
Hierarchical Visibility Culling with OcclusionTrees

Jiřı́ Bittner Vlastimil Havran Pavel Slavı́k

Departmentof ComputerScienceandEngineering,CzechTechnicalUniversity,
Karlovo náměst́ı 13,12135Praha2, CzechRepublic

E-mail:
�
bittner,havran,slavik � @fel.cvut.cz

Abstract

In the scopeof rendering complex modelswith high
depthcomplexity, it is of greatimportanceto designoutput-
sensitivealgorithms,i.e., algorithmswith thetimecomplex-
ity proportionalto thenumberof visiblegraphicprimitives
in the resultingimage. In this paperan algorithm allow-
ing efficientculling of the invisibleportion of therendered
modelis presented.Our approach usesa spatialhierarchy
to representthetopology of themodel.For a currentview-
point a set of polygonaloccludersis determinedthat are
usedto build the occlusiontree. In the occlusiontreeoc-
clusionvolumesof theselectedoccluders are merged. Vis-
ibility from the viewpoint is determinedby processingthe
spatialhierarchyandclassifyingthevisibility of its regions.
In this processthe occlusiontreeis usedto determinethe
viewpoint-to-region visibility efficiently. The algorithm is
well-suitedfor complex modelswhere large occluders are
present.

Keywords: visibility, occlusionculling, spatialpartition-
ing, realtime rendering,virtual reality, BSP1 .

1. Intr oduction

Visibility determinationis animportanttaskin computer
graphics.Thegoalof visibility determination(alsoknown
ashiddensurfaceremoval) is to efficientlydeterminevis-
ible partsof the model, given a viewpoint and a viewing
direction.

1Copyright 1998 IEEE. Publishedin the Proceedingsof CGI’98, 22
June1998Hannover, Germany. Personaluseof thismaterialis permitted.
However, permissionto reprint/republishthis materialfor advertisingor
promotionalpurposesor for creatingnew collective works for resaleor
redistribution to serversor lists,or to reuseany copyrightedcomponentof
thiswork in otherworks,mustbeobtainedfrom IEEE.Contact:Manager,
CopyrightsandPermissions/ IEEEServiceCenter/ 445HoesLane/ P.O.
Box 1331/Piscataway, NJ 08855–1331,USA. Telephone:++ 732–562–
3966.

Many algorithmsto solve the hidden surface removal
have beendeveloped,two of them mostcommonlyused.
TheBinarySpacePartitioning (BSP)preservesthetopolog-
ical informationaboutthemodelin abinarytree[5]. It is an
exampleof analgorithmresolvingvisibility in objectspace.
Knowing theviewpoint,renderingordercanbedetermined
by appropriatetraversalof the BSP tree. The z-buffer is
an image-spaceorientedalgorithm,which solvesthe visi-
bility problemfor eachpixel of thescreen.This is simple
to implementin hardware,thuscommonlyusedin today’s
renderingsystems.Both thesealgorithmsarenot output-
sensitive, sincethey mayspendsignificanttime processing
partsof themodelactuallyinvisible.

To achieve the output-sensitivity of the visibility algo-
rithm we exploit the idea of visibility culling. Visibility
culling is usedto quickly determinea subsetof occluded
objects. Theseneednot be consideredfor exact visibility
determination(e.g. z-buffer rendering).Theuseof occlu-
sion treesis a novel approachin the context of visibility
culling. In thenext two sectionswork relatedto this paper
is presentedfollowedby anoverview of ouralgorithm.

1.1. RelatedWork

Somealgorithmsattempt to solve the visibility prob-
lemby building datastructuresallowing fastexactvisibility
queries.For example,theaspectgraph[13] subdividesthe
spaceinto �������
	 regionswherevisibility doesnot change
qualitatively. For eachsuchregion the visible portion of
themodelcanbedetermined.Unfortunately, thehighcom-
plexity restrictsthis approachto modelscontainingonly
a few objects. RecentlyDurandet al. [4] introducedthe
3D visibility complex, which capturesthevisibility in line-
space.Theauthorsclaimthatits worstcasespacecomplex-
ity �������
	 is muchbetterin practice. However, its contri-
bution to therealtime renderingof complex modelsseems
unclear.

The conservativevisibility identifiesthe supersetof the
visible portionof the model. Only this supersetis usedto
solve exactvisibility. Often,this canbecarriedout usinga

hardwarez-buffer.
Teller and Séquin [16, 17] use the conceptof poten-

tially visiblesets(PVS).Potentiallyvisible regionsarede-
terminedfor eachregion of the spatialsubdivision using
a region-to-region visibility throughthe setof transparent
polygonalportals. Anotheralgorithmbasedon PVS was
introducedby Luebke and Georgesin [11]. Thesemeth-
odsachieve goodperformanceif appliedto staticdensely
occludedenvironmentswith a particularstructure,suchas
modelsof architecturalinteriors. However, for lessstruc-
tured modelsthey can facea combinatorialexplosion of
complexity. Yagel and Ray [19] presentan algorithm,
which usesa regularspatialsubdivision. Althoughit is not
sensitive to thestructureof themodelin termsof complex-
ity, its efficiency canbesignificantlylower comparedwith
theportalbasedmethods.

Recently, algorithmsbasedon theideaof fasthierarchi-
cal visibility culling were published. The hierarchicalz-
buffer [8] algorithmusesa z-pyramid to representocclu-
sion. It exploits spatial coherenceby processingan ob-
ject hierarchythroughthez-pyramid. Althoughit is a very
promisingapproachif usinghardwareresources,thesimu-
lationof thez-pyramidin softwarewouldcauseasignificant
overhead.Similar methods,which useanimagespacerep-
resentationof the selectedoccluders,appearedin [20, 7].
While takingadvantageof hardwarerendering,thesemeth-
odscansuffer if therenderingsupportis insufficient.

The work presentedin this paperis closely relatedto
objectspaceocclusionculling algorithmspresentedin [9]
and[3]. In [9] a shadow frustumis constructedfor eachof
the selectedoccluders.Thesefrustaareusedto detectthe
invisible regionsof thespatialhierarchy. A possibledraw-
backwith this methodis the independentvisibility testing
againsteachfrustum. Therefore,the occlusioncausedby
multipleoccludersis notdiscovered.

1.2. Algorithm Overview

The algorithmpresentedaddressesthe problemof con-
servative visibility from a point (viewpoint). It identifiesa
supersetof objectsvisible from the viewpoint. For com-
plex models,wheremany objectsare not visible from a
givenviewpoint,thissupersetis only afractionof thewhole
model. The exact visibility is solved by simply rendering
thesupersetof visible objectsusingthez-buffer algorithm.
Assumeweareableto determinevisibility of a regionfrom
theviewpoint. This visibility reachesoneof the following
states:fully visible, partially visible, invisible. We canap-
ply thevisibility testto all boundingvolumesof objectsin
the model. The supersetto be consideredfor exact visi-
bility consistssolelyof objectsclassifiedasfully visible or
partiallyvisible. Nevertheless,for acomplex modelthevis-
ibility testingof all objectswouldbevery timeconsuming.

We can exploit the spatial coherenceof visibility by
groupingcloseobjectstogether. Applying this steprecur-
sively, wecanbuild aspatialhierarchy, keepinglinks to the
objectsin its leaf nodes2. Eachnodeof the hierarchycor-
respondsto certainspatialregion. Startingfrom the root
nodeof thehierarchy, visibility of eachnodecanbedeter-
mined as follows: If a nodeis found fully visible, all of
its descendantsarefully visible (assumingthat the spatial
hierarchymeetscertaincriteria,asit will be mentionedin
Section2.2). Similarly, if a nodeis found invisible, all its
childrenare invisible. Descendantsof nodesclassifiedas
partiallyvisiblemustbefurthertestedto refinetheirvisibil-
ity. Whenthevisibility of all leavesis known, objectsfrom
fully visible and partially visible leaves are gatheredand
renderedusinga low-level exactvisibility solver (hardware
z-buffer).

plane
viewpoint

occluder

shadow planes

occluder supporting

Figure 1. Occlusion volume of a pol ygon. The
occ lusion volume is formed by three shado w
planes and the suppor ting plane of the pol y-
gon.

It remainsto show how to determinethe visibility of a
region from theviewpoint. It is oftenthecasethatmostof
theocclusionis dueto a few largeobjects(occluders)close
to theviewpoint. In this paperwe requiretheoccludersto
beconvex polygons.Assumeweareableto identify several
suchoccludersfor eachviewpoint. For eachpolygonthe
occlusionvolume(frustum)canbedetermined.It is an in-
tersectionof ��������	 -half-spaces,where� is numberof edges
of thepolygon.Thehalf-spacesareformedby planespass-
ing throughthe viewpoint andthe particularedgeandthe
supportingplaneof thepolygon(seeFigure1). We merge
theseocclusionvolumesinto a unifieddatastructure– the

2Suchgroupingcorrespondsto socalledbottom-upapproach.Hereit
is usedfor explanationpurposes.In our implementationthe hierarchyis
actuallybuilt in top-down fashion,asmentionedin Section2.2.

occlusiontree, that is a variantof theshadowvolumeBSP
treeintroducedby Chin andFeiner[2].

We show thatthevisibility of aclosedpolyhedralregion
canbedeterminedbycombiningvisibility statesof its faces.
Assumingthefacesareconvex polygons,thesetestsareper-
formed efficientlyusing the occlusiontree. In particular,
the regionsof our spatialhierarchyareaxis-alignedboxes
(parallelepipeds),thatareclosedpolyhedrawith six convex
faces.We alsopresentamodifiedocclusiontree(MOBSP).
With this datastructurevisibility of a region canbeestab-
lishedwithouttestingthevisibility of its boundaries(faces).
Theonly operationinvolvedin thevisibility testis thede-
terminationof the positionof a region relative to a plane.
Although this methodcan identify an invisible region as
partiallyvisible (with respectto theselectedoccluders),we
observedits goodperformancein practice.

The paperis organizedas follows: Section2 describes
preprocessingof the model that includes the algorithm
building thespatialhierarchy. Theoccluderselectionis out-
lined in Section3. In Section4 we discussthe motivation
for building aunifieddatastructurerepresentingthemerged
occlusionvolumesof the selectedoccluders.In Section5
the occlusiontree and algorithmsof its constructionand
traversalarepresented.Themodifiedocclusiontreeis intro-
ducedin Section6. In Section7 wepresentresultsobtained
onseveraldifferentmodelsanddiscussthebehaviour of the
algorithm.Finally, Section8 concludesandin Section9 we
pointoutsometopicsfor futurework.

2. Preprocessing

2.1. Occluder Identification

Previousmethodsof hierarchicalvisibility culling [3, 9]
attemptto createan occluderdatabasein preprocessing.
They subdivide thespaceinto a setof non-overlappingre-
gions(cells). Within eachcell a certainnumberof polygo-
naloccludersaredeterminedandstored.

We do not attemptto build suchoccluderdatabase.In-
stead,we only identify andmark potentialoccluderpoly-
gons. In our implementationtheseare identifiedtaking
advantageof the knowledgeof the modelstructure. Pre-
processingandvisibility culling have beenappliedusually
on modelsof architecturalinteriors. A typical suchmodel
consistsof walls, ceilings,floors,anddetailedobjects.All
polygonsbelongingto detailedobjects(flowers,chairs,...)
areconsiderednon-occluding.All remainingpolygonsare
marked as potentialoccluders(assumingtheseare walls,
ceilingsandfloors).Thesepotentialoccludersareusedin
thealgorithmof dynamicoccluderselection(Section3).

2.2. Spatial Hierar chy

As we alreadymentioned,the hierarchicalvisibility al-
gorithmassumesthataspatialhierarchyis built overall ob-
jectsof the model. In thecaseof staticscenesthis canbe
donein preprocessing.Thereis an importantrequirement
imposedon the hierarchy. Regions correspondingto de-
scendantsof any nodeof thehierarchymustbecompletely
containedin theregion correspondingto thatnode.Other-
wise,noassumptionsof thevisibility of thenode’sdescen-
dantscouldbemadebasedonknowledgeof thevisibility of
theirparent.In previouswork boundingvolumehierarchies
andhierarchicalspatialsubdivisions(octree,BSPtree)were
used.

We use an axis-alignedBSP tree [10] (sometimesre-
ferred to as kD-tree), becauseof its high flexibility and
simplicity of building andtraversal.This selectionimplies
thattheregionscorrespondingto nodesof thehierarchyare
parallelepipeds.Naturally, theBSPtreemeetsthecriterion
mentionedabove.

Themostimportantstepduringthebuilding of theBSP
treeis the choiceof the splitting plane. This planesubdi-
vides the currentnodeinto two descendants.Objectsare
distributedinto thedescendantsaccordingto their position
to thesplittingplane.Initially therootnodeof theBSPtree
correspondsto the boundingbox of the model. Applying
thealgorithmrecursively, thewholeBSPtreeis built. The
recursionis terminatedwhenthe numberof objectsin the
currentnodefallsunderthespecifiedthresholdor thespec-
ifiedmaximumdepthof thehierarchyis reached.

In certaincasesanobjectlies on bothsidesof theplane
(i.e. in both positive andnegative half-spacesinducedby
theplane).Suchobjectsmustbe“duplicated” in bothnew
nodes.We wanttheobjectduplicationsin leaf nodesof the
treeto beminimizedwhile keepingawell-balancedtree.To
achievethisgoalthefollowingstrategyof thesplittingplane
selectionwasused:

For thecurrentnodeweidentify theaxiswith thelargest
extentof theparallelepipedcorrespondingto thenode.We
searchfor a splitting planeperpendicularto the selected
axis. We identify boundariesof objectboundingboxeslo-
catedwithin a certaindistancefrom the spatialmedianof
thenode’sparallelepiped.Eachidentifiedboundaryinduces
oneboundaryplane. We evaluatea numberof objectssplit
by eachboundaryplane.Theboundaryplanewith thelow-
estnumberof split objectsis selectedasthesplittingplane.

Thebinary treestructurecanbeeasilyusedto simulate
irregularquad-treesandoctreesin the scopeof the hierar-
chicalvisibility algorithm.

3. Dynamic Occluder Selection

Thegoalof thedynamicoccluderselectionis to obtain
a specifiednumberof occluders,given a viewpoint anda
viewing direction.Thealgorithmusesthearea-anglemea-
sure[3] to estimatethe quality of an occluder. The area-
angleis expressedas:

������� ���� � �! 	" �# "%$ (1)

where � is the areaof the occluder, �� denotesthe oc-
cludernormal, �! theviewing directionand �# corresponds
to thevectorfromtheviewpointto thecenterof theoccluder
(
" �� " � " �! " � �).

As mentionedin the previous section,the potentialoc-
cludersare identifiedin preprocessing.The dynamicoc-
cluderselectionis performedaftereachchangeof theview-
pointor theviewingdirection.Thesetof occludersobtained
in thecurrentframeis usedto performvisibility culling in
thenext frame.

Thedynamicoccluderselectionproceedsasfollows: We
identify all visible or partially visible leavesof the hierar-
chy, whosecentersarelocatedwithin a certaindistance&
of the viewpoint. For eachpotentialoccluderreferredin
theseleavesthe area-angleis computed.Thesevaluesare
usedto select ' occluderswith the largestarea-angle,that
form thedesiredoccludersetfor thenext renderingframe.

The distance& hasan impacton the time spentby the
occluderselection.In our implementationit is amultipleof
the observer’s stepsize(& � ��()(�+*-, �/.). The numberof
selectedoccluders(') influencesthe sizeof the occlusion
tree,the time of visibility determinationaswell asits effi-
ciency. We have used ' between0 and 1)2)0 . More details
aboutthisselectionaregivenin Section7.

4. Representationof OcclusionInformation

In thissectionwediscussthecrucialpartof thevisibility
culling algorithm– representationof the occlusioncaused
by a setof convex polygonaloccludersfor a given view-
point. In many casestreatingthe occlusionvolumessepa-
ratelyidentifiestheinvisibleregionaspartiallyvisible.

Unlike previous methodsusedin the fieldof visibility
culling, we build an additionalobjectspacedatastructure
for the currentviewpoint. It efficientlymergesthe occlu-
sion volumesof the selectedoccluders.This allows us to
discoverocclusioncausedby multiple connectedoccluders
andevenoccluderscompletelydisjunctin space.

It is obviousthatmergingocclusionvolumesrequiresan
additionaltime to build theappropriatedatastructure.We
observedthatby exploiting thespatialcoherenceof occlud-
ers in this datastructure,the additionaltime is recovered
duringthevisibility queries.

As a basisfor our researchwe adoptedthe conceptof
shadowvolumeBSPtrees(SVBSP)introducedby Chinand
Feiner [2]. They usedthe SVBSPfor fast generationof
shadowscastby polygonalobjectsin sceneswith pointlight
sources.

Next we presenta brief overview of the SVBSPdata
structureand the algorithm suitablefor the generationof
shadows. Further, we discusshow to adaptthe concept
of SVBSPfor theviewpoint-to-regionvisibility determina-
tion.

4.1. Generationof Shadowswith SVBSP

TheSVBSPis a variantof theBSPtreefor representing
polyhedra[12, 18]. It representsa union of shadow vol-
umescastby convex polygons(occluders)facing a point
light source. Eachinternal nodeof the tree is associated
with a shadowplanepassingthroughthe light sourceand
anedgeof theoccluder.

Thedirectionof theshadow planenormalis usedto de-
terminea half-spacein which theoccluderandits shadow
are located. The normalsareorientedso that the shadow
volumeandtheoccluderitself lie in thenegativehalf-space
(back side) of the plane. Eachleaf nodeof the tree cor-
respondsto a semi-infinitepolyhedralcell (frustum). The
leavesareclassifiedasin or out. A leaf is markedasin-leaf
if thecorrespondingcell lies in shadow. Similarly, anout-
leaf indicatesthat the correspondingcell is lit by the light
source.Thustheshadow volumeis a unionof all cellscor-
respondingto in-leaves. An exampleof theSVBSPtreeis
depictedin Figure2.

Assumethat the polygons(occluders)are orderedin
a front-to-backmannerwith respectto the light source.
We know that farther polygons cannot cast shadows
on polygons lying closer to the light source. The
SVBSP can be constructedby incrementallyprocessing
the polygons in the given order. The contribution of
one polygon to the SVBSP is determinedas follows:

3 Lit fragmentsof thepolygonaredetermined.

3 The SVBSPis enlargedby shadow volumescastby
thesefragments.

The lit fragmentsof the polygonaredeterminedby fil-
teringthepolygondowntheSVBSP. Thefilteringis applied
recursivelyoncertainnodesof theSVBSP, startingfromthe
root. For thecurrentnodethepositionof thepolygonwith
respectto node’s shadow planeis determined.If thepoly-
gon is locatedcompletelyon the backor front sideof the
node’s shadow plane,it is filtereddown the backor front
child of the node,respectively. Otherwise,the polygonis
split by theshadow planeinto two fragments.Thesefrag-
mentsarefiltereddown thebothchildrenof thenode.

a

b

c

d

in

out

outin

in out

out

fba
c

e

e

f

d

light source

shadow volumes

SVBSP

shadow planes

shadowed
fragment

Figure 2. A 2D example of three pol ygons fac-
ing a point light sour ce and the correspond-
ing SVBSP tree .

Reachingleafnodesasetof convex polygonalfragments
is obtained. Theseareeither lit (out-leaves)or shadowed
(in-leaves).In theappropriateout-leavesthetreeis enlarged
bytheshadow volumescastby thelit fragments.Foreachlit
fragment� new nodesareusedto replacethecorresponding
leaf (� is thenumberof edgesof the fragment).Thealgo-
rithm includingshadowsof onepolygoninto theSVBSPis
givenin Figure3.

For shadow generationpurposes,the lit andshadowed
fragmentscanbestoredwithin theoriginal polygon. Dur-
ing renderingthe colour of thesefragmentscanbe setac-
cordingly.

Thefront-to-backorderingof polygonscanbeachieved
by building aBSPtreeandits appropriatetraversal[5]. Al-
ternatively, the feudalpriority tree[1] couldbeused.

4.2. Visibility Determination and SVBSP

The SVBSPtree is a hierarchicaldatastructureallow-
ing fastincrementaldeterminationof lit andshadowedfrag-
mentsof scenepolygons.

We will refer to the algorithmdescribedpreviously as
the original SVBSPalgorithm. All lit fragmentsobtained
by theoriginal SVBSPalgorithmarevisible from thelight
source.Similarly, all fragmentslocatedin shadow areinvis-
ible fromthelight source.Fromnow onassumetheposition

Algorithm FilterDown(Node,Polygon,Viewpoint)
begin

if Nodeis leaf then
if Nodeis out-leafthen
replaceNodeby
OcclusionVolume(Polygon,Viewpoint)

else
do nothing

else
caseSplit(Polygon,Node.Plane,Back,Front)of
FRONT : (* passthepolygonto thefront subtree*)

FilterDown(Node.FrontChild,Polygon,Viewpoint);
BACK : (* passthepolygonto thebacksubtree*)

FilterDown(Node.BackChild,Polygon,Viewpoint);
SPLIT : (* passfragmentsto apropriatesubtrees*)

FilterDown(Node.FrontChild,Front,Viewpoint)
FilterDown(Node.BackChild,Back,Viewpoint);

end
end

Figure 3. Pseudo-code of the algorithm pro-
cessing a pol ygon thr ough the SVBSP tree .

of thepoint light sourceto beaviewpoint. Insteadof lit and
shadowed,thetermsvisibleandinvisible(occluded)will be
usedin thefollowing text.

AssumetheSVBSPis built with respectto theselected
setof occludersandthecurrentviewpoint. Givena polyhe-
dralregion(cell)wewanttoquicklydetermineif thisregion
is:

3 fully visible,

3 partiallyvisible,

3 invisible.

We will usethe term visibility algorithm, referring to the
traversalof the SVBSP, which appropriatelyclassifiesthe
visibility of a region.

Thedifferencesbetweenthedesiredvisibility algorithm
and the original SVBSPalgorithmcanbe summarizedas
follows:

3 Only selectedoccludersareusedto build the tree. In
thescopeof thevisibility algorithmthetreeisnotmod-
ifiedany more. The original SVBSPalgorithm as-
sumesall polygonsto beprocessedandthe treeto be
alwaysupdatedaccordingly.

3 Thesubjectof thevisibility algorithmis a polyhedral
region, whereasin the original SVBSPalgorithmthe
subjectis a convex polygon.

3 The region of which the visibility is determinedmay
lie in front of someoccluders.Hencethefront-to-back
orderingis notsatisfiedin thevisibility algorithm.

3 Only oneof thethreevisibility statesis theresultof the
visibility algorithm. In theoriginal SVBSPalgorithm
the goal is to obtainlit andshadowed fragmentsof a
polygon.

With thesedifferencesin mind,wedesignedtheconcept
of occlusiontrees(OBSP)andappropriatevisibility algo-
rithms(i.e. algorithmsof their traversal).

5. OcclusionTree

An occlusiontreeis aBSPtreebuilt with respectto aset
of occludersanda viewpoint. By relevant traversalof the
OBSPwe determinevisibility of a polyhedralregion with
respectto the selectedoccluderseitherexactly or conser-
vatively. Conservatively meansthat a region with any of
its part visible is never classifiedasinvisible, but invisible
regionscanbeclassifiedaspartiallyvisible.

To meetthecriteriamentionedabovewebuild theOBSP
asfollows: Theselectedoccludersareusedto build a BSP
tree.This treeis usedto establishthefront-to-backorderof
theoccluders.Theoccludersareprocessedin thisorderand
their occlusionvolumesareusedto enlargetheOBSP. The
OBSPconstructionprocessis essentiallythe sameas the
oneof SVBSP. Additionally, in eachin-leaf we storea link
to a fragmentoccludingthe frustum,which correspondsto
this leaf. Theselinks areneededin thevisibility algorithm
to determineif apolyhedrontestedfor visibility liesbehind
theoccluder.

It remainsto show how to determinevisibility of apoly-
hedralregion usingthe OBSP. For a closedpolyhedronit
is sufficientto combinevisibility of its facesappropriately.
We assumethat thesefacesare convex polygons. In the
next sectionwedescribehow to classifyvisibility of a con-
vex polygonusingtheOBSP. In Section5.2wepresentthe
visibility algorithmfor aconvex polyhedron.Both theseal-
gorithmsclassify the visibility exactly with respectto the
occluderstheOBSPwasbuilt for. Sincetheseoccludersare
onlyasubsetof all objectsin themodel,thehierarchicalvis-
ibility algorithmpresentedlatergivesconservativeresults.

5.1. Visibility of Polygon

Thevisibility of a polygoncanbedeterminedfilteringit
down the occlusiontree. Whena leaf is reached,the vis-
ibility of the currentfragmentof thepolygonis classified.
For out-leavesthe fragmentis fully visible. The visibility
in the in-leavescanreachany of the threepossiblestates,
hence,anadditionaltestmustbeapplied.This testwill be
explainedlaterin thissection.

If thereis no fragmentof thepolygonwhich is fully vis-
ible, thepolygonis invisible. Similarly, if no invisible frag-
mentexists, thepolygonis fully visible. In all othercases
thepolygonis partiallyvisiblewith respectto theoccluders
thetreewasbuilt for.

Given a polygon the OBSPis traversedby depthfirst
search (DFS). In eachinternalnodeof the OBSPthe po-
sition of the polygonwith respectto the planereferredin
thenodeis determined.It is essentiallythesameprocedure
asthepolygonfilteringin theconstructionof theOBSP. If
the polygonlies completelyin front or backof the plane,
the visibility algorithmis appliedon the appropriatechild
of the currentnode. Otherwisethepolygonis split in two
fragmentsandthealgorithmis appliedonbothchildrenus-
ing therelevantfragments.In this case,thevisibility states
of thefragmentsmustbecombinedto classifyvisibility of
theirunion(seeTable1).

FragmentA FragmentB A 4 B

F F F
I I I
P X P
X P P

Table 1. Combining visibility states of frag-
ments. Abbre viations: I – Invisib le; P – Par-
tiall y visib le; F – Full y visib le; X – any of the
I,P,F states.

Thus,in eachnodereachedby theDFSthevisibility of
the correspondingfragmentof the polygon is computed.
The visibility of the whole polygoncorrespondsto a visi-
bility stateof theroot nodeof theOBSP. Nevertheless,the
DFScanbe terminatedwhenever a fragmentis foundpar-
tially visible. It follows from the fact that if a fragmentof
the polygon is partially visible, the polygon itself is par-
tially visible (seeTable1). This constraintcanaccelerate
thevisibility algorithmsignificantly. Thespeedupis partic-
ularly remarkablefor largepolygons,whicharelikely to be
partiallyvisible.

As alreadymentioned,the polygon testedfor visibil-
ity neednot lie behindall occluders.Therefore,reaching
an in-leaf node the additional test must be applied. We
usethe link to the occluder-fragmentoccludingthe frus-
tum correspondingto theleaf. Thesupportingplaneof the
occluder-fragmentis usedto establishvisibility of thefrag-
ment,which reachedthe leaf during the DFS. If the frag-
mentis completelyin front of theplane,it is fully visible.
If it is completelyon thebacksideof theplane,it is invis-
ible. Otherwise,it lies on both sidesof the planeandit is
partiallyvisible.

Thevisibility algorithmfor apolygonwith respectto the

occlusiontreeis summarizedin Figure4.

Algorithm Visibility(Node,Polygon)
begin

if Nodeis leaf then
if Nodeis out-leafthen
Visibility 5 VISIBLE

else
Visibility 5 visibility statebasedon
FragmentIntersection(Node.Fragment, Polygon);

else
caseSplit(Polygon,Node.Splitter,Back,Front)of
FRONT : (* passthepolygonto thefront subtree*)

Visibility 5 Visibility(Node.FrontChild,Polygon);
BACK : (* passthepolygonto thebacksubtree*)

Visibility 5 Visibility(Node.BackChild,Polygon);
SPLIT : (* passfragmentsto apropriatesubtrees*)

Visibility 5 Visibility(Node.FrontChild,Front)
if Visibility 687 PARTIALLY then
begin

aux 5 Visibility(Node.BackChild,Back)
Visibility 5 CombineVisibility(aux,Visibility);

end
end

end

Figure 4. Pseudo-code of the pol ygon visibil-
ity algorithm using the OBSP.

5.2. Visibility of Polyhedron

In this sectionwe show how the visibility of a closed
polyhedronfrom a viewpoint is determined.The polyhe-
dronvisibility testwill beusedextensively duringthehier-
archicalvisibility culling.

As alreadymentionedthe visibility stateof a closed
polyhedroncanbe determinedby combiningthe visibility
of its faces. Assumingthesefacesare convex polygons,
theabovepresentedpolygonvisibility algorithmcanbeap-
plied. Thevisibility of thepolyhedronis refinedincremen-
tally, processingits facesoneby one. We call the current
visibility of the polyhedronthe visibility of the union of
thosepolyhedronfaceswhichwerealreadyprocessed.Vis-
ibility of a faceof thepolyhedronwhich is facingtheview-
point is computedusingthepolygonvisibility algorithm.If
it is not the firstfaceprocessed,the visibility of the poly-
hedronis updatedusingthemethodgiven in Table1. The
currentpolyhedronvisibility is combinedwith the visibil-
ity of the facerecentlyprocessed.Whenever the current
polyhedronvisibility reachesthepartially visible state,the
algorithmcanbeterminated.Otherwise,it proceedswith a
next faceuntil all facesarevisited.

In following sectionsthe polyhedronvisibility testwill
beappliedon regions(cells)of thespatialhierarchy. In our
casethesecellsareparallelepipeds.To determinevisibility
of sucha cell at most threerectangularpolygonsmustbe
testedfor visibility (thesepolygonscanbedeterminedby a
tablelookup).

5.3. Hierar chical Visibility Culling

Thevisibility algorithmsmentionedaboveareuseddur-
ing thehierarchicalvisibility culling. Startingfrom theroot
nodeof the hierarchy, the visibility of eachnodeis deter-
minedusingthepolyhedronvisibility algorithm.Recallthat
if a nodeis foundfully visible,all its descendantsarefully
visible. Similarly, if a nodeis found invisible, all its chil-
drenareinvisible. Descendantsof nodesclassifiedaspar-
tially visible arefurther testedto refinetheir visibility (see
Figure5).

Theview-frustumculling canbeeasilymergedinto the
algorithm. Before the visibility test, the position of the
polyhedronwith respectto the view-frustumis computed.
If the polyhedronis lying outsidethe frustum, the corre-
spondingnodeis marked invisible. Whenthe visibility of
all leavesis known, objectsfrom fully visible andpartially
visible leavesaregatheredandrenderedusinga low-level
exactvisibility solver (hardwarez-buffer).

To avoid visibility testingof hierarchynodeswhereonly
few objectsarecontained,weusea node-cost, which is de-
terminedduringpreprocessing.Thenode-costis compared
with acertainthreshold(minimumcost).If thenode-costis
lower thanthethreshold,thenodeis simply classifiedfully
visible.Thenode-costisbasedoncostsof objectscontained
in the region correspondingto thenode. As thecostof an
objectweusethenumberof polygonsforming theobject.

The hierarchicalvisibility algorithm can be appliedto
variouskindsof spatialhierarchies.Forexample,thehierar-
chyof polyhedralboundingvolumescouldbeusedwithout
any modificationof thealgorithm.

5.4. Temporal Coherence

The visibility algorithmspresentedin this papermake
gooduseof the spatialcoherence.However, the temporal
coherencehasnotbeenexploitedsofar.

Supposetheobserver (viewpoint) movessmoothly. It is
of high probability, that hierarchynodesclassifiedaspar-
tially visible remainpartially visible in the following visi-
bility test. This holdsespeciallyfor nodesat thetop of the
spatialhierarchy.

Duringthehierarchicalvisibility determinationwemark
nodeswherethevisibility is ambiguouslydetermined(par-
tially visible).Whenthevisibility of any nodeis unambigu-
ouslydetermined,its parentnodeis unmarked.Whenaleaf

viewpoint occluders

invisible visible
partailly

visible
fully

Figure 5. A 2D example of the hierar chical
visibility culling. Regions classified invisib le
are sho wn in dark; par tiall y visib le ones are
marked lighter . The spatial subdivision is as-
sumed to be an octree .

nodeis reachedit is alwaysunmarked,regardlessof its vis-
ibility . Whenprocessingthehierarchyin thenext framethe
visibility testsarenot appliedon nodesmarkedin thepre-
viouspassof thealgorithm.Theeffect of this modification
is illustratedin Figure6.

Supposeall nodesof thehierarchyareclassifiedaspar-
tially visible. In the next passof the algorithm all inner
nodesareskipped.Thevisibility testis appliedonly on the
leafnodes.Hence,for a binarytreehierarchythemodifica-
tion savesup to 50%of thevisibility testswhich would be
appliedon theinnernodes.

6. ModifiedOcclusionTree

In this sectionwe introducea modifiedocclusiontree
(MOBSP)and the algorithm of its construction. Further,
wepresenta fastconservativevisibility algorithmusingthe
MOBSP.

The OBSPdatastructureis usedextensively in the hi-
erarchicalvisibility algorithm. The elementaryoperation
taking placein both the tree constructionand the visibil-
ity algorithmsis a polygonsplitting. Recall that the split-
ting operationdeterminesfragmentsof thepolygonlying in
negativeandpositivehalf-spacesinducedby a plane.

frame 2

Tested

Marked Visible
Invisible
Partially

frame 1

Figure 6. Illustration of the temporal coher -
ence heuristics. In the first frame no nodes
were skipped and four nodes were marked.
In the second frame the four nodes were
skipped and three nodes were marked. These
three will be skipped in the thir d frame .

Although the splitting can be implementedquite effi-
ciently, the overheadof fragmentallocationremainswhen
thepolygonissplit by theplane.Thesplittingoperationwas
alsoa reasonthatthepolyhedravisibility couldnot beeffi-
ciently determinedby processingthepolyhedraitself. This
is dueto thecomplexity of thesplitting operationfor poly-
hedra(parallelepipeds)aswell asmaintainingits fragments.
Therefore,thedecompositionof polyhedraandthecombi-
nationof visibility statesof its faceshasbeenused.

Motivatedby the idea of the visibility algorithm (tree
traversal)without thenecessityof thepolygonsplitting,we
developedtheconceptof theMOBSP. It is basedon obser-
vation that carefully removing someof the nodes(shadow
planes)of the OBSP, the new datastructurestill contains
all theinformationabouttheocclusionvolumes.Addition-
ally sucha datastructurecanbe traversedeasierusingthe
modifiedvisibility algorithm. The algorithm is conserva-
tive with respectto the selectedoccluders(occludersused
to built the MOBSP).Recallthat the algorithmspresented
so far determinethe visibility stateexactly with respectto
theselectedoccluders.Althoughthemodifiedvisibility al-

gorithmis onlyconservative,weobservedits verygoodper-
formancein practice.

6.1. Construction of the MOBSP

The MOBSPis constructedsimilarly to the OBSP. As-
sumean occlusionvolume of a polygon is being merged
to the MOBSP. The polygonsplitting operationuseddur-
ing filteringis enrichedby flagging (marking)edgesof the
polygonembeddedto theshadow planes.If new fragments
arecreatedby thesplittingoperation,theedgeof bothfrag-
mentsembeddedto theshadow planethatsplitsthepolygon
is flaggedaswell.

Whenanout-leafis reachedduringthepolygonfiltering,
only unflaggedpolygon edgesare usedto createshadow
planesenlarging the MOBSP. Shadow planesthat would
havebeencreatedby flaggededgesmustbealreadypresent
in theMOBSP(otherwisetheedgeswouldnot beflagged).
If an out-leafis reachedandall edgesof the filteredfrag-
mentareflagged,no internalnodesareaddedto the tree.
Instead,the out-leaf is replacedby an in-leaf andthe link
to the fragmentin the new in-leaf is set. The difference
betweenanocclusiontreeandits modifiedversionis illus-
tratedin Figure7.

It is obvious that the MOBSP containslower or equal
numberof nodesthantheOBSPbuilt usingthesamesetof
occluders.It remainsto show that the visibility algorithm
asdescribedbeforegivesa correctanswerif appliedto the
MOBSP. Let usfocusagainonthestructureof theMOBSP.
Assumeanout-leafis reachedduringfilteringandthecor-
respondingfragmentcontainsflaggededges.Someshadow
planesarenot addedto the treebecausethecorresponding
edgeswereflagged.

Ignoring someshadow planesthe occlusionvolumeof
a fragmentis enlarged. This larger occlusionvolume is
mergedto thetreeby replacingcertainout-leaf.Obviously,
eachnodeof the treeimplies a uniquepathfrom the root.
During the polygonvisibility algorithm,the filteredpoly-
gonis clippedby all theplaneson thepathto anode.In the
subtreeof thenodeit is notnecessaryto clip thepositionof
the filteredfragmentto any planewhich alreadyoccurred
onthepath.Theflaggededgeswouldgenerateexactlysuch
planes. Hence,ignoring theseplanesdoesnot effect the
correctnessof thevisibility algorithm.

In the next sectionwe presenta modifiedvisibility al-
gorithmfor theMOBSP. In thepreviously presentedalgo-
rithms, the polygon visibility algorithm hasbeenusedto
determinethevisibility of apolyhedron.Themodifiedalgo-
rithm determinesthevisibility of regionsof variousshapes
directly. It only usestheclassificationof thepositionof the
regionwith respectto aplane.

in out

out

out

out

out

in

in out

out

out

out

out

in

f

a) OBSP tree b) MOBSP tree

f
out

a

d

e

b

c

f

g

a

b

c e

d

b

c

a

e

d

g

edge
flagged

Figure 7. The diff erence between the OBSP
and the MOBSP. Both trees are constructed
with respect to the same occ luder s. The oc-
cluder s are sho wn as seen from the view-
point. Node g is not present in the MOBSP,
since the corresponding occ luder -edge was
flagged.

6.2. ConservativeVisibility of a Region

Assumethat the positionof a region with respectto a
splitting planecanbedetermined.It indicatesif theregion
lies in negative(back),positive(front), or bothhalf-spaces.

Given this operation,theMOBSPis traversedsimilarly
to the OBSPpolygon visibility algorithm. In eachinter-
nalnodeof thetreewedeterminethepositionof theregion
with respectto the shadow planeandapply the algorithm
recursively on appropriatesubtrees.No attemptto split the
region is madeevenif it liesonbothsidesof theplane.

The modifiedvisibility algorithm is conservative only.
It implies that the results(i.e. visibility classificationof
leaves) can vary comparingto the exact algorithmspre-
sented.Reachinganin-leaf,theregionis testedfor position
to the supportingplaneof the occluder-fragmentreferred
in the leaf. Call this leaf the currentleaf. As mentioned
previously, if the region lies on bothsides(half-spaces)of
thesupportingplane,it wouldbeclassifiedpartiallyvisible.
It is possiblethata partof theregion crossingthesupport-

ing planeis actuallyoccludedby anotheroccluder-fragment
thantheonereferredin thecurrentleaf.

Sucha situationcanbediscoveredby testingtheregion
for an intersectionwith the occluder-fragment. If they do
not intersect,the region is classifiedinvisible with respect
to thecurrentleaf. In otherwordsit is invisible in thefrusta
inducedby the viewpoint andthe fragment. Note that the
regioncanstill befoundpartiallyvisiblewhenthevisibility
of all leavesreachedduringthevisibility algorithmis com-
bined. In thecaseof anaxis-alignedbox, a fastalgorithm
canbeusedfor thebox/polygonintersection[6]. In general,
it is unclearif the possibleimprovementin correctnessof
thealgorithmis worth the time spentby the additionalin-
tersectiontest.

Here we mentionanotherpossiblemodificationof the
algorithm. It is possibleto apply similar intersectiontests
alsoin the innernodesof theMOBSP. Thenthealgorithm
alwaysdeterminesvisibility exactly with regardto the se-
lectedoccluders.However, sucha traversalcanloosesev-
eral desiredfeaturesof the modifiedvisibility algorithm.
Thesearethesimplicity of traversal,generality, andspeed.
Dueto lack of spacewe decidednot to presentthemodifi-
cationin detail.

9 9 9 9 9 9 9 9 9 9 9 9 9

: : : : : : : : : : : : :

b

a

c

misclassification region

c

a

f

b

MOBSP

e

d

fa

misclassifing plane

e

d

misclassification
path

in

in

out

out

outout

out

Figure 8. An example of disad vantageous
configuration of occ luder s. The shado w
planes of the MOBSP are sho wn by thin lines.
The invisib le pol yhedra inter secting both the
shado w plane ; and the marked region is said
to be par tiall y visib le.

Wehavementionedthatthemodifiedvisibility algorithm
is conservative.Thesituationwhenaregionis misclassified
aspartially visible is depictedin Figure8. In general,it is
difficult to give a probabilisticanalysisof the numberof
caseswhenthealgorithmfails to give anexact result. As-
sumetheconfigurationof occludersasgivenin thefigure.It
canbeseenthatthealgorithmis likely to giveanimprecise

(conservative)resultif theangle< betweenthehighlighted
shadow planesgetslarger. Nevertheless,in mostcasesthe
algorithmperformswell in practiceasdocumentedin the
next section.

7. Results

In this sectionwe documentthe behaviour of the algo-
rithm presentedin this paper. Several modelsof architec-
tural interiorswereusedto compareefficiency of thealgo-
rithms. As a referencewe usedthe hierarchical frustum
culling [14] with no visibility processing.The resultsare
summarizedin Table2. Eachline correspondsto average
valuesobtainedin thescopeof onewalk-through.

The Time fieldis an averageframe time. The Over-
headfielddepictsan additionaloverheadof the visibility
culling algorithms. This includesthe dynamic occluder
selection,building of the BSP of occluders,building the
OBSP (MOBSP), and the hierarchicalvisibility culling.
The Speedupis a fraction of the averageframe time of
thepureview-frustumculling andtheactualaverageframe
time. The Rendered polygonsfieldcontainsthe average
numberof polygonsrenderedin oneframe. Theothertwo
parametersshown in the tableareuser-specifiedconstants
influencingbehaviour of thealgorithm.Thenumberof oc-
cludersusedto build theOBSP(MOBSP)is shown in the
Occluders field.ThefieldcalledMethodrepresentstheal-
gorithmusedfor visibility culling. Its meaningis explained
below thetable.In all visibility culling algorithmsthetem-
poralcoherenceheuristicswasused.Theminimumcostof
the nodeto be testedfor visibility was 2=(. Recallthat the
costof anodeexpressesthenumberof polygonsreferredin
thenode.For eachmeasurement�-(�(detailedobjectswere
spreadrandomlyin thescene.We useda virtual plantcon-
sistingof 0)>)> polygons.

Plotsof frametimesandnumbersof renderedpolygons
measuredduringa walk-throughof anarchitecturalmodel
(big-7) are shown in Figures9 and 10. The speedupof
therenderingachievedfor thetestedmodelsvariesbetween�)?A@=2 and BC?A@=2 . We observedthatthespeedupis not linearly
proportionalto the numberof occludersusedfor the visi-
bility culling. Increasingthenumberof occludersusedby
factorof two, the speedupis usuallyincreasedmuchless.
Importantis thatin sucha situationtheoverheadof visibil-
ity culling is alsoincreasedlessthantwo times.

Informally, we explain the behaviour of the algorithm
asfollows: Firstly, assumethe occlusiontreecontainsoc-
cludersthatoccludelargeportionof theview. It is of high
probabilitythatanotheroccluderis foundinvisible. In this
casetheocclusiontreeis notenlarged.Secondly, theocclu-
sion treeinheritsthe logarithmicsearchpropertiesof hier-
archies.Therefore,the numberof stepsof thepolyhedron
visibility algorithmwith theocclusiontreeis usuallymuch

Scene Method Occluders Renderedpolygons Overhead[ms] Time [ms] Speedup

soda-5 F — 18192 — 276.5 1.00
soda-5 FME 8 9466 3.7 157.3 1.75
soda-5 FME 16 7390 5.9 139.0 1.99
soda-5 FME 24 6537 7.9 116.0 2.38
soda-5 FME 32 5941 9.8 109.8 2.52
soda-5 FME 50 5490 14.2 109.5 2.53
soda-5 FSE 16 6512 12.7 120.5 2.29
soda-5 FSE 24 5569 16.0 110.5 2.50
soda-5 FSE 32 4725 19.1 100.1 2.76
soda-5 FMC 16 7988 5.4 135.9 2.03
soda-5 FMC 24 7362 7.3 129.3 2.14

big-7 F — 12587 — 182.0 1.00
big-7 FME 16 3641 8.8 71.5 2.55
big-7 FME 24 2286 10.2 54.6 3.33
big-7 FME 32 1818 11.6 48.5 3.75
big-7 FSE 24 2214 19.9 63.4 2.87
big-7 FMC 16 3640 8.4 74.3 2.44
big-7 FMC 24 2263 9.7 51.4 3.54

soda F — 15297 — 315.2 1.00
soda FME 24 4744 10.1 119.7 2.63
soda FSE 24 4388 23.7 128.0 2.46

F – view-frustumculling
S – OBSPtree+ standardvisibility algorithm
M – MOBSPtree+ conservativevisibility algorithm
E – exactoccluder-fragment/parallelepipedintersectiontest
C – conservativeoccluder-fragment/parallelepipedintersectiontest

Table 2. Results of the hierar chical visibility culling. The table sho ws the average number of pol ygons
rendered, the average frame-time and the speedup over the view-frustum culling for diff erent scenes
and methods of the visibility culling. Measured on SGI O $, 64MB RAM.

lower thanthenumberof occluders.
It follows from Table 2 that the best results were

achieved by the FME method. It is the combinationof
theMOBSPandthe conservative visibility algorithmwith
the leaf-fragment-intersectiontest. Undercertaincircum-
stances,we observedthat theFSEmethodled to betterre-
sults.Particularly, whena detailedobjectwasfoundinvisi-
ble by FSE(andnot by FME), the time savedin rendering
exceededthe time neededfor morecomplex visibility de-
termination.

8. Conclusion

In this paperwe have introducedthe conceptof occlu-
siontrees.It wasshown thattheocclusiontreescanbeused
to determinethe viewpoint-to-region visibility efficiently
by exploiting the spatialcoherenceof occluders.We pre-
sentedanalgorithmdeterminingthevisibility of a polyhe-

draexactly with respectto theselectedoccluders.Further,
afastconservativevisibility algorithmapplicableto regions
of moregeneralshapewasdescribed.Althoughthepreci-
sion of the conservative algorithmis generallylower than
theexactone,it performswell in practice.

Theconceptof occlusiontreeswasusedin thehierarchi-
calvisibility culling for therenderingof complex models.It
wasshown that,usingtheocclusiontree,wecanefficiently
avoid renderingof invisible partsof a model. For models
with high depthcomplexity, thesesavings aresignificant.
Sincethevisibility is determinedin a hierarchicalfashion,
thespatialcoherenceis exploitedin thealgorithm.We also
presentedthe temporalcoherenceheuristicsfor thehierar-
chicalvisibility culling.

9. Future Work

Many themesfor futurework have beenencounteredin
thepaper. Someof the themesarerelatedto theocclusion
treedatastructureitself, othersto theapplicationof occlu-
siontreesin thescopeof hierarchicalvisibility culling.

We assumedoccludersto be sufficientlylarge convex
polygons. This assumptionis often falsein practice. We
proposemodelsimplificationfor thepurposesof visibility
algorithms. The simplifiedmodeldescriptionshouldcon-
sistsolelyof convex polygonswhichshouldkeepocclusion
propertiesof objectsthey weregeneratedfrom.

Anothertopic for futurework concernstheoccluderse-
lection. It canbeadvantageousto determinethesetof po-
tentialoccludersin preprocessing[9, 3]. We currentlyde-
velopanalgorithmthatcomputesthepotentialoccludersfor
a certainregion. The algorithmusesa sophisticatedsam-
pling schemeto determinetheassetof anoccluder.

Weusedauser-specifiedconstant(minimumcost)to de-
cide if a nodeof the spatialhierarchyshouldbe testedfor
visibility. Theminimumcostcouldbedeterminedautomat-
ically basedon theratio of thespeedof therenderingsub-
systemandthespeedof theprocessor. It couldalsoreflect
how the algorithmsucceedsin the visibility culling for a
particularmodel.

RegardingtheMOBSP, wearegoingtogiveaprobabilis-
tic analysisof theconservative visibility algorithm. Based
onthisanalysis,wewantto increasetheprecisionof theal-
gorithm.It shouldbeachievedby insertingadditionalnodes
to theMOBSP, wheretheprobabilityof visibility misclas-
sificationis high.

Currently, the occlusiontree is built from a scratchin
eachrenderingframe.Westudythepossibilityof exploiting
thetemporalcoherencein theconstructionof theocclusion
tree. Finally, we would like to apply the occlusiontrees
to acceleratethe castingof shadow raysin the ray tracing
algorithm.

Acknowledgements

This work has been supportedby a grant number
1252/1998from the GrantAgency of the Ministry of Ed-
ucationof theCzechRepublic.

References

[1] H. Chenand W. Wang. The feudal priority algorithm on
hidden-surfaceremoval. In Proceedingsof SIGGRAPH’96,
pages55–64,Aug. 1996.

[2] N. Chin andS. Feiner. Near real-timeshadow generation
usingBSPtrees. In Proceedingsof SIGGRAPH’90, pages
99–106,Aug. 1990.

[3] S.Coorg andS.Teller. A spatiallyandtemporallycoherent
objectspacevisibility algorithm.TechnicalReportTM-546,
Departmentof ComputerGraphics,MIT, Feb. 1996.

[4] F. Durand,G. Drettakis,andC. Puech. The 3D Visibility
Complex, a new approachto theproblemsof accuratevisi-
bility. In EurographicsWorkshopon Rendering, June1996.

[5] H. Fuchs,Z. M. Kedem,andB. F. Naylor. On visible sur-
facegenerationby apriori treestructures.In Proceedingsof
SIGGRAPH’80, pages124–133,July1980.

[6] N. Greene.Detectingintersectionof a rectangularsolidand
a convex polyhedron. In GraphicsGemsIV, pages74–82.
AcademicPress,Boston,1994.

[7] N. Greene.Hierarchicalpolygontiling with coveragemasks.
In Proceedingsof SIGGRAPH’96, pages65–74,Aug.1996.

[8] N. Greene,M. Kass,andG. Miller. HierarchicalZ-buffer
visibility. In Proceedingsof SIGGRAPH’93, pages231–
238.ACM Press,Aug. 1993.

[9] T. Hudson, D. Manocha, J.Cohen,M.Lin, K.Hoff, and
H.Zhang. Acceleratedocclusion culling using shadow
frusta.In Proceedingsof theThirteenthACM Symposiumon
ComputationalGeometry, June1997,Nice, France, 1997.

[10] M. Kaplan. Space-tracing:A constanttime ray-tracer. In
SIGGRAPH’85 Stateof theArt in Image Synthesisseminar
notes, pages149–158.AddisonWesley, July1985.

[11] D. Luebke and C. Georges. Portalsandmirrors: Simple,
fast evaluation of potentially visible sets. In 1995 Sym-
posiumon Interactive3D Graphics, pages105–106.ACM
SIGGRAPH,Apr. 1995.

[12] B. Naylor, J. Amanatides,andW. Thibault. Merging BSP
treesyields polyhedralset operations. In Proceedingsof
SIGGRAPH’90, pages115–124,Aug. 1990.

[13] H. Plantingaand C. Dyer. Visibility, occlusion,and the
aspectgraph. International Journal of ComputerVision,
5(2):137–160,1990.

[14] J. Rohlf and J. Helman. IRIS performer: A high perfor-
mancemultiprocessingtoolkit for real–Time3D graphics.
In Proceedingsof SIGGRAPH’94, pages381–395,July
1994.

[15] S. Teller andP. Hanrahan.Global visibility algorithmsfor
illumination computations.In Proceedingsof SIGGRAPH
’93, pages239–246,1993.

[16] S. J. Teller. Visibility Computationsin DenselyOccluded
Polyhedral Environments. PhD thesis,Dept. of Computer
Science,University of California, Berkeley, 1992. Also
availableasTechnicalReportUCB//CSD-92-708.

[17] S.J.TellerandC.H. Séquin.Visibility preprocessingfor in-
teractive walkthroughs.In Proceedingsof SIGGRAPH’91,
pages61–69,July1991.

[18] W. C. ThibaultandB. F. Naylor. Setoperationson polyhe-
drausingbinaryspacepartitioningtrees.In Proceedingsof
SIGGRAPH’87, volume21,pages153–162,July 1987.

[19] R. YagelandW. Ray. Visibility computationfor efficient
walkthroughof complex environments. Presence:Teleop-
erators andVirtual Environments, 5(1),1995.

[20] H. Zhang,D. Manocha,T. Hudson,andK. Hoff. Visibility
culling usinghierarchicalocclusionmaps.TechnicalReport
TR97-004,Departmentof ComputerScience,Universityof
NorthCarolina- ChapelHill, Feb. 211997.

0

50

100

150

200

250

300

350

400

450

500

0 50 100 150 200 250 300 350 400

Rendering Time A [ms]
Rendering Time B [ms]

Figure 9. Rendering times obtained for a sequence of 400 frames during walkthr ough of the big-7
scene . Curve A corresponds to view-frustum culling onl y; cur ve B inc ludes the hierar chical visibility
culling using 32 occ luder s (method FME).

0

5000

10000

15000

20000

25000

30000

35000

40000

0 50 100 150 200 250 300 350 400

Rendered Polygons A
Rendered Polygons B

Figure 10. The amount of pol ygons rendered during a sequence of 400 frames during walkthr ough
the big-7 scene . Curve A corresponds to view-frustum culling onl y; cur ve B inc ludes the hierar chical
visibility culling using 32 occ luder s (method FME).

