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Abstract

In the scopeof renderingcomplex modelswith high
depthcompleity, it is of greatimportanceto designoutput-
sensitvealgorithms,i.e., algorithmswith thetimecomple-
ity proportionalto the numberof visible graphic primitives
in the resultingimage. In this paperan algorithm allow-
ing efficientculling of theinvisible portion of the rendeed
modelis presented Our appmoadc usesa spatial hierarchy
to representhetopology of the model. For a currentview-
point a setof polygonaloccludersis determinedthat are
usedto build the occlusiontree In the occlusiontree oc-
clusionvolumesof the selectedbccludes are meged. Vis-
ibility from the viewpointis determinedby processinghe
spatialhierarchy andclassifyingthevisibility of its regions.
In this processthe occlusiontreeis usedto determinethe
viewpoint-to-iegion visibility efficiently The algorithmis
well-suitedfor complex modelswhete large occludes are
present.

Keywords: visibility, occlusionculling, spatial partition-
ing, realtime renderingyirtual reality, BSP? .

1. Intr oduction

Visibility determinations animportanttaskin computer
graphics.The goal of visibility determinationalsoknown
ashiddensurfaceremoval) is to efficientlydeterminevis-
ible partsof the model, given a viewpoint and a viewing
direction.
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Many algorithmsto solve the hidden surface removal
have beendeveloped,two of them mostcommonlyused.
TheBinary SpacePartitioning (BSP)preseresthetopolog-
icalinformationaboutthemodelin abinarytree[5]. It isan
exampleof analgorithmresolvingvisibility in objectspace.
Knowing theviewpoint, renderingordercanbe determined
by appropriatetraversal of the BSP tree. The z-tuffer is
an image-spacerientedalgorithm, which solvesthe visi-
bility problemfor eachpixel of the screen.This is simple
to implementin hardware,thuscommonlyusedin today's
renderingsystems. Both thesealgorithmsare not output-
sensitive sincethey may spendsignificantime processing
partsof themodelactuallyinvisible.

To achieve the output-sensitiity of the visibility algo-
rithm we exploit the idea of visibility culling. Visibility
culling is usedto quickly determinea subsetof occluded
objects. Theseneednot be consideredor exact visibility
determinatior(e.g. z-buffer rendering). The useof occlu-
sion treesis a novel approachin the context of visibility
culling. In the next two sectionawork relatedto this paper
is presentedollowedby anoverview of our algorithm.

1.1 RelatedWork

Somealgorithmsattemptto solve the visibility prob-
lem by building datastructuresllowing fastexactvisibility
gueries.For example,the aspecigraph[13] subdvidesthe
spaceinto O(n?) regionswherevisibility doesnot change
qualitatvely. For eachsuchregion the visible portion of
themodelcanbe determinedUnfortunatelythe high com-
plexity restrictsthis approachto modelscontainingonly
a few objects. RecentlyDurandet al. [4] introducedthe
3D visibility comple, which captureghevisibility in line-
space Theauthorsclaim thatits worstcasespacecomplex-
ity O(n*) is muchbetterin practice. However, its contri-
bution to therealtime renderingof complex modelsseems
unclear

The conservativevisibility identifieghe supersetf the
visible portion of the model. Only this supersets usedto
solve exactvisibility. Often,this canbe carriedoutusinga



hardwarez-buffer.

Teller and Sequin [16, 17] use the conceptof poten-
tially visible sets(PVS). Potentiallyvisible regionsarede-
terminedfor eachregion of the spatial subdvision using
a region-to-region visibility throughthe setof transparent
polygonalportals Anotheralgorithmbasedon PVS was
introducedby Luebke and Geogesin [11]. Thesemeth-
ods achieve good performancef appliedto staticdensely
occludedervironmentswith a particularstructure,suchas
modelsof architecturaliinteriors. However, for lessstruc-
tured modelsthey canfacea combinatorialexplosion of
complity. Yagel and Ray [19] presentan algorithm,
which usesaregular spatialsubdvision. Althoughit is not
sensitve to the structureof the modelin termsof complex-
ity, its efficieng canbe significantijjower comparedvith
theportalbasednethods.

Recently algorithmsbasedn theideaof fasthierarchi-
cal visibility culling were published. The hierarchicalz-
buffer [8] algorithmusesa z-pyramid to represenbcclu-
sion. It exploits spatial coherenceby processingan ob-
jecthierarchythroughthe z-pyramid. Althoughit is a very
promisingapproachf usinghardwareresourcesthe simu-
lationof thez-pyramidin softwarewould causea significant
overhead Similar methodswhich useanimagespacerep-
resentatiorof the selectedoccluders,appearedn [20, 7].
While takingadwantageof hardwarerenderingthesemeth-
odscansuffer if therenderingsupportis insufficient.

The work presentedn this paperis closely relatedto
objectspaceocclusionculling algorithmspresentedn [9]
and[3]. In [9] ashadav frustumis constructedor eachof
the selectedbccluders. Thesefrustaare usedto detectthe
invisible regionsof the spatialhierarchy A possibledraw-
backwith this methodis the independentisibility testing
againsteachfrustum. Therefore the occlusioncausedoy
multiple occluderss notdiscovered.

1.2 Algorithm Overview

The algorithmpresenteciddressethe problemof con-
senative visibility from a point (viewpoint). It identifies
supersebf objectsvisible from the viewpoint. For com-
plex models,where mary objectsare not visible from a
givenviewpoint,thissuperseis only afractionof thewhole
model. The exactvisibility is solved by simply rendering
the supersef visible objectsusingthe z-buffer algorithm.
Assumewe areableto determinevisibility of aregionfrom
the viewpoint. This visibility reachesne of the following
states:fully visible, partially visible invisible We canap-
ply the visibility testto all boundingvolumesof objectsin
the model. The superseto be consideredor exact visi-
bility consistssolely of objectsclassifiedsfully visible or
partiallyvisible. Neverthelessfor acomplex modelthevis-
ibility testingof all objectswould beverytime consuming.

We can exploit the spatial coherenceof visibility by
groupingcloseobjectstogether Applying this steprecur
sively, we canbuild a spatialhierarchy keepinglinks to the
objectsin its leaf noded. Eachnodeof the hierarchycor-
responddo certainspatialregion. Startingfrom the root
nodeof the hierarchy visibility of eachnodecanbe deter
mined as follows: If a nodeis found fully visible, all of
its descendantarefully visible (assuminghat the spatial
hierarchymeetscertaincriteria, asit will be mentionedn
Section2.2). Similarly, if a nodeis found invisible, all its
childrenareinvisible. Descendantsf nodesclassifieds
partiallyvisible mustbefurthertestedo refingheir visibil-
ity. Whenthevisibility of all leavesis knawn, objectsfrom
fully visible and partially visible leaves are gatheredand
renderedisinga low-level exactvisibility solver (hardware
z-huffer).

viewpoint occluder supporting

plane

shadow planes

Figure 1. Occlusion volume of apolygon. The
occlusion volume is formed by three shadow
planes and the suppor ting plane of the poly-
gon.

It remainsto shav how to determinethe visibility of a
region from the viewpoint. It is oftenthe casethatmostof
theocclusionis dueto afew largeobjects(occludersiklose
to the viewpoint. In this paperwe requirethe occluderso
becornvex polygons.Assumewe areableto identify several
suchoccludersfor eachviewpoint. For eachpolygonthe
occlusionvolume (frustum)canbe determined.t is anin-
tersectiorof (e+1)-half-spaceswheree is numberof edges
of the polygon. The half-spacesreformedby planespass-
ing throughthe viewpoint andthe particularedgeandthe
supportingplaneof the polygon(seeFigure1). We memge
theseocclusionvolumesinto a unifieddatastructure— the

2Suchgroupingcorrespondso so calledbottom-upapproach Hereit
is usedfor explanationpurposes.In our implementatiorthe hierarchyis
actuallybuilt in top-davn fashionasmentionedn Section2.2.



occlusiontree thatis a variantof the shadowolumeBSP
treeintroducedby ChinandFeiner[2].

We shaw thatthevisibility of aclosedpolyhedralregion
canbedeterminedby combiningvisibility statesof itsfaces.
Assuminghefacesarecorvex polygonstheseestsareper
formed efficientlyusing the occlusiontree. In particular
the regionsof our spatialhierarchyare axis-alignedooxes
(parallelepipeds}hatareclosedpolyhedrawith six convex
faces We alsopresentamodifiedcclusiontree(MOBSP).
With this datastructurevisibility of a region canbe estab-
lishedwithouttestingthevisibility of its boundariegfaces).
The only operationinvolvedin the visibility testis the de-
terminationof the positionof a region relative to a plane.
Although this methodcan identify an invisible region as
partially visible (with respecto the selectedccluders)we
obsenedits goodperformanceén practice.

The paperis organizedas follows: Section2 describes
preprocessingf the model that includes the algorithm
building thespatialhierarchy Theoccluderselectioris out-
lined in Section3. In Section4 we discusshe motivation
for building aunifieddatastructureepresentinghememged
occlusionvolumesof the selectedbccluders.In Section5
the occlusiontree and algorithmsof its constructionand
traversalarepresentedThemodifiedbcclusiortreeis intro-
ducedin Section6. In Section7 we presentesultsobtained
onseveraldifferentmodelsanddiscusghebehaiour of the
algorithm.Finally, Section8 concludesandin Section9 we
pointoutsometopicsfor futurework.

2. Preprocessing

2.1 Occluder Identification

Previous method=of hierarchicabisibility culling [3, 9]

attemptto createan occluderdatabasein preprocessing.

They subdvide the spaceinto a setof non-overlappingre-
gions(cells). Within eachcell a certainnumberof polygo-
nal occludersaredeterminedandstored.

We do not attemptto build suchoccluderdatabaseln-
stead,we only identify and mark potentialoccluderpoly-
gons. In our implementationtheseare identifiedtaking
adwantageof the knowledgeof the modelstructure. Pre-
processingandvisibility culling have beenappliedusually
on modelsof architecturalinteriors. A typical suchmodel
consistsof walls, ceilings,floorsanddetailedobjects. All
polygonsbelongingto detailedobjects(flavers,chairs,...)
areconsideredion-occluding.All remainingpolygonsare
marked as potential occluders(assumingtheseare walls,
ceilingsandfloors). Thesepotentialoccludersare usedin
thealgorithmof dynamicoccluderselection(Section3).

2.2 Spatial Hierar chy

As we alreadymentionedthe hierarchicalvisibility al-
gorithmassumeshata spatialhierarchyis built overall ob-
jectsof the model. In the caseof staticsceneghis canbe
donein preprocessingThereis animportantrequirement
imposedon the hierarchy Regions correspondingo de-
scendantsf arny nodeof the hierarchymustbe completely
containedn theregion correspondindo thatnode. Other
wise,noassumptionsf thevisibility of thenodesdescen-
dantscouldbemadebasedn knowledgeof thevisibility of
their parent.In previouswork boundingvolumehierarchies
andhierarchicabkpatialsubdvisions(octree BSPtree)were
used.

We use an axis-alignedBSP tree [10] (sometimegre-
ferred to as kD-tree), becauseof its high flibility and
simplicity of building andtraversal. This selectionimplies
thattheregionscorrespondingo nodesof the hierarchyare
parallelepipedsNaturally, the BSPtreemeetsthe criterion
mentionedabove.

The mostimportantstepduring the building of the BSP
treeis the choiceof the splitting plane. This planesubdi-
videsthe currentnodeinto two descendantsObjectsare
distributedinto the descendantaccordingto their position
to thesplitting plane.Initially theroot nodeof theBSPtree
correspondso the boundingbox of the model. Applying
the algorithmrecursvely, thewhole BSPtreeis built. The
recursionis terminatedwhenthe numberof objectsin the
currentnodefalls underthe specifiethresholdor the spec-
ifiedmaximumdepthof the hierarchyis reached.

In certaincasesanobjectlies on both sidesof the plane
(i.e. in both positve and negative half-spacesnducedby
the plane). Suchobjectsmustbe “duplicated”in both new
nodes.We wantthe objectduplicationsn leaf nodesof the
treeto beminimizedwhile keepingawell-balancedree.To
achierethisgoalthefollowing strateyy of thesplitting plane
selectionwasused:

For the currentnodewe identify theaxiswith thelargest
extentof the parallelepipedorrespondingo the node. We
searchfor a splitting plane perpendicularto the selected
axis. We identify boundarie®f objectboundingboxeslo-
catedwithin a certaindistancefrom the spatialmedianof
thenodesparallelepipedEachidentifiedoundaryinduces
oneboundaryplane We evaluatea numberof objectssplit
by eachboundaryplane.Theboundaryplanewith thelow-
estnumberof split objectsis selectedasthe splitting plane.

The binary tree structurecanbe easilyusedto simulate
irregular quad-treesandoctreesin the scopeof the hierar
chicalvisibility algorithm.



3. Dynamic Occluder Selection

The goal of the dynamicoccluderselectionis to obtain
a specifiechumberof occluders given a viewpoint anda
viewing direction. The algorithmusesthe area-anglemea-
sure[3] to estimatethe quality of an occluder The area-
angleis expresseds:

M= M (1)
ID||?
where A is the areaof the occluder N denotesthe oc-
cludernormal,V theviewing directionand D corresponds
to t_hevectgrfrom theviewpointto thecenterf theoccluder
(INIF= V]I =1).

As mentionedn the previous section,the potentialoc-
cludersare identifiedn preprocessing.The dynamicoc-
cluderselectionis performedaftereachchangeof theview-
pointortheviewing direction. Thesetof occludersbtained
in the currentframeis usedto performvisibility culling in
thenext frame.

Thedynamicoccluderselectiorproceedsisfollows: We
identify all visible or partially visible leavesof the hierar
chy, whosecentersare locatedwithin a certaindistance\
of the viewpoint. For eachpotentialoccluderreferredin
theseleavesthe area-anglés computed. Thesevaluesare
usedto selectk occluderswith the largestarea-anglethat
form the desiredoccludersetfor the next renderingrame.

The distanceA hasan impacton the time spentby the
occluderselectionIn ourimplementatiorit is amultiple of
the obserer’s stepsize(A = 100 - step). The numberof
selectedbccluders(k) influenceshe size of the occlusion
tree,the time of visibility determinatioraswell asits effi-
cieng. We have usedk between6 and256. More details
aboutthis selectionaregivenin Section?.

4. Representationof OcclusionInformation

In this sectionwe discusghecrucial partof thevisibility
culling algorithm— representatiof the occlusioncaused
by a setof corvex polygonaloccludersfor a given view-
point. In mary casedreatingthe occlusionvolumessepa-
ratelyidentifiesheinvisible region aspartially visible.

Unlike previous methodsusedin the fieldof visibility
culling, we build an additionalobjectspacedatastructure
for the currentviewpoint. It efficientlymemgesthe occlu-
sion volumesof the selectedbccluders. This allows us to
discover occlusioncauseddy multiple connectedccluders
andevenoccludersompletelydisjunctin space.

It is obviousthatmeiging occlusionvolumesrequiresan
additionaltime to build the appropriatedatastructure.We
obsenedthatby exploiting the spatialcoherencef occlud-
ersin this datastructure,the additionaltime is recovered
duringthevisibility queries.

As a basisfor our researchwve adoptedthe conceptof
shadowolumeBSPtrees(SVBSP)introducedby Chinand
Feiner[2]. They usedthe SVBSPfor fastgenerationof
shadaevs castby polygonalobjectsin scenesvith pointlight
sources.

Next we presenta brief overview of the SVBSP data
structureand the algorithm suitablefor the generationof
shadevs. Further we discusshow to adaptthe concept
of SVBSPfor theviewpoint-to-regionvisibility determina-
tion.

4.1 Generation of Shadovswith SVBSP

The SVBSPis a variantof the BSPtreefor representing
polyhedra[12, 18]. It represents union of shadev vol-
umescastby corvex polygons(occluders)facing a point
light source. Eachinternal nodeof the treeis associated
with a shadowplane passingthroughthe light sourceand
anedgeof theoccluder

Thedirectionof theshadav planenormalis usedto de-
terminea half-spacdn which the occluderandits shadov
arelocated. The normalsare orientedso that the shadev
volumeandtheoccluderitself lie in the negative half-space
(back side) of the plane. Eachleaf nodeof the tree cor
respondgo a semi-infinitgoolyhedralcell (frustum). The
leavesareclassifieasin or out A leafis markedasin-leaf
if the correspondingell lies in shadev. Similarly, anout-
leaf indicatesthatthe correspondingell is lit by the light
source.Thusthe shadaev volumeis a unionof all cellscor
respondingo in-leaves. An exampleof the SVBSPtreeis
depictedn Figure2.

Assumethat the polygons (occluders)are orderedin
a front-to-backmannerwith respectto the light source.
We know that farther polygons cannot cast shadevs
on polygons lying closer to the light source. The
SVBSP can be constructedby incrementally processing
the polygonsin the given order The contritution of
one polygon to the SVBSP is determinedas follows:

e Lit fragmentf thepolygonaredetermined.

e The SVBSPis enlaged by shadev volumescastby
thesefragments.

Thelit fragmentsof the polygonare determinedy fil-
teringthepolygondown the SVBSP Thefilterings applied
recursvely oncertainnodesof the SVBSR startingfrom the
root. For the currentnodethe positionof the polygonwith
respecto nodes shadev planeis determined.If the poly-
gonis locatedcompletelyon the backor front side of the
nodes shadaev plane,it is filtereddown the back or front
child of the node,respectiely. Otherwise the polygonis
split by the shadev planeinto two fragments.Thesefrag-
mentsarefiltereddown the both childrenof the node.
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Figure 2. A 2D example of three polygons fac-
ing a point light source and the correspond-
ing SVBSP tree.

Reachindeafnodesasetof corvex polygonalfragments
is obtained. Theseare eitherlit (out-leaves)or shadeved
(in-leaves).In theappropriateut-leavesthetreeis enlaged
by theshadev volumescastby thelit fragmentsFor eachiit
fragmente new nodesareusedto replacethecorresponding
leaf (e is the numberof edgesof the fragment). The algo-
rithm includingshadavs of onepolygoninto the SVBSPis
givenin Figure3.

For shadav generatiorpurposesthe lit and shadaved
fragmentscanbe storedwithin the original polygon. Dur-
ing renderingthe colour of thesefragmentscanbe setac-
cordingly.

The front-to-backorderingof polygonscanbe achieved
by building aBSPtreeandits appropriatdraversal[5]. Al-
ternatiely, thefeudalpriority tree[1] couldbeused.

4.2 Visibility Determination and SVBSP

The SVBSPtreeis a hierarchicaldatastructureallow-
ing fastincrementatieterminatiorof lit andshadaevedfrag-
mentsof scengoolygons.

We will referto the algorithm describedpreviously as
the original SVBSPalgorithm All lit fragmentsobtained
by the original SVBSPalgorithmarevisible from the light
source. Similarly, all fragmentdocatedn shadev areinvis-
ible fromthelight source Fromnow onassumeheposition

Algorithm FilterDown(Node,Polygon,Viewpoint)
begin
if Nodeis leafthen
if Nodeis out-leafthen
replaceNodeby
Occlusion\wlume(PolygonYiewpoint)
else
do nothing
else
caseSplit(Polygon Node.PlaneBack, Front) of
FRONT : (* passthe polygonto thefront subtree?)
FilterDown(Node.FrontChildPolygon,Viewpoint);
BACK : (* passthepolygonto the backsubtree®)
FilterDowvn(Node.BackChildPolygon,Viewpoint);
SPLIT: (* passfragmentdo apropriatesubtrees)
FilterDown(Node.FrontChildFront, Viewpoint)
FilterDown(Node.BackChildBack, Viewpoint);
end
end

Figure 3. Pseudo-code of the algorithm pro-
cessing a polygon through the SVBSP tree.

of thepointlight sourceto beaviewpoint. Insteadof lit and
shadeved,thetermsvisible andinvisible (occludedwill be
usedin thefollowing text.

Assumethe SVBSPis built with respecto the selected
setof occludersandthe currentviewpoint. Givena polyhe-
dralregion (cell) wewantto quickly determinef thisregion
is:

o fully visible,
e partially visible,
e invisible.

We will usethe term visibility algorithm, referringto the
traversalof the SVBSR which appropriatelyclassifieshe
visibility of aregion.

Thedifferencesetweerthe desiredvisibility algorithm
andthe original SVBSPalgorithm can be summarizedas
follows:

e Only selectedbccludersareusedto build the tree. In
thescopeof thevisibility algorithmthetreeis notmod-
ifiedarny more. The original SVBSP algorithm as-
sumesall polygonsto be processe@ndthetreeto be
alwaysupdatedaccordingly

e The subjectof the visibility algorithmis a polyhedral
region, whereasn the original SVBSPalgorithmthe
subjectis acornvex polygon.



e Theregion of which the visibility is determinednay
lie in front of someoccludersHencethefront-to-back
orderingis not satisfieéh thevisibility algorithm.

e Onlyoneof thethreevisibility statesstheresultof the
visibility algorithm. In the original SVBSPalgorithm
the goalis to obtainlit andshadeved fragmentsof a

polygon.

With thesedifferencesn mind, we designedhe concept
of occlusiontrees(OBSP)and appropriatevisibility algo-
rithms(i.e. algorithmsof their traversal).

5. OcclusionTree

An occlusiontreeis a BSPtreebuilt with respecto aset
of occludersanda viewpoint. By relevanttraversalof the
OBSPwe determinevisibility of a polyhedralregion with
respecto the selectedoccluderseither exactly or conser
vatively Consenratively meansthat a region with ary of
its partvisible is never classifie@dsinvisible, but invisible
regionscanbe classifiedspartially visible.

To meetthecriteriamentionedabove we build the OBSP
asfollows: Theselectedccludersareusedto build a BSP
tree. Thistreeis usedto establisithefront-to-backorderof
theoccludersTheoccludersareprocesseth thisorderand
their occlusionvolumesareusedto enlagethe OBSP The
OBSP constructionprocessis essentiallythe sameasthe
oneof SVBSP Additionally, in eachin-leaf we storea link
to a fragmentoccludingthe frustum,which corresponds$o
this leaf. Theselinks areneededn thevisibility algorithm
to determindf apolyhedrontestedor visibility lies behind
theoccluder

It remainsto shawv how to determinevisibility of apoly-
hedralregion usingthe OBSP For a closedpolyhedronit
is sufficientto combinevisibility of its facesappropriately
We assumethat thesefacesare corvex polygons. In the
next sectionwe describenaw to classifyvisibility of acon-
vex polygonusingthe OBSP In Section5.2we presenthe
visibility algorithmfor acorvex polyhedronBoththeseal-
gorithmsclassify the visibility exactly with respectto the
occluderghe OBSPwasbuilt for. Sincetheseoccludersare
only asubsetf all objectsin themodel,thehierarchicalis-
ibility algorithmpresentedatergivesconserativeresults.

5.1 Visibility of Polygon

Thevisibility of apolygoncanbe determinedilteringit
down the occlusiontree. Whena leaf is reachedthe vis-
ibility of the currentfragmentof the polygonis classified.
For out-leavesthe fragmentis fully visible. The visibility
in the in-leavescanreachary of the threepossiblestates,
hence anadditionaltestmustbe applied. This testwill be
explainedlaterin this section.

If thereis no fragmentof the polygonwhichis fully vis-
ible, the polygonis invisible. Similarly, if noinvisible frag-
mentexists, the polygonis fully visible. In all othercases
thepolygonis partially visible with respecto theoccluders
thetreewashuilt for.

Given a polygonthe OBSPis traversedby depthfiist
search (DFS). In eachinternalnodeof the OBSPthe po-
sition of the polygonwith respecto the planereferredin
thenodeis determinedlt is essentiallythe sameprocedure
asthe polygonfilteringin the constructiorof the OBSP If
the polygonlies completelyin front or back of the plane,
the visibility algorithmis appliedon the appropriatechild
of the currentnode. Otherwisethe polygonis split in two
fragmentsandthe algorithmis appliedon bothchildrenus-
ing therelevantfragments.In this casethevisibility states
of the fragmentamustbe combinedto classifyvisibility of
theirunion(seeTablel).

| Fragmen® | FragmenB | AUB |
F F F

| | |
= X =
X P P

Table 1. Combining visibility states of frag-
ments. Abbre viations: | — Invisib le; P — Par-
tially visib le; F — Fully visib le; X — any of the
|,P,F states.

Thus,in eachnodereachedvy the DFSthe visibility of
the correspondingragmentof the polygonis computed.
The visibility of the whole polygoncorrespondso a visi-
bility stateof theroot nodeof the OBSP Neverthelessthe
DFS canbeterminatedvhenerer a fragmentis found par
tially visible. It follows from thefactthatif a fragmentof
the polygonis partially visible, the polygonitself is par
tially visible (seeTable1). This constraintcanaccelerate
thevisibility algorithmsignificantlyThe speedups partic-
ularly remarkabldor large polygonswhich arelikely to be
partially visible.

As already mentioned,the polygon testedfor visibil-
ity neednot lie behindall occluders. Therefore,reaching
an in-leaf node the additionaltest must be applied. We
usethe link to the occludefrfragmentoccludingthe frus-
tum correspondingdo the leaf. The supportingplaneof the
occludeffragmentis usedto establishvisibility of thefrag-
ment, which reachedhe leaf during the DFS. If the frag-
mentis completelyin front of the plane,it is fully visible.
If it is completelyon the backsideof the plane,it is invis-
ible. Otherwise,it lies on both sidesof the planeandit is
partially visible.

Thevisibility algorithmfor apolygonwith respecto the



occlusiontreeis summarizedn Figure4.

Algorithm Visibility(Node, Polygon)
begin
if Nodeis leafthen
if Nodeis out-leafthen
Visibility « VISIBLE
else
Visibility « visibility statebasedn
Fragmentintersection(Node.Fragrt, Polygon);
else
caseSplit(PolygonNode.SplitterBack, Front) of
FRONT : (* passthepolygonto thefront subtree?)
Visibility + Visibility(Node.FrontChild Polygon);
BACK : (* pasghepolygonto the backsubtree*)
Visibility < Visibility(Node.BackChildPolygon);
SPLIT: (* pasdragmentgo apropriatesubtrees)
Visibility < Visibility(Node.FrontChild Front)
if Visibility <> PARTIALLY then
begin
aux <« Visibility(Node.BackChildBack)
Visibility «+ Combine\sibility(aux, Visibility);
end
end
end

Figure 4. Pseudo-code of the polygon visibil-
ity algorithm using the OBSP.

5.2 Visibility of Polyhedron

In this sectionwe shov how the visibility of a closed
polyhedronfrom a viewpoint is determined. The polyhe-
dronvisibility testwill be usedextensiely duringthe hier-
archicalvisibility culling.

As already mentionedthe visibility state of a closed
polyhedroncanbe determinecby combiningthe visibility
of its faces. Assumingthesefacesare corvex polygons,
theabove presentegbolygonvisibility algorithmcanbeap-
plied. Thevisibility of the polyhedronis refinedncremen-
tally, processingts facesone by one. We call the current
visibility of the polyhedronthe visibility of the union of
thosepolyhedrorfaceswhich werealreadyprocesseadVis-
ibility of afaceof thepolyhedromwhichis facingtheview-
pointis computedisingthe polygonvisibility algorithm.If
it is not the firstfaceprocessedthe visibility of the poly-
hedronis updatedusingthe methodgivenin Tablel. The
currentpolyhedronvisibility is combinedwith the visibil-
ity of the facerecentlyprocessed.Wheneser the current
polyhedronvisibility reacheghe partially visible state the
algorithmcanbeterminated.Otherwisejt proceedwith a
next faceuntil all facesarevisited.

In following sectionsthe polyhedronvisibility testwill
beappliedon regions(cells) of the spatialhierarchy In our
casethesecellsareparallelepipedsTo determinevisibility
of sucha cell at mostthreerectangulapolygonsmustbe
testedfor visibility (thesepolygonscanbe determinedy a
tablelookup).

5.3 Hierar chical Visibility Culling

Thevisibility algorithmsmentionedabove areuseddur-
ing thehierarchicaisibility culling. Startingfrom theroot
nodeof the hierarchy the visibility of eachnodeis deter
minedusingthepolyhedrorvisibility algorithm.Recallthat
if anodeis foundfully visible, all its descendantarefully
visible. Similarly, if a nodeis found invisible, all its chil-
drenareinvisible. Descendantef nodesclassifieds par
tially visible arefurthertestedto refingheir visibility (see
Figureb).

The view-frustumculling canbe easilymeigedinto the
algorithm. Before the visibility test, the position of the
polyhedronwith respecto the view-frustumis computed.
If the polyhedronis lying outsidethe frustum, the corre-
spondingnodeis marked invisible. Whenthe visibility of
all leavesis known, objectsfrom fully visible andpartially
visible leavesare gatheredandrenderedusing a low-level
exactvisibility solver (hardwarez-buffer).

To avoid visibility testingof hierarchynodeswvhereonly
few objectsarecontainedwe usea node-costwhichis de-
terminedduring preprocessingThe node-costs compared
with acertainthresholdminimumcost).If thenode-costs
lower thanthethresholdthe nodeis simply classifiedully
visible. Thenode-cosis basedn costsof objectscontained
in theregion correspondingdo the node. As the costof an
objectwe usethe numberof polygonsforming the object.

The hierarchicalvisibility algorithm can be appliedto
variouskindsof spatialierarchiesFor example thehierar
chy of polyhedralboundingvolumescouldbeusedwithout
ary modificatiorof thealgorithm.

5.4. Temporal Coherence

The visibility algorithmspresentedn this papermake
gooduseof the spatialcoherence However, the temporal
coherencéasnotbeenexploitedsofar.

Supposéhe obsenrer (viewpoint) movessmoothly It is
of high probability, that hierarchynodesclassifieds par
tially visible remainpartially visible in the following visi-
bility test. This holdsespeciallyfor nodesat the top of the
spatialhierarchy

Duringthehierarchicakisibility determinatiorwe mark
nodeswherethe visibility is ambiguouslydeterminedpar
tially visible). Whenthevisibility of any nodeis unambigu-
ouslydeterminedits parentnodeis unmarled. Whenaleaf
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Figure 5. A 2D example of the hierarchical
visibility culling. Regions classified invisib le
are shown in dark; partially visib le ones are
marked lighter . The spatial subdivision is as-
sumed to be an octree .

nodeis reachedt is alwaysunmarled,regardlesf its vis-
ibility . Whenprocessinghehierarchyin the next framethe
visibility testsarenot appliedon nodesmarkedin the pre-
vious passof the algorithm. The effect of this modification
isillustratedin Figure6.

Supposall nodesof the hierarchyareclassifieéspar
tially visible. In the next passof the algorithmall inner
nodesareskipped.Thevisibility testis appliedonly onthe
leafnodes.Hence for abinarytreehierarchythe modifica-
tion savesup to 50% of the visibility testswhichwould be
appliedontheinnernodes.

6. ModifiedOcclusionTree

In this sectionwe introducea modifiedocclusiontree
(MOBSP) and the algorithm of its construction. Further
we presentifastconserative visibility algorithmusingthe
MOBSP

The OBSPdatastructureis usedextensiely in the hi-
erarchicalvisibility algorithm. The elementaryoperation
taking placein both the tree constructionand the visibil-
ity algorithmsis a polygonsplitting. Recallthatthe split-
ting operatiordeterminegragmentof the polygonlying in
negative andpositive half-spacesnducedby a plane.

frame 1

frame 2
& Marked () Visible
O Tested [ InV|§|bIe
O Partially

Figure 6. lllustration of the temporal coher-
ence heuristics. In the fiist frame no nodes
were skipped and four nodes were marked.
In the second frame the four nodes were
skipped and three nodes were marked. These
three will be skipped in the third frame.

Although the splitting can be implementedquite effi-
ciently, the overheadof fragmentallocationremainswhen
thepolygonis splitby theplane.Thesplittingoperatiorwas
alsoareasorthatthe polyhedravisibility couldnot be effi-
ciently determinedy processinghe polyhedraitself. This
is dueto the compleity of the splitting operationfor poly-
hedra(parallelepipedsaswell asmaintainingts fragments.
Therefore the decompositiorof polyhedraandthe combi-
nationof visibility statesof its faceshasbeenused.

Motivated by the idea of the visibility algorithm (tree
traversal)withoutthe necessityf the polygonsplitting, we
developedthe concepiof the MOBSR It is basedn obser
vationthat carefully removing someof the nodes(shadev
planes)of the OBSR the new datastructurestill contains
all theinformationaboutthe occlusionvolumes.Addition-
ally sucha datastructurecanbe traversedeasierusingthe
modifiedvisibility algorithm The algorithmis consera-
tive with respecto the selectedbccluderg(occludersused
to built the MOBSP).Recallthat the algorithmspresented
sofar determinethe visibility stateexactly with respecto
the selectedccluders.Althoughthe modifiedsisibility al-



gorithmis only conserative,we obsenedits verygoodper
formancein practice.

6.1 Construction of the MOBSP

The MOBSPIis constructedsimilarly to the OBSP As-
sumean occlusionvolume of a polygonis being memged
to the MOBSP The polygonsplitting operationuseddur-
ing filteringis enrichedby flagging (marking)edgesof the
polygonembeddedo the shadev planes.If new fragments
arecreateddy thesplitting operationthe edgeof bothfrag-
mentsembeddedo theshadev planethatsplitsthepolygon
is flaggediswell.

Whenanout-leafis reachedluringthe polygonfiltering,
only unflaggegbolygon edgesare usedto createshadeov
planesenlaging the MOBSP Shadev planesthat would
have beencreatedvy flagge@dgesnustbealreadypresent
in the MOBSP (otherwisethe edgesvould not be flagged).
If anout-leafis reachedandall edgesof the filteredfrag-
mentare flaggedno internalnodesare addedto the tree.
Instead,the out-leafis replacedby anin-leaf andthe link
to the fragmentin the new in-leaf is set. The difference
betweeran occlusiontreeandits modifiedsersionis illus-
tratedin Figure7.

It is obvious that the MOBSP containslower or equal
numberof nodesthanthe OBSPbuilt usingthe samesetof
occluders.It remainsto showv thatthe visibility algorithm
asdescribedeforegivesa correctanswelif appliedto the
MOBSP Let usfocusagainonthestructureof theMOBSP
Assumean out-leafis reachedduringfilteringandthe cor
respondingragmentcontainsdlagge@dges.Someshadav
planesarenot addedto the treebecausehe corresponding
edgesvereflagged.

Ignoring someshadav planesthe occlusionvolume of
a fragmentis enlaged. This larger occlusionvolume is
mergedto thetreeby replacingcertainout-leaf. Obviously,
eachnodeof the treeimplies a uniquepathfrom theroot.
During the polygonvisibility algorithm, the filteredpoly-
gonis clippedby all the planeson thepathto anode.In the
subtreeof thenodeit is notnecessarto clip the positionof
the filteredfragmentto ary planewhich alreadyoccurred
onthepath. Theflagge@dgesvould generatexactly such
planes. Hence,ignoring theseplanesdoesnot effect the
correctnessf thevisibility algorithm.

In the next sectionwe presenta modifiedvisibility al-
gorithmfor the MOBSRP In the previously presentedlgo-
rithms, the polygon visibility algorithm hasbeenusedto
determineghevisibility of apolyhedronThemodifiedilgo-
rithm determineghe visibility of regionsof variousshapes
directly. It only usesheclassificationf the positionof the
regionwith respecto aplane.

g

flagged _—
edge : d

e

a) OBSP tree b) MOBSP tree
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Figure 7. The diff erence between the OBSP
and the MOBSP. Both trees are constructed
with respect to the same occluders. The oc-
cluders are shown as seen from the view-
point. Node g is not present in the MOBSP,
since the corresponding occluder-edge was

flagged.

6.2 Consewative Visibility of a Region

Assumethat the position of a region with respectto a
splitting planecanbe determinedlt indicatesf theregion
liesin negative (back),positive (front), or both half-spaces.

Giventhis operationthe MOBSPIs traversedsimilarly
to the OBSP polygon visibility algorithm. In eachinter-
nal nodeof thetreewe determinghe positionof the region
with respectto the shadav planeand apply the algorithm
recursvely on appropriatesubtreesNo attemptto split the
regionis madeevenif it lies on bothsidesof theplane.

The modifiedvisibility algorithmis conserative only.
It implies that the results(i.e. visibility classificatiorof
leaves) can vary comparingto the exact algorithmspre-
sentedReachinganin-leaf, theregionis testedfor position
to the supportingplaneof the occludeffragmentreferred
in the leaf. Call this leaf the currentleaf. As mentioned
previously, if the region lies on both sides(half-spacespf
thesupportingplane,it would beclassifieghartially visible.
It is possiblethata partof the region crossingthe support-



ing planeis actuallyoccludedby anotheoccludeffragment
thanthe onereferredin thecurrentleaf.

Sucha situationcanbe discoreredby testingthe region
for anintersectionwith the occluderfragment. If they do
not intersectthe region is classifiednvisible with respect
to thecurrentleaf. In otherwordsit is invisiblein thefrusta
inducedby the viewpoint andthe fragment. Note that the
region canstill befoundpartially visible whenthevisibility
of all leavesreachediuringthevisibility algorithmis com-
bined. In the caseof an axis-alignedbox, a fastalgorithm
canbeusedfor thebox/polygonintersection[§ In general,
it is unclearif the possibleimprovementin correctnessf
the algorithmis worth the time spentby the additionalin-
tersectiortest.

Here we mentionanotherpossiblemodificatiorof the
algorithm. It is possibleto apply similar intersectiorntests
alsoin theinnernodesof the MOBSP Thenthe algorithm
alwaysdeterminesvisibility exactly with regardto the se-
lectedoccluders.However, sucha traversalcanloosesev-
eral desiredfeaturesof the modifiedvisibility algorithm.
Thesearethe simplicity of traversal,generality andspeed.
Dueto lack of spacewe decidednotto presenthe modifi-
cationin detail.

misclassification region

Figure 8. An example of disad vantageous
configuration of occluders. The shadow
planes of the MOBSP are shown by thin lines.
The invisib le polyhedra inter secting both the
shado w plane a and the marked region is said
to be partially visib le.

We have mentionedhatthe modifiedvisibility algorithm
is consenrative. Thesituationwhenaregionis misclassified
aspartially visible is depictedin Figure8. In general,it is
difficultto give a probabilisticanalysisof the numberof
casesvhenthe algorithmfails to give an exactresult. As-
sumetheconfigurationf occludersasgivenin thefigurelt
canbeseernthatthealgorithmis likely to give animprecise

(conserative) resultif theanglea betweerthe highlighted
shadev planesgetslarger Neverthelessin mostcaseghe
algorithm performswell in practiceas documentedn the
next section.

7.Results

In this sectionwe documenthe behaiour of the algo-
rithm presentedn this paper Several modelsof architec-
tural interiorswereusedto compareefficieng of the algo-
rithms. As a referencewe usedthe hierarchical frustum
culling [14] with no visibility processing.The resultsare
summarizedn Table2. Eachline correspondso average
valuesobtainedn the scopeof onewalk-through.

The Time fieldis an averageframe time. The Over
headfielddepictsan additionaloverheadof the visibility
culling algorithms. This includesthe dynamic occluder
selection,building of the BSP of occluders,building the
OBSP (MOBSP), and the hierarchicalvisibility culling.
The Speedups a fraction of the averageframe time of
the pureview-frustumculling andthe actualaverageframe
time. The Rendeed polygonsfield containsthe average
numberof polygonsrenderedn oneframe. The othertwo
parametershavn in the table are userspecifiedtonstants
influencindehaiour of thealgorithm. The numberof oc-
cludersusedto build the OBSP(MOBSP)is shavn in the
Occludesfield. Thefieldcalled Methodrepresentshe al-
gorithmusedfor visibility culling. Its meanings explained
below thetable.In all visibility culling algorithmsthetem-
poralcoherencéneuristicsvasused.The minimumcostof
the nodeto be testedfor visibility was50. Recallthatthe
costof anodeexpresseshenumberof polygonsreferredin
thenode. For eachmeasurement00 detailedobjectswere
spreadandomlyin the scene We useda virtual plantcon-
sistingof 644 polygons.

Plotsof frametimesandnumbersof renderedbolygons
measurediuring a walk-throughof an architecturamodel
(big-7) are shawn in Figures9 and 10. The speedupof
therenderingachievedfor thetestedmodelsvariesbetween
1.75 and3.75. We obsenedthatthe speedups notlinearly
proportionalto the numberof occludersusedfor the visi-
bility culling. Increasinghe numberof occludersusedby
factor of two, the speedups usuallyincreasednuchless.
Importantis thatin sucha situationthe overheadof visibil-
ity culling is alsoincreasedessthantwo times.

Informally, we explain the behaiour of the algorithm
asfollows: Firstly, assumehe occlusiontree containsoc-
cludersthatoccludelarge portion of theview. It is of high
probabilitythatanotheroccluderis foundinvisible. In this
casetheocclusiontreeis notenlaged.Secondlytheocclu-
siontreeinheritsthe logarithmicsearchpropertiesof hier-
archies. Therefore the numberof stepsof the polyhedron
visibility algorithmwith the occlusiontreeis usuallymuch



| Scene| Method | Occluders| Renderegolygons| Overheadms] | Time[ms] | Speedup|

soda-5 F — 18192 — 276.5 1.00
soda-5|| FME 8 9466 3.7 157.3 1.75
soda-5|| FME 16 7390 5.9 139.0 1.99
soda-5|| FME 24 6537 7.9 116.0 2.38
soda-5| FME 32 5941 9.8 109.8 2.52
soda-5| FME 50 5490 14.2 109.5 2.53
soda-5|| FSE 16 6512 12.7 120.5 2.29
soda-5|| FSE 24 5569 16.0 110.5 2.50
soda-5|| FSE 32 4725 19.1 100.1 2.76
soda-5]| FMC 16 7988 5.4 135.9 2.03
soda-5|| FMC 24 7362 7.3 129.3 2.14
big-7 F — 12587 — 182.0 1.00
big-7 FME 16 3641 8.8 71.5 2.55
big-7 FME 24 2286 10.2 54.6 3.33
big-7 FME 32 1818 11.6 48.5 3.75
big-7 FSE 24 2214 19.9 63.4 2.87
big-7 FMC 16 3640 8.4 74.3 2.44
big-7 FMC 24 2263 9.7 51.4 3.54
soda F — 15297 — 315.2 1.00
soda|| FME 24 4744 10.1 119.7 2.63
soda| FSE 24 4388 23.7 128.0 2.46

—view-frustumculling
— OBSPtree+ standardvisibility algorithm

omZwn T

—MOBSPtree+ consenrative visibility algorithm
—exactoccluderfragment/parallelepedintersectiortest
— conserative occluderfragment/parallelepigdintersectiortest

Table 2. Results of the hierar chical visibility culling. The table shows the average number of polygons
rendered, the average frame-time and the speedup over the view-frustum culling for diff erent scenes
and methods of the visibility culling. Measured on SGI O,, 64MB RAM.

lower thanthe numberof occluders.

It follows from Table 2 that the best results were
achieved by the FME method. It is the combinationof
the MOBSP andthe consenrative visibility algorithmwith
the leaf-fragment-intersectiotest. Undercertaincircum-
stancesyve obseredthatthe FSEmethodled to betterre-
sults. Particularly, whena detailedobjectwasfoundinvisi-
ble by FSE (andnot by FME), the time saredin rendering
exceededhe time neededor more comple visibility de-
termination.

8. Conclusion

In this paperwe have introducedthe conceptof occlu-
siontrees.It wasshavn thatthe occlusiontreescanbeused
to determinethe viewpoint-to-region visibility efficiently
by exploiting the spatialcoherencef occluders. We pre-
sentedan algorithmdeterminingthe visibility of a polyhe-

draexactly with respecto the selectedccluders.Further
afastconserativevisibility algorithmapplicableto regions
of more generalshapewasdescribed.Although the preci-
sion of the conserative algorithmis generallylower than
theexactone,it performswell in practice.

Theconcepbf occlusiontreeswasusedn thehierarchi-
calvisibility culling for therenderingof complex models.It
wasshaown that,usingthe occlusiontree,we canefficiently
avoid renderingof invisible partsof a model. For models
with high depthcompleity, thesesavings are significant.
Sincethe visibility is determinedn a hierarchicalfashion,
the spatialcoherencds exploitedin thealgorithm.We also
presentedhe temporalcoherencéneuristicsfor the hierar
chicalvisibility culling.



9. Future Work

Marny themedor future work have beenencounteredh
the paper Someof the themesarerelatedto the occlusion
treedatastructureitself, othersto the applicationof occlu-
siontreesin the scopeof hierarchicabisibility culling.

We assumeddccludersto be sufficientlylarge convex
polygons. This assumptioris often falsein practice. We
proposemodelsimplificatiorfor the purposeof visibility
algorithms. The simplifiedmodel descriptionshouldcon-
sistsolelyof corvex polygonswhich shouldkeepocclusion
propertieof objectsthey weregeneratedrom.

Anothertopic for future work concernghe occluderse-
lection. It canbe adwvantageouso determinethe setof po-
tential occludersin preprocessingg, 3]. We currentlyde-
velopanalgorithmthatcomputeshepotentialoccluderdor
a certainregion. The algorithmusesa sophisticatedsam-
pling schemeo determinghe assebf anoccluder

We useda userspecifiedonstan{minimumcost)to de-
cideif a nodeof the spatialhierarchyshouldbe testedfor
visibility. Theminimumcostcouldbedeterminedcautomat-
ically basedon theratio of the speedof the renderingsub-
systemandthe speedof the processarlt couldalsoreflect
how the algorithm succeedsn the visibility culling for a
particularmodel.

RegardingtheMOBSRE we aregoingto give aprobabilis-
tic analysisof the consenrative visibility algorithm. Based
onthis analysiswe wantto increaseheprecisionof theal-
gorithm. It shouldbeachieredby insertingadditionalnodes
to the MOBSR wherethe probability of visibility misclas-
sifications high.

Currently the occlusiontreeis built from a scratchin
eachrenderingrame.We studythe possibilityof exploiting
thetemporalcoherencén the constructiorof the occlusion
tree. Finally, we would like to apply the occlusiontrees
to acceleratéhe castingof shadaev raysin theray tracing
algorithm.
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Figure 9. Rendering times obtained for a sequence of 400 frames during walkthr ough of the big-7
scene . Curve A corresponds to view-frustum culling only; curve B includes the hierar chical visibility
culling using 32 occluders (method FME).
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Figure 10. The amount of polygons rendered during a sequence of 400 frames during walkthr ough
the big-7 scene. Curve A corresponds to view-frustum culling only; curve B includes the hierar chical
visibility culling using 32 occluders (method FME).



