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Abstract

We present a novel method for massively parallel hierarchical scene processing on the GPU, which is based on
sequential decomposition of the given hierarchical algorithm into small functional blocks. The computation is
fully managed by the GPU using a specialized task pool which facilitates synchronization and communication
of processing units. We present two applications of the proposed approach: construction of the bounding volume
hierarchies and collision detection based on divide-and-conquer ray tracing. The results indicate that using our
approach we achieve high utilization of the GPU even for complex hierarchical problems which pose a challenge
for massive parallelization.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and
Techniques—[Graphics data structures and data types] I.3.7 [Computer Graphics]: Three-Dimensional Graphics
and Realism—[Ray tracing]

1. Introduction

Hierarchical algorithms and data structures are powerful
tools for efficient processing of computationally intense
problems. Hierarchical data structures such as bounding vol-
ume hierarchies or kd-trees have become standard methods
for rendering acceleration particularly when targeting ray
tracing based techniques. Apart from the established meth-
ods based on spatial hierarchies, some new techniques such
as the divide-and-conquer ray tracing [WK09,Mor11,Áfr12]
work with an implicit hierarchy stored in a simple index ar-
ray. Such methods may become an interesting alternative for
ray tracing highly dynamic scenes.

While the hierarchical techniques have their provable ben-
efits in terms of algorithmic efficiency, the general drawback
is their difficult mapping to the massively parallel computa-
tional model of the GPU. While a number of clever solutions
for this mapping have already been designed, most of the
proposed techniques rely on management of the computation
from the CPU side, invoking specialized computational ker-
nels at different stages of the computation. This is due to the
fact that different computational stages of the hierarchical
techniques exhibit different levels of parallelism and it is not
easy to reflect this using the currently available frameworks

for GPU computation such as CUDA or OpenCL. Therefore,
the GPU may get underutilized if for any kernel there is not
enough work for each processing unit. As a result the scala-
bility of the CPU managed method might be reduced when
targeting massively parallel systems with tens of thousands
of processing units, which are likely to become available in
the future.

In this paper we propose an innovative method which
moves the whole computation to the GPU and it requires
no management from the CPU side. The method handles all
important aspects of hierarchical techniques as it is able to
perform complex evaluation of the given task, spawn new
tasks, and handle the dependencies among the tasks. We
provide two applications that justify the concept for our
method: Bounding Volume Hierarchy (BVH) construction
and divide-and-conquer ray tracing. The results indicate that
the implementations based on our method perform compa-
rable or even superior to existing solutions.
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2. Related Work

We review here in short the relevant background knowledge
in GPU algorithms and spatial sorting with focus on the
building of hierarchical data structures on GPUs.

GPUs and Load Balancing. Load balancing and schedul-
ing for GPU architectures is an active research area which
relates to the method proposed in our paper. Tsigas and
Zhang [TZ01] proposed a simple non-blocking concurrent
queue for FIFO processing for shared memory multipro-
cessor systems that utilized compare-and-swap operations
(CAS). With the availability of atomic operations on GPUs
Cederman and Tsigas [CT08] compared four approaches for
dynamic load balancing on GPUs and concluded that block-
ing queues perform the worst. Tzang et al. [TPO10] stud-
ied efficiency of load balancing methods for irregular work-
loads on the GPU and they concluded that task-stealing and
task-donation are the most efficient. Chen et al. [CVKG10]
proposed a task-based dynamic load balancing approach for
single and multi GPU computer systems. They used a persis-
tent kernel running on a device(s) (a GPU or several GPUs)
where the task queue is generated on a host (CPU). The
recent work by Sundell et al. [SGPT11] proposed a lock-
free algorithm for distributing work on concurrent hardware
without the restriction of work producers and consumers. In-
dependently of our work Steinberger et al. [SKK∗12] de-
signed a flexible GPU framework, which also builds on
the idea of persistent threads. Compared to their work our
method is more specific to hierarchical scene processing and
it provides dependencies among the tasks and better data
level parallelism (more units can cooperate on solving the
same task). We also want to point out a recent paper by Lee
et al. [Lee10] who rigorously analyzed the performance of
an NVIDIA GTX280 and an Intel Core i7 960 processor for
fourteen different computational problems with carefully op-
timized implementations. They showed that the GPU-CPU
performance gap narrows from the mythical 10-100 times to
only 2.5 times on average.

GPU Rendering and Hierarchical Data Structures.
There has been number of approaches dealing with the hi-
erarchical data structures used in computer graphics for ray
tracing, general visibility computations such as occlusion
culling, collision detection etc. We focus our discussion on
the bounding volume hierarchies (BVH) and kd-trees with
the stress on the algorithms implemented on the GPU. In
particular we focus not only on those that efficiently uti-
lize the GPU for performing computations with the help of
these data structures, but also on those that use the GPU
for actually building these data structures. The first tech-
nique that used the GPU for ray tracing was proposed by
Purcell et al. [PBMH02] who utilized a shading language
and remapped a uniform grid into textures. This approach
was followed by other methods which are surveyed by Wald
et al. [WMG∗09]. However, the data structures were typi-
cally prepared on the CPU and the memory footprint was

transferred to the GPU to allow for parallel traversal opera-
tions. The building of data structures on the GPU have be-
come possible with the introduction of CUDA [NBGS08]
and OpenCL [SGS10].

Kd-trees. Zhou et al. [ZHWG08] presented an algorithm
to build kd-trees on the GPU, restricting the approach to
a spatial median and cutting off empty space. This ap-
proach was extended by Hou et al. [HSZ∗11] using partial
breadth-first-search to afford for limited memory consump-
tion. Danilewski et al. [DPS10] presented a scalable GPU al-
gorithm with binning for kd-trees that improves on the qual-
ity of constructed kd-trees following the method of Shevtsov
et al. [SSK07]. Wu et al. [WZL11] proposed an algorithm
running on the GPU as a sequence of kernels that construct
kd-trees in a breadth-first search manner, but for all bound-
ary positions in the fashion of the serial approach by Wald
and Havran [WH06]. This algorithm was also parallelized
for multi-core CPUs by Choi et al. [CKL∗10].

Bounding Volume Hierarchies. Lauterbach et
al. [LGS∗08] presented an algorithm to build the Lin-
ear BVH (LBVH) using Morton codes, where the speed
is moderately penalized by the quality of the built BVH.
Aila and Laine [AL09] studied different possibilities to
organize the traversal code on GPU architectures to get
the highest performance. Pantaleoni and Luebke [PL10]
presented a more efficient version of the LBVH algorithm
with Morton codes and compress-sort-decompress strategy,
together with improved memory management. They call it
the Hierarchical LBVH (HLBVH). Further, they presented a
hybrid algorithm with a two-level BVH, where top levels are
built with an exact algorithm with a surface area heuristics
(SAH) [Wal07] and bottom levels with a Morton curve
based algorithm. Garanzha et al. [GPM11] simplified the
HLBVH algorithm using binary search and work queues.
They achieved both memory savings and lower build times
than the paper by Pantaleoni and Luebke [PL10]. Wald de-
scribed a parallel version of a BVH based builder with SAH
using binning on a many-core architecture (MIC) [Wal12].
Sopin et al. [SBU11] studied binned SAH BVH construction
on the GPU with focus on efficient division of data between
computational units.

Grids. Kalojanov and Slusallek [KS09] presented a paral-
lel algorithm for building uniform grids, followed by another
paper by Kalojanov et al. [KBS11] for hierarchical grids.

Implicit Hierarchies. Wächter and Keller [WK09] pre-
sented an approach for ray tracing which simultaneously
subdivides rays and triangles and can be computed with-
out explicit spatial data structures. A similar approach was
independently developed and implemented on a single-core
CPU with SSE instructions by Mora [Mor11]. Mora also uti-
lized bounding cones for primary rays to improve the perfor-
mance.
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3. Hierarchical Scene Processing

In this section we first present the terminology and an
overview of our algorithm and then propose a novel
general methodology of mapping a hierarchical algo-
rithm to the GPU framework. We limit our discussion to
CUDA [NBGS08] based implementations and use terminol-
ogy and constants associated with the currently available
CUDA platforms.

3.1. Terminology

Prior to introducing the algorithm we briefly define the basic
terms used in the paper.

• Task is a computational job which is associated with the
given range of scene data (geometry, ray queries, etc.
stored in the linear array in contiguous block of memory).
The whole computation is initiated using a single task as-
sociated with the whole scene. After a task is processed, it
is either finished or spawns one or more child tasks. Every
child task processes the associated range of data. The task
is characterized by its state.
• Phase is a logical algorithmic block of the task, such as

finding the splitting plane, sorting triangles, computing a
tight bounding box, etc.
• Step is an algorithmic block of the phase. A phase might

consist of a single step, but some phases need more steps.
The number of required steps may depend on the size of
the given data range. If the phase consists of more steps,
the results of one step are processed by the further steps in
order to compute an aggregated result of the whole phase.
An example when more steps are needed is a parallel re-
duction computation used for computing the new AABB
of child nodes, which requires a logarithmic number of
steps.
• Work chunk is a data range associated with a particular

step processed by a single warp. The work chunk is the
smallest unit of work in our method. Note that while the
phase and the step represent a subdivision into smaller
algorithmic blocks (i.e. in the time domain), the work
chunk represents a subdivision of the data associated with
the step (i.e. in the contiguous block in memory address
space). The work chunk consists of 32 data items and each
thread in a warp processes a single item.
• Task pool is a data structure used for managing the execu-

tion of tasks. In our method the task pool is not working
as a queue nor stack. This is implied by required compu-
tational efficiency as well as computational dependencies
among the tasks. The details on the task pool will be given
in section 3.4.

Apart from the above defined terms we recall the basic ter-
minology associated with CUDA: kernel is a program exe-
cuted on the CUDA device and warp is a group of 32 threads,
which execute the same instruction at a time.

3.2. Algorithm Overview

Our algorithm follows the divide-and-conquer principle of
hierarchical methods: when the current task is too large to
be solved directly it is further subdivided until it is small
enough to be terminated or solved in a trivial way.

Each task holds the information about its data range (e.g.
interval in the triangle index array) and the state of the task.
The task also holds information describing the current phase,
the current step, the number of available work chunks, and
auxiliary information such as the bounding box of the given
geometry data.

A typical task dealing with 3D primitives can be divided
into two major phases which are processed sequentially: de-
termining a quicksort-like pivot for one phase of sorting (e.g.
a splitting plane) and sorting the primitives according to this
pivot into two parts using the index array. Note that this sort-
ing can take place more times to create multiple subsets. Af-
ter these phases the algorithm continues with subsets of these
primitives in a given number of branches. The algorithm can
also contain other phases, which evaluate data needed for
further invocation of the algorithm such as bounding boxes.
An example of the computational phases for the BVH con-
struction is illustrated in Figure 1.

split plane

subdivide

w  w  w  w  w

AABB
log n

...

w  w  w  w  w

w  w

child tasks

partition
w  w  w  w  w

Figure 1: Overview of the task and its phases in an algo-
rithm for BVH construction. The figure also shows the rela-
tive number of warps cooperating on solving the particular
steps of the task phases.

Our algorithm is built on the concept of persistent
warps [AL09]. Using persistent warps instead of threads
or blocks has several advantages. First, it is easier to man-
age memory access coherency and branching as they are re-
solved on this level in hardware. Second, there are several
horizontal warp-level functions that can accelerate the pro-
cessing.

We aim at maximizing the parallelism of the computation
on two different levels. First, we aim to process a given step
of the computation using as many threads as possible (fine
grain spatial parallelism), i.e. the number of threads working
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on the given step corresponds to the size of the data range as-
sociated with the step. Second, we aim to compute different
tasks in different computational phases in parallel (coarse
grain temporal parallelism). For example, we want to deter-
mine a splitting plane for one node in the hierarchy using a
number of warps and at the same time we perform sorting of
the triangles in some other node using the remaining warps.

For some algorithmic problems it is possible that several
tasks may need to work on the shared data range. For ex-
ample when constructing a kd-tree, the subsets of triangles
associated with the left and right children of a node gener-
ally overlap and the data ranges of the associated child tasks
overlap as well. In such a case it is necessary to enforce an
order on the task execution, and we mark some tasks as de-
pendent on other active tasks. These dependent tasks must
wait to be activated upon the completion of active tasks. A
dependent task holds the counter on how many tasks have to
finish before it is activated. An active task contains pointers
(indices) to tasks it is responsible for activating.

3.3. Managing the parallel computation

We launch a single kernel with as many persistent warps as
can be run simultaneously on the GPU. After launching this
kernel there is no further management from the CPU and
the work flow takes place completely on the GPU. The cru-
cial component in our system is the task pool stored in the
global memory: all warps are synchronized and take their
work from the task pool. The task pool holds all the infor-
mation about the current state of the computation.

When the kernel is launched the task pool is filled with
a single task. This task encapsulates all the geometry (e.g.
triangles). When this task is finished it can spawn its child
task(s) until the whole task pool is empty, signalling that the
computation is done.

Since warps are independent in CUDA, each warp can
process a different task with a different state. However, in
our method warps also participate in computation of the
same task. This is in contrast with the previous approaches
where communication and synchronization between warps
was either limited or not possible at all. Each warp takes
work chunks from an arbitrary active task based on the cur-
rent distribution of work in the task pool. The pseudocode of
the method is shown in Algorithm 1.

The pseudocode shows that the warps are constantly
searching for arbitrary work chunks that they can handle.
When they succeed in retrieving the work chunks they per-
form the work according to that particular task and its phase
and step. The overview of the main data structures used in
our method is depicted in Figure 2.

3.4. Task Pool

The task pool is represented by two arrays, one for holding
all the information necessary for computing the task (task

In serial: Insert the first task into the task pool;
In parallel: while Task pool is not empty do

if retrieve(taskIdx, work chunks) was successful
then

read task from task data array;
switch task phase do

repeat
process_task (step, work chunk);

until no more work chunks ;
memory fence;
advance the state or finish the task;

end
end

end
Computation is done;

Algorithm 1: Main loop of the algorithm.
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Figure 2: Overview of the main data structures used in our
method.

data array) and the second compact one for defining the
amount of work to be done in the current step (task header
array). Because of this decomposition the task header ar-
ray contains a single integer for each task. This gives a very
small memory footprint that can fit easily into the cache on
modern GPU architectures.

For each task the header array encodes the task state in
an integer value. Apart from the task state we also encode
additional quantitative information in this integer value, the
meaning of which depends on the task state. This additional
information allows us to use efficient mechanism to retrieve
work chunks and handle task dependencies. The task can ex-
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hibit one of the following four states in its header by the in-
teger value I:

• I > 0: Active state. The task is ready to be processed and
there are I work chunks to be done on this task for the
current phase and step. Note that the phase and the step is
stored in the task data array. Below we call a task in active
state an active task.
• I < 0: Dependent state. The task waits for −I other tasks

to finish before it is activated.
• I = 0: Locked state. The task is locked, which means that

its data entry is just being created or modified.
• I <= −BIG_INT : Empty. This entry in the task pool is

currently not used and it can be populated with a new task.

Retrieving work. When warps are trying to find a work
chunk to process they loop through the task header array
searching for an active task. To promote parallelism each
warp starts at a different index in the pool, based on its warp
ID and the number of entries in the pool. Each thread in the
warp then reads the state of one consecutive entry from the
task header array. As multiple entries can be active, it has
to choose one to take work from. To prevent all warps from
choosing the same active task introducing conflicts of atomic
operations, we compute the prefix sum on the states of the
entries within each warp and choose the i-th active task,
where i is based on the warp ID. When the active tasks are
chosen, the warps atomically decrement the tasks’ header.
Each warp may decrement the value by any number i.e. re-
trieve as many work chunks from a single entry as it de-
sires. It is often beneficial to retrieve multiple work chunks
in one atomic operation because the overhead of retrieving
the work chunk is not negligible. We use the following func-
tion for determining the number of work chunks retrieved by
the warp:

Nw = max(
S
W

+1,K), (1)

S =
32

∑
i=1

Ni,

where Ni is the number of work chunks corresponding to
the task entry sampled by thread i of the warp; W is the num-
ber of warps launched on the GPU, and K is a constant pre-
venting the retrieval of too few work chunks. Note that Ni
represents the number of work chunks the current task step
was created with and Ni = 0 for all inactive tasks.

The first term S
W +1 aims to distribute the available work

among other warps, while the constant K prevents the frag-
mentation of work and in turn it bounds the overhead con-
nected with the task pool management, especially in the later
stages of the computation when the processed tasks consist
of smaller amount of data. Note that K = 14 was experi-
mentally verified to be a reasonable choice in practice for
contemporary GPU architectures.

It may happen that the value of the entry is decremented

below the value representing the Lock state by multiple
warps concurrently trying to retrieve work from the same
task. This is not a problem as long as the counter is not decre-
mented to the value representing an empty task. If the warp
did not succeed in retrieving the work chunks the value re-
turned by the atomic decrement is not positive. In that case
the same process is repeated on a different task.

Finishing work. When warp finishes the retrieved work it
has to communicate this fact to the other warps. In particular
the last finished warp has to be aware that it is responsible for
advancing the task state or issuing new tasks. To accomplish
this we use another counter of unfinished work chunks stored
in the task’s data. This counter is atomically decremented by
each finished warp. The warp that decrements it to zero is the
last finished warp. This warp can then interpret the results of
the step and progress the computation further to the next step
or phase for the given task. We cannot use the value obtained
from the task’s header for this purpose since the warp that
last retrieved work from the task need not be the warp that
finishes it last.

Storing work. In order to create a new task the warp loops
through the task header array searching for an empty en-
try. When it finds one it atomically compares-and-swaps its
value with the value representing a lock. If it succeeds, it fills
the corresponding entry in task data array with the child task.
As the last step, it sets the header array entry with the num-
ber of work chunks required to process the first step of the
first phase of the child task to unlock it, or it sets the entry
with the number of tasks this task is dependent on to mark
a dependent task. Note that a memory fence operation must
be issued before the task is unlocked to make sure valid data
are visible to other warps.

Handling dependent tasks. Working with dependent
tasks is straightforward in our framework. Since their task
header value is less than the Lock state they are ignored by
the warps during the retrieving or storing of work. The active
tasks that point to this dependent task increase the dependent
task’s header value upon their finish, eventually increasing it
to the Lock state. This signals all dependencies are resolved
and the header value can be overwritten by the number of
work chunks in the task, signalling the Active state.

Minimizing pool overhead. We use two improvements
that accelerate the computation of tasks. They are both tar-
geting steps with little parallelism. First, when some phase
requires zero work chunks to compute it is immediately
skipped. Second, if some step requires less than K work
chunks, this step is processed immediately by the given warp
without writing the task into the pool (K is the constant used
in Eq. 1). This is often the case with the reduction in the
AABB phase.
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3.5. Comparison to Standard Kernel Launching

Performing the entire computation and management on
the GPU has several advantages compared to the standard
method based on serial kernel launching and synchroniza-
tion. First, the intermediate results need not be saved to
global memory (on a GPU) between consecutive kernel
launches or transferred over an even slower PCI-E bus to
the main memory. Our approach is in an agreement with the
GPU evolution which places more computation on the GPU
side to limit the communication. Moreover, during these data
transfers and kernel launch preparations the GPU is idle (if
there is no concurrently running kernel). Also the kernel
launch is a high overhead operation as stated by several au-
thors [ZHWG08, GPM11].

Managing the computation on the GPU has other advan-
tages besides limiting overhead. While the available paral-
lelism is fixed for the kernel launching approach e.g. to a
single level of the hierarchy (spatial parallelism), in our ap-
proach nodes from different levels can be processed simulta-
neously (temporal parallelism). This increases the available
parallelism and limits the computation stalls due to underuti-
lized GPU. For the kernel launching these stalls often hap-
pen when processing top levels of hierarchies where there
is not enough data to process or when some warps have al-
ready finished their work and are waiting for other warps to
terminate the kernel.

In the rest of the paper we discuss two applications of
the proposed framework for parallelization of hierarchical
algorithms: BVH construction and divide-and-conquer ray
tracing.

4. Constructing Bounding Volume Hierarchies

Bounding volume hierarchies are common data structures
used for rendering acceleration. They became particularly
popular for ray tracing acceleration of dynamic scenes since
they are relatively fast to construct and update, and have pre-
dictable memory footprint.

The algorithm for constructing a BVH can be easily
mapped to our parallel framework as we describe in the next
sections. The ease of mapping the BVH build comes mainly
from the fact that each task is completely independent of
other tasks. For the rest of the paper we assume that the scene
consists of triangles although the method can generally han-
dle other scene primitives as well.

4.1. Defining Phases and Steps

The computation starts with a single task associated with all
scene triangles. Each task then needs to subdivide the given
set of triangles into two disjoint subsets (assuming a binary
hierarchy). The formation of these subsets is typically based
on spatial criteria such as the spatial median or the more
involved surface area heuristics (SAH). The subdivision can

be easily implemented by sorting the triangle indices into
two disjoint groups in the index array. If the given triangle
subset is large enough, a new task is created. Otherwise, the
current branch of the computation is terminated and a leaf is
created.

For each task we define three different phases:

1. SplitPlane: Splitting plane computation (spatial median or
cost model with SAH).

2. Partition: Partitioning of a triangle range into the left and
right sub-ranges in the double buffered index array.

3. AABB: Computation of the two bounding boxes for the
child tasks.

Note that some of these phases represent parallel divide-
and-conquer algorithms on their own (AABB) and, therefore,
require a logarithmic number of steps to complete. The illus-
tration of the phases is shown in Figure 1. Note that the fig-
ure also shows the relative number of work chunks required
by different steps of the tasks (indicated as w). The number
of work chunks per step corresponds to the number of warps
which perform the work according to Eq. 1. Below we de-
scribe the particular phases of the algorithm in more detail.

SplitPlane. Currently we support two splitting strategies:
the spatial median and the SAH. The spatial median cycles
the splitting plane in the round-robin fashion, where for the
first task the longest axis is chosen. The SAH chooses the
best plane from equal number of candidates in each axis,
where the evaluation of the SAH cost is similar to [HHS06].
For the SAH strategy we select 32 candidate planes and eval-
uate their cost using the SAH in parallel. Each warp pro-
cesses a distinct sub-range of a task’s triangles from the in-
dex array and each thread computes their position with re-
spect to one of the candidate planes. Then the number of
triangles to the left and to the right of the splitting plane, as
well as the bounding boxes are atomically updated in global
memory. The warp that has finished its work last loads these
data from the global memory and chooses the best splitting
plane. As there are exactly 32 (warp size) candidates this
is done in parallel as well. For the spatial median strategy
the splitting plane is evaluated directly when the task is en-
queued in the pool and this phase is skipped.

Partition. In this phase the triangles are divided into the
left and right subsets based on the position of their centroid
to the splitting plane. The method reads 32 consecutive tri-
angles from the input index array and appends left triangles
to the start of the output range and prepends right triangles
to the end of the output range. Since the order of triangles in
the left and right subsets is not important they can be written
in arbitrary order, in our case the write offset is computed by
atomicAdd to the start of the range and atomicSub to the end
of the range. This atomic operation is done by a single thread
in the warp and the returned value is used by all threads of
the warp to compute their write offset using prefix scan. To
prevent overwriting the input range, a new output array has
to be used. We are using two triangle index arrays with each
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task holding a pointer to either of the two arrays with the
valid data.

AABB. Segmented parallel reduction is computed on the
range in the triangle index array. The bounding boxes for
the triangle ranges corresponding to left and right triangle
subsets are computed using double-buffered array for stor-
ing the reduction tree. The computation requires log2(#tris)
steps [HSO07]. This phase is only needed for the median
splitting as the SAH evaluation already gives us the bound-
ing boxes.

FullSAH. When the number of triangles in a task drops
bellow the warp size it is possible to process the task more
efficiently. In such a case we move it to a distinct phase that
builds its subtree in one step using a single warp. The sub-
tree is built using a full SAH computation that requires trian-
gle sorting in all three axes. To make this operation efficient
all the data are stored in registers and shared between the
threads of a warp using the shuffle instruction introduced in
the Kepler generation of NVIDIA GPUs.

4.2. Handling Tasks

Since the algorithm subdivides the current data range into
disjoint subsets there are no data dependencies among dif-
ferent tasks and the tasks can be processed fully in parallel.

The two child tasks are created by the last phase, more
precisely at the last step of the AABB phase for the spatial
median splitting or Partition phase for the SAH based split-
ting. The algorithm first checks whether the termination cri-
teria are met for the given subset of triangles. If this is the
case (the number of triangles is below a threshold, a maxi-
mum depth is reached or the SAH termination takes place),
a BVH leaf is created. Otherwise, a new task is stored to the
task pool and it is initiated to the SplitPlane phase. When
creating new tasks the method reuses the task pool entry for
the current task and then it searches for an empty spot in the
task pool to allocate the other child task.

5. Divide-And-Conquer Ray Tracing

In this section we describe the application of our method
to the parallelization of the divide-and-conquer ray trac-
ing algorithm proposed by Mora [Mor11], Keller and
Wächter [WK09] and Áfra [Áfr12]. We first present a brief
overview of this method and describe the phases and steps
needed to cover the method in our framework.

5.1. Algorithm overview

The divide-and-conquer ray tracing is based on an idea of
avoiding the explicit construction of a spatial data structure.
Instead, the method performs a hierarchical computation in
which an implicit spatial subdivision is used and maintained
in an array of indices for both triangles and rays.

The method starts with all scene triangles and the set of
rays to be cast. Then it picks up a splitting plane which sub-
divides the current bounding box into two smaller boxes.
The method then sorts the triangle and ray arrays and recur-
sively evaluates the triangles and rays intersecting one of the
smaller boxes. When the recursion returns it resorts the rays
and triangles to obtain those that intersect the other bound-
ing box and performs recursion. The recursion is terminated
if the number of rays or triangles is below a specified thresh-
old. Then the intersections of rays and triangles are com-
puted using a naive algorithm, computing the intersection
among all pairs of rays and triangles.

While the recursive formulation of this method is simple,
its parallelization is rather involved. The main problem is
that the sets of rays and triangles intersecting the bound-
ing boxes of the implicit spatial subdivision can overlap. We
cannot evaluate all the child tasks in parallel using a single
array of indices since different tasks would compete for sort-
ing the ray and triangle ranges and storing the results. There-
fore, we need to establish dependencies for the computation
and handle them appropriately in the parallel version of the
algorithm.

When a splitting plane is selected for the given bounding
box all rays and triangles associated with the given task are
classified as either lying left, right, or straddling the split-
ting plane. We aim to create child tasks which would cover
all sub-ranges at which an intersection of rays and triangles
can happen. As we have three ranges for both rays and trian-
gles we obtain nine pairs of different ray/triangle ranges to
process. Out of the nine pairs for two pairs of ranges no in-
tersection can happen: (1) triangles lying left of the splitting
plane and rays lying right of the plane and (2) triangles lying
right of the plane and rays lying left of the plane. For the
remaining seven range pairs we create child tasks and pro-
ceed with the computation. The subdivision into child tasks
is illustrated in Figure 3.
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Figure 3: Matrix representing a subdivision of the task into
its child tasks for the divide-and-conquer ray tracing.

There are clear computation dependencies among the
child tasks shown in Figure 3: the tasks cannot be executed
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simultaneously if they share some triangle or ray data (they
are in the same row or column). There are several ways to
execute and synchronize the tasks in order to avoid different
tasks competing for the access to the same data. For exam-
ple, the execution of the tasks can proceed as follows. We
first activate three independent tasks T1, T4, and T7. Tasks
T2 and T3 wait for execution as they depend on finalizing T1
and T4. Task T5 depends on T3 and T7 and task T6 depends
on T2 and T7. More details about the task dependencies will
be discussed in Section 5.3.

5.2. Defining Phases and Steps

For the divide-and-conquer ray tracing there are two types
of tasks that can be created in the task pool: the intersection
tasks and the subdivision tasks. The intersection task con-
sists of one step with a number of work chunks which are
set in a way that each warp processes 32 ray-triangle inter-
sections in parallel (one intersection per thread). The closest
intersection for each ray, if any, is then written to the global
memory. Note that our implementation does not explicitly
identify the type of the task. Instead for the intersection task
we initiate it into a phase which implies a different task type
(intersection phase).

The subdivision task is more complex. It consists of four
phases that are computed sequentially (see Figure 4). Some
of these phases are only a minor modification of the phases
described for the BVH construction in Section 4.1. Since the
rays are divided into four groups: left, straddling, right and
clipped and triangles into three groups: left, straddling and
right, the partition phase is executed twice, each time with
a different pivot. Below we describe these phases in more
detail.

SplitPlane. Again we support two splitting strategies:
spatial median and cost model based splitting. A different
cost model than SAH is used which is explained in this para-
graph. Instead of using the SAH or a spatial median as pro-
posed by Mora we use the Ray Distribution Heuristic (RDH)
cost model by Bittner and Havran [BH09] which also takes
the distribution of rays into account and achieves higher per-
formance. The termination criteria are derived using this cost
model; the intersection task is created when

#tris ·#rays ·CINT ERS < (#tris+#rays) ·CSORT , (2)

where CINT ERS is the expected cost for one ray-triangle in-
tersection and CSORT is the expected cost for one sorting op-
eration. We use 32 candidate planes that cover all three axes.
The number of candidates is the same in each axis and the
candidate positions are uniformly distributed. We do not use
all triangles and rays associated with the given task for the
evaluation of cost, but only their smaller subsets. The num-
ber of triangle samples NT and ray samples NR are computed
as: NT =

√
#tris, NR =

√
#rays. The median splitting strat-

egy is the same as for the BVH construction. Either strategy,
this phase needs only one step.

Partition1. The partition is computed in parallel on both
ray and triangle index arrays and runs in a single step.
During the ray classification the rays that do not hit the
bounding box of the current node are marked as clipped.
These rays are treated as lying to the right of the splitting
plane in this phase. Other than that this phase is exactly the
same as the Partition phase in building BVH. As the re-
sult of this operation the rays are divided into two groups:
left+straddling versus right+clipped and triangles are di-
vided into left+straddling versus right. Also the sizes of the
groups are known afterwards.

Partition2. This phase is done the same way as Partition1
but for two ranges (the left+straddling and right[+clipped])
in parallel. After this phase the task’s ray range is fully
sorted into left, straddling, right, and clipped rays and trian-
gle range into left, straddling, and right ranges with respect
to the selected splitting plane.

AABB. This phase works similarly as for the BVH con-
struction and requires log2(#tris) steps. The only difference
is that we have to compute three new bounding boxes instead
of two, since we compute the bounding box of the triangles
straddling the splitting plane (tasks T2, T4, and T6).

5.3. Handling Tasks

As mentioned in Section 5.1 the child tasks resulting from
the subdivision of a given task have certain dependencies
and cannot be processed fully independently. Certain groups
of child tasks are, however, independent. For the divide-
and-conquer ray tracing we can formalize the dependencies
among the tasks in a way that each task is responsible for ac-
tivating at most two other dependent tasks. Initially we mark
three child tasks as active and the remaining four tasks wait
for being activated. Note that some of the child tasks need to
inherit the activation pointers of the task being subdivided,
as some other tasks may depend on it.

We propose to use the following subdivision into three
independent task groups: (T1, T4, T7), (T2, T3), (T5, T6),
which implies the following dependencies (TX→TY: TX ac-
tivates TY, i.e. TY depends on TX):

• T1→T2, T1→T3,
• T4→T2, T4→T3,
• T7→T5, T7→T6,
• T3→T5,
• T2→T6,
• T5→P1, T5→P2,
• T6→P1, T6→P2,

where P1 and P2 are the dependencies inherited from the
parent task. A task TY which should be activated by task
TX has to be inserted first into the task pool. This is due to
the fact that the task TX needs to know the index of the entry
for the task TY in the task pool.

When an active task finishes, it updates the task header
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Figure 4: Overview of the task phases and steps for the divide-and-conquer ray tracing algorithm.

array for the dependent tasks. If this was the last dependence
for that task the active task activates the dependent task by
setting its entry in the header array to the number of its un-
finished work chunks.

Often some of the child tasks T1-7 contain no rays or tri-
angles in which case it is useless to add them into the pool.
To prevent this the division of tasks into groups is defined
by a look-up table. This table is queried when a parent task
is divided into its child tasks. The index into the table is a
binary array flag describing which ranges (left, right, strad-
dling) are empty and which are nonempty. The table contains
the number of child tasks to generate, number of child tasks
in the last dependency group, the order in which the child
tasks should be added into the task pool, the dependencies
among the child tasks and the activity flag for each child
task.

6. Results

We have implemented the proposed framework in C++ and
CUDA [NBGS08]. For testing we have used a PC with In-
tel Core i7-2600, 16GB of RAM and NVIDIA GeForce
GTX 680 running on Windows 7 64-bit. We have used two
types of scenes for testing, individual objects and more com-
plex architectural scenes. The images for the test scenes are
shown in Figure 5.

6.1. Constructing BVHs

First, we tested the time for building BVHs using the paral-
lel algorithm described in Section 4 and the traversal perfor-
mance of these BVHs. We used three different ray distribu-
tions: primary rays, incoherent rays corresponding to ambi-
ent occlusion (AO) and diffuse rays shot from the hit points
of the primary rays (seven AO or diffuse rays per primary
ray). For reporting the SAH cost of the BVH we used the
following traversal and intersection costs: ct = 3, ci = 2.

In order to show the quality of our method we compare
it to our implementation of the state-of-the-art method of

Garanzha et al. [GPM11]. According to the original paper
we are using 30bit Morton codes of the triangle centroids,
where 30− 3k most significant bits are used for creating
clusters of triangles falling inside the same voxel of the hy-
pothetical grid. These clusters are the leaves of the top part
of the tree built with SAH. The bottom part of the tree (each
cluster) is built with fast HLBVH method using the least sig-
nificant 3k bits of the Morton codes. This means that up to
3k bottom levels of the BVH are built using HLBVH (the
constant k relates to constant m used in the original paper in
this way: k = 10−m). We denote the method with k = 10 as
HLBV HM because it builds the entire tree with median split-
ting. Since the behaviour of the HLBVH method is strongly
dependent on the number of bits used, we are always re-
porting the value of k. In the results we are using maximum
of four triangles per leaf as termination criteria. The SAH
termination cannot be used in this method as the SAH part
of the tree is always built down to a single cluster per leaf
and during the HLBVH construction bounding boxes are not
known.

Our implementation of the HLBVH method does not fea-
ture multiple GPU queues mentioned in the original paper
and has moderately slower build times. Nevertheless, the
traversal performance of the HLBVH method should not
be impacted and may be even superior as we are using the
traversal kernels of Aila and Laine [AL09] with compact
BVH layout and Woop triangle representation [Woo04].

For our method a leaf is created when the number of tri-
angles in a node is four or less or when the SAH termina-
tion criteria are met. The building and traversal results are
given in Table 1 where the HLBVH method with k = 4 (as
proposed by Garanzha et al.) is compared to our method.
The HLBVH build times start to be lower than the ones of
our method for scene Crytek Sponza, for smaller scenes our
method is in fact faster. This can be explained by the differ-
ent complexity of the two algorithms: after sorting the Mor-
ton codes the complexity of HLBVH build is O(N), while
our method following the standard top-down scheme ex-
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Figure 5: Snapshots for more complex architectural models: Sponza, Sibenik Cathedral, Fairy Forest, Crytek Sponza, Confer-
ence, Soda Hall, San Miguel, Power Plant, and for single geometric object models: Happy Buddha, Blade, Hairball rendered
using diffuse rays.

Scene HLBV H4 OurBV H
TGPU TCPU R TGPU TCPU R
[ms] [ms] [−] [ms] [ms] [−]

Sponza 7.5 26.5 0.22 10.5 13.5 0.43
Sibenik Cathedral 6.9 27.3 0.20 12.9 13.7 0.48
Fairy Forest 11.2 27.0 0.29 19.7 14.6 0.57
Crytek Sponza 11.7 28.9 0.29 27.8 14.4 0.65
Conference 10.6 27.3 0.28 29.6 14.6 0.66
Happy Buddha 37.4 34.7 0.51 113.4 20.1 0.84
Blade 54.9 36.9 0.59 173.8 20.7 0.89
Soda Hall 56.0 37.8 0.59 228.7 20.5 0.91
Hairball 103.8 47.9 0.68 298.9 24.8 0.92
San Miguel 179.3 50.1 0.78 911.6 39.4 0.95
Power Plant 252.7 52.9 0.82 1452.1 49.0 0.96

Table 2: Absolute GPU kernel time (TGPU ), CPU man-
agement time (TCPU ) and relative CPU idle time (R =

TGPU
TGPU+TCPU

, higher is better).

hibits O(N logN) complexity, but lower CPU management
overhead. The traversal performance, on the other hand, is
almost always higher for our method. This is not only be-
cause SAH splitting is used down to the leaves but also be-
cause the SAH evaluation in the top part of the tree is al-
lowed to separate triangles that would fall into a single clus-
ter for the HLBVH method.

Given that our method typically has slower build but faster
traversal there is a crossover point where using our method
leads to a lower rendering time. These points are evaluated
in Table 3. Notice that on scenes with uniform size and
distribution of triangles, such as Happy Buddha and Blade
the tree quality cannot be improved much by the SAH and
the crossover point lies very far (> 100MRays). We believe
the cases where the traversal for our method is slower are
caused by the SAH being only approximate measure of per-
formance.

The behaviour of the HLBVH method with varying num-
ber of bits used, given by the parameter k is shown in Ta-
ble 4. Generally, the build times decrease with increasing
value of k, while the traversal performance also decreases.
This is in agreement with the increase of the SAH cost as
more levels are built with the HLBVH. For smaller scenes
the relations are not as straightforward, since the clusteri-
zation for low values of k may force creation of very small
leaves, which hampers traversal performance.

Table 2 shows the build times on both the GPU and the
CPU, and the relative GPU utility R. The value of R shows
how much of the time needed for the data structure build is
spent on the GPU in relation to the total build time. Note
that value (1−R) represents the time spent by copying the
data to the GPU and managing the computation. With in-
creasing build times, this management overhead is relatively
less significant but still important when targeting realtime
or interactive applications. Our method clearly features less
CPU management overhead. Moreover, the CPU can per-
form some meaningful computations during the entire run
of our kernel, while for the standard method the intervals
between kernel launches are very short and the CPU must
frequently interrupt its computation to keep the GPU busy.

6.2. Divide-And-Conquer Ray Tracing

Second, we have tested the divide-and-conquer ray tracing
described in Section 5. We provide results for the spatial me-
dian subdivision and for the cost model based on the RDH
compared to HLBVH with k = 4 and our BVH for tracing
collision detection rays.

For the collision detection test we assume that the scene
contains a number of moving agents (corresponding for
example to characters in a game). The movement of the
agents is given by randomly selected line segments within
the bounding box of the scene. Next, we take 20 equidistant
points on each segment that we use as the agents’ positions
in a simulation consisting of 20 frames. For each frame we
shoot 128 ray segments into the sphere around the agents’
position, where the length of the ray segment is the distance
between the current position of the agent and the next one.
The approximation of collision detection between moving
agents and the scene is then computed as the intersections
of the ray segments with the scene. Note, that since the line
segments are random, the agent speed (corresponding to the
length of the ray segments) varies among the agents.

Figure 7 shows the comparison of the four introduced
methods for computing the intersections of the colli-
sion detection rays. The number of agents is denoted by
#agents. While the computational times for the HLBV H4
and OurBV H are dominated by the build time, the computa-
tional time of the divide-and-conquer methods (DACRT ) is
dominated by the number and length of rays. RDH is usu-
ally faster than the median splitting and more so on com-
plex scenes, which comes from the extra knowledge during
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SAH cost [-] Build [ms] Trace performance [MRays/s]
Primary Ambient Occlusion Diffuse

Scene #tris HLBV H4 OurBV H HLBV H4 OurBV H HLBV H4 OurBV H HLBV H4 OurBV H HLBV H4 OurBV H
Sponza 76k 188.6 200.8 34.0 24.0 306.5 259.5 182.4 173.4 54.4 51.2
Sibenik Cathedral 80k 80.6 75.7 34.2 26.6 203.0 231.2 167.7 197.2 42.0 43.2
Fairy Forest 174k 82.6 82.5 38.2 34.3 95.5 167.9 63.7 78.3 46.5 54.9
Crytek Sponza 262k 199.9 193.0 40.6 42.2 159.4 172.7 84.4 87.0 36.3 34.4
Conference 282k 122.3 117.5 37.9 44.2 274.1 303.4 134.0 150.4 63.6 70.2
Happy Buddha 1,087k 194.9 172.1 72.1 133.5 266.9 332.6 291.5 335.4 252.5 288.8
Blade 1,765k 222.6 201.7 91.8 194.5 266.5 323.8 326.9 365.4 243.9 272.3
Soda Hall 2,169k 212.9 203.9 93.8 249.2 279.5 343.5 299.1 324.2 88.3 99.8
Hairball 2,880k 1352.4 1145.1 151.7 323.7 38.8 53.6 36.8 47.3 30.4 39.5
San Miguel 7,880k 215.4 194.0 229.4 951.0 35.9 60.3 25.0 33.3 13.0 18.2
Power Plant 12,748k 171.3 123.4 305.6 1501.1 26.3 55.6 77.1 122.9 9.1 13.7
average - - - 102.7 320.4 84.2 129.7 80.7 100.3 31.9 40.2

Table 1: Results for HLBVH with k = 4 compared to our SAH BVH building algorithm. For the primary rays 1M rays are shot
while for the Ambient Occlusion and Diffuse rays 7M rays are shot. The average MRays/s are computed from averaged ray
tracing times.

Scene C1 C4 CM

Nr R Nr R Nr R
[MRays] [−] [MRays] [−] [MRays] [−]

Sponza + 1.19 10.08 0.95 2.12 1.42
Sibenik Cathedral + 1.00 + 1.03 1.56 1.74
Fairy Forest + 1.24 + 1.17 4.23 1.26
Crytek Sponza 74.99 0.98 - 0.95 2.76 1.40
Conference + 1.18 5.61 1.10 3.37 1.65
Happy Buddha + 1.07 141.17 1.13 150.19 1.18
Blade + 1.02 235.86 1.10 230.27 1.13
Soda Hall 43.54 1.17 120.18 1.12 22.90 1.76
Hairball + 1.28 28.67 1.29 37.02 1.30
San Miguel 26.12 1.43 36.13 1.39 18.07 1.80
Power Plant 56.04 1.29 35.54 1.49 17.31 2.03
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Table 3 & Figure 6: The table shows the crossover of the time to image including build times for our BVH method and the
HLBVH methods with various number of bits used for the HLBVH. The crossover point is computed as an intersection of lines
given by two points: (0, Tb) and (128, Ti), where the first coordinate is the number of diffuse samples per pixel (for 1MPixel
image), Tb is the build time of the BVH and Ti is the time to image (build time + primary rays time + diffuse rays time). C1 gives
the crossover point with HLBV H1, similarly C4 gives the crossover point with the method k = 4 and CM is the crossover point
with the fully median built HLBV H. Nr columns give the crossover points; the number of rays for which both methods have the
same time to image. R columns give the ratio of traversal times for HLBVH and our method. The + sign is for cases where the
time to image for our method is always lower than for the HLBVH method and the − sign vice versa. The right figure shows
our BVH method compared to all of the HLBVH methods on the Power Plant model.

Stat HLBV H1 HLBV H2 HLBV H3 HLBV H4 HLBV H5 HLBV H6 HLBV H7 HLBV H8 HLBV H9 HLBV HM

SAH cost [-] 163.3 161.6 165.1 171.3 176.2 179.8 181.5 181.2 183.3 184.4
Build GPU [ms] 310.2 283.0 259.9 252.7 252.9 254.7 253.6 262.0 261.0 239.0
Build total [ms] 382.0 345.7 317.2 305.6 303.5 303.3 299.1 307.0 303.2 331.2
Primary [MRays/s] 36.5 40.7 29.5 26.3 23.9 26.7 22.4 23.1 14.9 13.9
Ambient Occlusion [MRays/s] 95.1 93.7 85.4 77.1 73.6 70.6 70.8 68.4 69.0 71.1
Diffuse [MRays/s] 10.5 10.7 10.4 9.1 8.5 8.8 8.6 8.7 7.2 6.8

Table 4: Comparison of the HLBVH method based on the value of k for the Power Plant model. For the primary rays 1M rays
are shot while for the Ambient Occlusion and Diffuse rays 7M rays are shot.
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the node splitting. The constants used in the formula decid-
ing when to stop the subdivision and invoke the intersection
tasks defined in Equation 2 were set as follows: CINT ERS = 1,
CSORT = 80. An intersection task is also invoked when the
number of rays drops below 32 or the number of triangles
drops below 16.

The collision detection rays were chosen because they
have desirable properties for our parallel divide-and-conquer
ray tracer: they are relatively short compared to the scene di-
agonal and relatively few rays are sufficient to compute the
solution. Keeping the ray count low is important since the al-
gorithm also needs to partition the rays, and global memory
accesses are not cached in L1 in current generations of GPU,
leading to excessive memory bus traffic. The ray length in-
fluences the dependencies between individual tasks. Since
the introduction of dependent task limits the available par-
allelism and there are more dependencies with increasing
depth of tasks the ray length directly influences the amount
of parallelism and, thus, the performance of the method. For
many infinitely long rays such as the diffuse rays the method
is actually slower than when computed on the CPU.

7. Conclusion

We have proposed a novel method for massively parallel
processing in the context of hierarchical algorithms dealing
with 3D geometrical data. Our method runs entirely on the
GPU and requires no management of the computation from
the CPU side. We propose a methodology of subdividing a
given hierarchical algorithm into tasks, phases, steps, and
work chunks in order to map the algorithm to the parallel
framework. We show two applications of our method: con-
struction of the BVH and divide-and-conquer ray tracing on
the GPU. We evaluated two proof of concept applications,
which indicate that our approach has a good potential for
massive parallelization of complex hierarchical problems.

In the future we would like to apply our method to other
problems in computer graphics such as SBVH/kd-tree con-
struction or GPU path tracing.
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Figure 7: Comparison of various methods for computing collision detection rays on the Sponza and Power Plant models in
dependence on the number of moving agents. The computation times are for fully computing (build+trace) one batch of rays
and are averaged over 20 batches simulating agent’s movement in the scene. Each agent is checked for collision with the scene
using 128 rays uniformly shot into the sphere at the agents’ positions and the ray length is set as the distance between current
position and the position in the next step.
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