance cache distribution can give
a speedup of one order of magnitude compared to single frame rendering
and reduces flickering between consecutive frames. Together with adaptive
(bilateral) filtering in the temporal domain [36], we could also reduce the
low-frequency noise from photon sampling and increase the visual quality of
the images.

Third, our method can also be used in a preprocessing step for computing
an approximation to the real illumination in a finite element manner. The il-
lumination on diffuse surfaces can be precomputed with photon ray splatting
at the photon-ray hit points for second pass Monte-Carlo final gathering [2].

Our algorithm can also run in a distributed setup: the entire kd-tree and
all eye samples can be instantiated on several clients whereas the photons
are distributed among them. Because light is additive the resulting radiance
images can be accumulated in a final pass.

Finally, the major drawback of our algorithm as in the photon mapping
is the neglected visibility in the density estimation footprint. However, since
our nearest neighbor search is along photon paths, we can gain more infor-
mation about occlusion than only considering the local neighborhood of the
photon-ray hit point. This could either be used as an instrument to control
the bandwidth or even better to mask the kernel. Here we propose a simple
yet efficient way to approximate the visibility during the kd-tree traversal.
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8.1 Visibility Approximation

Photon ray splatting solves two major drawbacks of traditional photon den-
sity estimation, the boundary bias and the topological bias problem [8, 23].
However, as described so far in the previous sections the ray splatting does
not improve the proximity bias because photon ray splatting does not ac-
count for visibility changes within the splatting footprint. Visibility changes
yield occlusions (shadows) which impose the highest frequencies in the illu-
mination especially for direct light. Therefore, ray splatting is not capable
to reconstruct high-frequency signals in the lighting function if the visibil-
ity is neglected. Without explicit visibility testing, photon ray splatting
and all other photon density estimation approaches only work satisfactory
for smooth indirect illumination. Unfortunately, efficient visibility computa-
tion is one of the most difficult problems in computer graphics since making
simplifying assumptions about the visibility is generally not possible. The
brute-force solution would test each eye sample in the splatting footprint for
occlusion with the photon ray’s origin via ray-tracing. Such approach has
been proposed in [1], where they stochastically decide whether to shoot a
shadow ray or not. On the other hand, testing the eye sample’s visibility
explicitly ruins the advantage of photon density estimation, which computes
the convolved visibility implicitly via density estimation.

We propose a simple visibility approximation exploiting the additional
spatial information of the eye samples gathered during the ray traversal of
the kd-tree. The gathered eye samples are “rasterized” into a 2D occlusion
buffer, which functions as a stencil or mask for the density estimation ker-
nel (see Fig. 8.1 b). Such approach only accounts for direct occlusions, i.e.
occluders must be visible to the camera. However, indirect occlusions, al-
though blurred, are implicitly handled by the density estimation. In order to
prevent holes when masking the kernel, a “masking” density could be applied
similarly as in point sample rendering techniques [39]. The masking density
should depend on the eye sample density and perhaps other factors such as
the distance and orientation relative to the camera for example. Therefore
this approach still requires further investigation and remains as future work.
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Figure 8.1: (a) Standard photon ray splatting neglects occlusions in the
splatting footprint (thick black curves) whereas photon ray splatting with
explicit visibility masking of the kernel function Kh using the gathered eye
samples (green dots) inside the splatting footprint correctly discards occluded
eye samples (b) and reproduces high-frequency shadows (see Fig. 8.2 second
row).
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Figure 8.2: Including visibility information into the ray splatting significantly
improves quality in particular for direct illumination and increases robust-
ness against the sensitive bandwidth selection. First row shows the rendered
images without explicit visibility computation. The results in the second row
include visibility information. The first column shows only the direct light
computed from 50, 000 photons, second column the indirect light (1f-stop
brighter) computed from 200, 000 photons, third column the global illumina-
tion result (250, 000 photons), and the last column (image g) is the reference
computed with the Lightcuts algorithm [33] using an average of 339 shadow
rays per pixel (250, 000 virtual point light sources).
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9 Conclusions

We proposed an algorithm that improves photon density estimation by ex-
ploiting further information acquired during photon generation and sampling
phase like for example the photon ray direction and length, and its path prob-
ability density. Our method solves some of the problems inherent to photon
density estimation and brings the quality closer to the expensive final gath-
ering approaches.

First, we eliminate boundary bias due to the volumetric search along
photon paths. This is especially noticeable on small unconnected surfaces
where all hit-point density-estimation techniques fail. Since we do this via
splatting instead of gathering, we avoid the use of complex and memory
demanding data structures as in [8].

Second, our method does not suffer from discontinuities in surface orien-
tation. Since we estimate the density in photon ray space, we decouple the
density estimation from the surface area and obtain the convolved radiance
in ray space. Therefore, we can compute the illumination from any direction
on surfaces of complex topology where the actual surface area is difficult to
estimate.

Third, we developed a simple and efficient bandwidth selection scheme
for the photon splatting based on the photon-path probability density, which
could also be used to speedup standard photon mapping [11] since the costly
k-NN search can be avoided.

Fourth, we have shown how to adapt the classical irradiance caching
algorithm [34] for use in a fast direct visualization of the photon density. We
have replaced the expensive final gathering for estimating a cache record’s
irradiance and harmonic mean distance to the surrounding surfaces, which is
needed to determine the cache spacing, by our photon density estimation. In
addition, we also proposed a novel cache weighting-function, which enables
to filter noisy cache records. We derived a simple and efficient irradiance
gradient computed during ray splatting, which can further enhance the visual
quality of the image computed with our radiance caching algorithm.
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Although our algorithm often yields satisfying results, it also has some
limitations. Like in all density estimation methods there are occasionally
problems with light leakage due to the neglected visibility in the splat foot-
print. Only low-frequency lighting can be reconstructed with our method,
but final gathering can be performed similar to photon mapping [9]. We are
currently working on incorporating partial visibility information gathered
during the photon ray traversal to the ray splatting, which further improves
image quality. At present the method also requires tuning several parame-
ters for the bandwidth selection: the smoothness coefficient C, bandwidth
sensitivity S, and the bandwidth clamping parameter R, which is one param-
eter more than for photon mapping [11]. Also, if radiance image filtering is
enabled, the user must provide two additional parameters, normal deviation
and a distance threshold, for the segmentation of the discontinuity buffer.

We conclude that our algorithm has potential in fast rendering of low-
frequency illumination, which could be either used for fast previewing or as
a better input for high-quality Monte Carlo final gathering [2].
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