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Abstract
We compare four existing dynamic memory allocators optimized for GPUs and show their strengths and weak-
nesses. In the measurements we use three generic evaluation tests proposed in the literature and add one with a
real workload where dynamic memory allocation is used for building the kd-tree data structure. Following the
performance analysis we propose a new dynamic memory allocator and its variants that address the limitations of
the existing dynamic memory allocators. The new dynamic memory allocator uses few resources and is targeted
towards large and variably sized memory allocations on massively parallel hardware architectures.

Categories and Subject Descriptors (according to ACM CCS): D.1.3 [Programming Techniques]: Concurrent
Programming—Parallel programming D.3.3 [Programming Languages]: Language Constructs and Features—
Dynamic storage management D.4.2 [Operating Systems]: Storage Management—Allocation/deallocation strate-
gies

1. Introduction

The increase in capabilities and performance of GPUs al-
lows for programming techniques known from the CPUs to
be used on GPUs as well. One of such techniques is the abil-
ity to dynamically allocate memory directly from the kernel
running on the GPU. This ability opens up new possibilities
for implementing algorithms targeting GPUs and allows for
entirely new algorithms to be ported to GPUs. While a sig-
nificant amount of work has been devoted to dynamic mem-
ory allocations on the CPU, the GPU memory allocation has
only recently drawn some interest. The design of a GPU dy-
namic memory allocator (further referred to as allocator) is
a challenging task because of the massively parallel nature
of GPUs. Thousands of threads may be allocating memory
at the same time making the state-of-the-art CPU allocators
computationally or memory inefficient.

In this paper we compare and analyze several formerly pub-
lished and available algorithms for dynamic memory allo-
cations on the GPU. Then we propose a new allocator that
addresses some of the limitations found in the current solu-
tions. In particular, we target allocators that behave well in
real workloads, in our case the construction of a kd-tree data
structure. In such scenarios, factors like the register usage
directly influence the performance of the allocation (acquir-
ing a pointer to a continuous chunk of memory of a given

size) and deallocation (returning the chunk so that it can be
reused by upcoming allocations) operations and may lead to
different results than when using generic tests.

The paper is structured as follows. Section 2 summarizes the
literature on dynamic memory allocations on the GPU. The
existing allocators included in our comparison are described
in more detail in Section 3. In Section 4 we propose our new
allocator for GPUs. The evaluation tests used for the compar-
ison are defined in Section 5. Section 6 gives the measure-
ments of the allocators performance in the evaluation tests.
Finally, Section 7 summarizes our findings and presents pos-
sibilities for future research.

2. Related Work

The design of allocators for single-core and multi-core sys-
tems is a well researched area. To achieve low latency and
good caching behavior the state-of-the-art CPU allocators
maintain one private heap per thread [SKL11, LC12]. Such
technique does not scale well to many-core architectures
with thousands of threads running concurrently because it
introduces too high memory overhead [SKKS12].

In recent years several researchers have shown interest in the
area of dynamic memory allocation on the GPU. The built-in
allocator distributed with the CUDA framework [NBGS08]
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was introduced in version 3.2 of the SDK [NVI10]. We refer
to this allocator as CudaMalloc.

Huang et al. [HRJ∗10] presented a two-level allocation
scheme for the many-core architectures called XMalloc.
On the first level, allocations of superblocks, serving sub-
sequent allocations, are handled by updating a doubly linked
list that defines the usage of the memory pool (a continuous
block of memory). On the second level, individual chunks of
memory are allocated from these superblocks. Deallocated
chunks of memory are cached for faster reuse. To accelerate
concurrent allocations by threads from the same SIMD unit
(a warp) the individual allocations are coalesced into a single
allocation and performed by a single thread of the warp.

Because of the addition of hardware caches in the newer gen-
eration of GPUs, an updated version of the XMalloc allo-
cator was presented by the same authors [HRJ∗13]. In this
version the allocation of superblocks in the doubly linked
list is replaced with CudaMalloc allocator introduced in
the newer version of CUDA. The caches for the fixed-size
lists of deallocated items were also changed.

The dynamic allocation of GPU memory in CUDA was fur-
ther researched by Steinberger et al. [SKKS12] who call
their allocator ScatterAlloc. They ported some of the
current CPU allocators to the GPU and showed that those
are not efficient in the context of massively parallel pro-
cessors. Based on the findings they set the design goals for
a GPU allocator. They compare ScatterAlloc against
CudaMalloc and XMalloc showing that hashing signif-
icantly decreases the allocation times and thus Scatter-
Alloc outperforms the previous approaches.

Another CUDA allocator FDGMalloc was proposed by
Widmer et al. [WWWG13]. The authors claim that their
allocator is faster than ScatterAlloc by a factor of 10
to 1000. We discuss ScatterAlloc and FDGMalloc in
more depth in the next section as they are among the fastest
allocators. A similar idea to Widmer et al. was presented
by Grimmer et al. [GKR13]. Their method uses some CPU
management and allows for deallocating of individual mem-
ory allocations. The authors conclude that their allocator is
slower than ScatterAlloc.

Recently, a memory allocator has also been developed for
OpenCL by Spliet et al. [SHGV14]. In OpenCL the hard-
ware specifics are less exposed to the programmer than
in CUDA making the implementation more challenging.
Their allocator is faster than CudaMalloc on NVIDIA
devices, but significantly slower than ScatterAlloc
through an indirect comparison. Very recently Steinberger et
al. [SKK∗14] have proposed a list based allocator for allo-
cating geometry buffers that is based on the buddy allocator
scheme of Knowlton [Kno65].

3. Existing Allocators

We use four existing allocators with available source codes
or binaries for our comparison. We do not use XMalloc as
it was shown [SKKS12] to be slower than ScatterAl-
loc. From the results given in their corresponding papers
these four allocators should include the fastest allocators for
GPUs. In this section we describe in more detail how they
operate and highlight their strengths and weaknesses.

3.1. AtomicMalloc

The simplest allocator can be implemented by using a sin-
gle atomic instruction (see Algorithm 1). This allocator was
hinted in several publications (e.g. Tzeng et al. [TPO10]),
but to the best of our knowledge it was never formally de-
scribed and tested for performance. The atomic addition
(atomicAdd(L,N)) function takes two arguments: a memory
address A and an integer N. It atomically performs A ←
A+N and returns the value previously stored at address A.

Algorithm 1: AtomicMalloc allocation.

mallocAtomicMalloc(size) begin1

offset← atomicAdd(memOffset, size);2

return mem + offset;3

end4

An atomic addition to a single global variable memOffset
gives each allocating thread a unique offset to the begin-
ning of a memory chunk of size size. The allocated pointer
is computed by adding the pointer to the start of the memory
pool mem and the returned offset. This kind of memory allo-
cation consisting of a single instruction should be the fastest
possible. However, due to a single point of conflict caused by
the hardware executing this instruction atomically, threads
are serialized in their execution, slowing down the alloca-
tor. Moreover, memory cannot be deallocated because the
returned offset only increases. Nevertheless, some tasks e.g.
allocation of a new node of a data structure do not require
deallocation of the memory.

3.2. CudaMalloc

Another allocator we use in our comparison is the one built-
in into the CUDA framework [NBGS08]. This allocator uses
an unpublished algorithm and was reported by several papers
to be rather slow [SKKS12, HRJ∗13, WWWG13].

3.3. ScatterAlloc

Further, we use the allocator ScatterAlloc of Stein-
berger et al. [SKKS12] which is targeted towards many par-
allel allocations with roughly the same size. Their method
pre-splits the memory pool into pages with regular size and
groups them into blocks. During allocation hashing is used
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to select a page from the currently used block, which causes
the allocations to be distributed in memory and prevents con-
flicts of atomic operations. The page itself can then be split
into a maximum of 210 chunks that are individually allo-
cated and deallocated. If memory larger than the page size
is requested, the allocating thread tries to lock successive
pages to serve the request. If the thread fails to acquire all
the needed pages, it unlocks the ones already locked and
restarts the search in another location. To lower the proba-
bility of restarting, only a single thread may try allocating a
large memory chunk. This serializes all allocation requests
of large memory chunks and is only efficient when a few
threads are allocating large chunks of memory concurrently.

3.4. FDGMalloc

We also use the FDGMalloc of Widmer et al. [WWWG13].
In their allocator each warp requests large blocks (su-
perblocks) of memory from a global memory pool using the
built-in CudaMalloc similar to the method of Huang et
al. [HRJ∗13]. Each warp manages its own list of allocated
superblocks without any synchronization with other warps.
For the allocation inside these superblocks no header infor-
mation is used, only the pointer to the unoccupied memory is
updated. This limits the memory overhead of individual allo-
cations but at the same time prevents the allocations from be-
ing deallocated separately. The allocated memory can only
be deallocated all at once. If only a single allocation or allo-
cation larger than the superblock size is requested, the allo-
cator’s behavior is determined by the CudaMalloc serving
these requests. However, when multiple allocations smaller
than the superblock size are requested by a warp these are
served very quickly.

4. Proposed Allocators

All of the allocators summarized in the previous section have
some limitations. AtomicMalloc cannot reuse memory,
CudaMalloc is generally very slow, and ScatterAlloc
and FDGMalloc are biased towards small and repetitive al-
locations. In this section we propose allocators that alleviate
some of these limitations.

4.1. AtomicWrapMalloc (AWMalloc)

We propose a variant of AtomicMalloc that is capable
of memory reuse. This modification allocates memory in a
circular memory pool (see Algorithm 2).

If enough memory is present, the allocator works the same
way as AtomicMalloc. On the other hand, when the new
allocation does not fit into the memory pool (returned offset
plus the requested size is larger than the size of the mem-
ory pool memorySize) a wrapped allocation from the be-
ginning of the memory pool is attempted using atomicCAS.

Algorithm 2: AWMalloc allocation.

mallocAWMalloc(size) begin1

offset← atomicAdd(memOffset, size);2

newOffset← offset + size;3

while (newOffset > memorySize) do4

newOffset← atomicCAS(memOffset,5

newOffset, size);
if (newOffset = offset + size) then6

return mem;7

else if (newOffset + size) ≤ memorySize then8

offset← atomicAdd(memOffset, size);9

newOffset← offset + size;10

else11

offset← newOffset − size;12

return mem + offset;13

end14

The atomic Compare-and-Swap (atomicCAS(A,E,N)) func-
tion takes three arguments: a memory address A, a value E
expected to be stored at the location, and a value N to re-
place the expected value. If E is indeed stored at address A,
it is atomically replaced with N. In any case the value stored
at memory given by address A at the time of the atomic op-
eration is returned. If the wrap is not successful due to some
other thread modifying the memOffset, two cases may occur.
Either the memOffset was already wrapped by some other
thread in which case a new allocation using atomicAdd is at-
tempted or the wrapped allocation is attempted again using
the returned offset newOffset.

The wrap may result into an overwrite of the previously allo-
cated memory, breaking the correctness of the computation.
However, if a large enough memory pool is used and the
threads use the allocated memory for only brief periods, this
allocator can provide the performance of AtomicMalloc
with significantly decreased memory requirements.

Given the memory reuse limitations of AtomicMalloc
and AWMalloc they cannot be considered as full alloca-
tors. We include their measurements in this study mostly for
comparison to other allocators since their performance can
be considered as a lower bound.

4.2. CircularMalloc (CMalloc)

Our second proposed allocator organizes the memory pool as
a singly linked list. We have also attempted to organize the
memory pool as a doubly linked list, but it proved slightly
slower in our measurements.

Similar to AWMalloc we allocate memory from a circular
memory pool. Since we design an allocator that is able to
also deallocate memory, each allocated chunk of memory is
prefixed with a header. This header consists of two 4 Byte
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Figure 1: CMalloc allocation and deallocation. The header
for each allocation consists of the flag and the next pointer.
The memory pool is pre-split into arbitrarily sized chunks
and the end of the memory pool is marked with a header that
stores a used flag and a pointer to the beginning of the mem-
ory pool, making the memory pool circular. Depending on
the size of the allocation request and of the current chunk a
new chunk may be created during allocation. During deallo-
cation a chunk may be merged with the next free chunk.

words: the allocation flag and the offset of the next chunk.
Allocating from a memory pool consisting of a single free
chunk would require serialization of the threads locking the
chunk’s flag as in the AWMalloc but with a much slower
time for a single allocation. The example of allocation and
deallocation using CMalloc is shown in Figure 1.

We propose to pre-split the memory pool into many free
chunks as in ScatterAlloc. However, in our allocator
the chunk sizes need not be uniform and can be optimized for
the algorithm that uses the allocator. We pre-split the mem-
ory pool into chunks of size C(i):

C(i) = R/2blog2(i)c, (1)

where C(1) is the size of the first, largest chunk. This for-
mula for the chunk sizes creates a structure similar to a bi-
nary heap, where R is the size of the root node (see Figure 2).
The R is computed so that the largest binary heap fits into the
memory pool. The memory not used by the heap forms the
last chunk. In our tests such division provided in most cases

the best performance while having high flexibility in the size
of the allocation requests that can be served by the allocator.

mem memOffset
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C(5)
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R/4
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...

Figure 2: Memory pool pre-splitted into a binary heap.

The pseudocode for the CMalloc allocator is shown in Al-
gorithm 3. The offset to the beginning of the allocated mem-
ory of size size is acquired by finding a first large enough
free chunk starting from a chunk at the offset stored in the
shared global variable memOffset. This chunk has to be large
enough to contain both the requested size Bytes and the allo-
cation header of size HEADER_SIZE (8 Bytes). Within this
header the pointer to the next chunk is stored at position
NEXT_OFS (4 Bytes) after the header start.

During allocation we use atomic Compare-and-Swap func-
tion on the chunk’s flag in an attempt to set it as used. If the
acquired chunk is larger than the requested size times the
maximum allowed fragmentation MAX_FRAG, the chunk is
split into two. After the newly created chunk header is writ-
ten to the memory pool the allocating thread has to wait
for the memory write to be visible to the other threads be-
fore linking the chunk. The __threadfence [NVI12] function
from the pseudocode blocks the executing thread until the
memory writes performed by this thread prior to calling the
function are guaranteed to be visible to all other launched
threads. Without this call the list might be in incoherent state
for the other threads. Then the memOffset is set to the chunk
following the recently allocated one. The final pointer to the
allocated memory is computed by adding the pointer to the
start of the memory pool mem, the offset of the allocated
chunk offset and the size of the header HEADER_SIZE.

When the memory is deallocated, the chunk can be possibly
merged with the following memory chunk. If the following
chunk is free and can be set as used (so that no other thread
may use it), the next pointer of the chunk being deallocated is
set to the next pointer of the following chunk. Again we have
to wait for the memory write to be visible to other threads
before setting the chunk’s flag as free. For some sequences
of allocations and deallocations merging only with the fol-
lowing chunk may lead to a very fragmented memory pool.
In such a case the doubly linked list is a better option or the
buddy allocator scheme of Knowlton [Kno65] can be used.

Although list-based allocators have been previously
tested [HRJ∗10, SKKS12] our approach uses the GPU re-
sources efficiently leading to high performance. Compared
to the allocator of Huang et al. [HRJ∗10] our allocator
uses a simpler implementation of a linked list. In particular,
we utilize only one level of allocations and no custom
caches are used for deallocated items. This is possible
thanks to the advances in the graphics hardware, mainly
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Algorithm 3: CMalloc allocation and deallocation.

mallocCMalloc(size) begin1

offset← memOffset;2

size← size + HEADER_SIZE;3

while (true) do4

lock← atomicCAS(mem[offset], Free, Used);5

next← mem[offset + NEXT_OFS];6

csize← next − offset; // Chunk size7

if (lock = Free) then8

if (size ≤ csize) then9

break;10

mem[offset]← Free;11

offset← next;12

newNext← next;13

if (size + HEADER_SIZE ≤ csize and14

size·MAX_FRAG ≤ csize) then15

newNext← offset + size;16

mem[newNext]← Free;17

mem[newNext + NEXT_OFS]← next;18

__threadfence();19

mem[offset + NEXT_OFS]← newNext;20

memOffset← newNext;21

return mem + offset + HEADER_SIZE;22

end23

freeCMalloc(ptr) begin24

// Access the header before the
// data pointed to by ptr
next← ptr[−HEADER_SIZE + NEXT_OFS];25

if (atomicCAS(mem[next], Free, Used) = Free)26

then
next← mem[next + NEXT_OFS];27

memOffset← next;28

ptr[−HEADER_SIZE + NEXT_OFS]← next;29

__threadfence();30

ptr[−HEADER_SIZE]← Free;31

end32

the addition of hardware cache hierarchies and improved
atomic instructions.

4.3. Circular Fused Malloc (CFMalloc)

Given the flag for each chunk holds just the free / used in-
formation it can be contained in a single bit of data. In case
fewer than 231 words need to be allocable the flag can be
fused with the offset of the next chunk (a 32-bit value). This
allows only one word of memory to be read or written to
during allocation and deallocation leading to a simpler code.

4.4. Circular Multi Malloc (CMMalloc) & Circular
Fused Multi Malloc (CFMMalloc)

The two previous allocators can be further extended to
achieve higher performance at the cost of increased mem-
ory fragmentation. The single offset into the memory pool
memOffset can be replaced with an array of offsets (one for
each streaming multiprocessor) pointing initially to differ-
ent chunks. This technique corresponds to the hashing used
in ScatterAlloc and decreases the number of conflicts
of atomic operations during the allocation and deallocation.

We also change the sizes of the pre-split chunks in the mem-
ory pool. Each of the offsets in the array initially points to a
first chunk of a heap like structure created according to equa-
tion 1. The individual heaps use the size of the root chunks
R′ = R/#SM, where #SM is the number of streaming multi-
processors on the GPU. These smaller heaps are linked to-
gether in a singly linked list, keeping the same structure of
the memory pool as in the two previous allocators.

5. Evaluation Tests

To test the allocators we have implemented three generic
evaluation tests introduced in the previous papers on dy-
namic memory allocation on GPUs. In addition to these we
have developed a real workload for the memory allocation.

[AD] Alloc Dealloc. This simple test kernel allocates mem-
ory for each warp and then immediately deallocates the
memory [HRJ∗10, p. 5] .

[ACD] Alloc Cycle Dealloc. This test kernel [WWWG13,
p. 5] is an extension of the previous one. Inside a single ker-
nel multiple iterations of allocation are requested followed
by deallocation of all of the allocated memory. Multiple al-
locations increase the pressure on the allocator and show the
allocators ability to optimize these subsequent allocations.

[P] Probability. This test [SKKS12, p. 7] is again a variant
of the first test. Each kernel launches a memory allocation
with a probability pAlloc = 0.75 if there is no currently al-
located memory, and deallocates the memory with probabil-
ity pFree = 0.75 if there is an allocated memory. The same
kernel is called multiple times so that a more complex mix
of allocations and deallocations emerges.

[DS] Data structure build. We build a spatial data structure
(kd-tree) on the GPU. In this data structure primitives may
be duplicated in both the left and right children of the split
node. To solve this duplication of primitives two new chunks
of memory have to be allocated to hold the primitives in the
left and right child nodes. This scenario is highly challeng-
ing since a large scale of allocation sizes could be requested
during the build and the order of the allocations is unknown.

We have decided to let a single thread of each warp allo-
cate memory in all of these tests. The techniques for co-
alescing memory allocations inside a SIMD unit are well
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researched and used in both ScatterAlloc and FDG-
Malloc as well as in the previous literature on GPU dy-
namic memory allocations [HRJ∗10]. The same or similar
code may thus be used for the other allocators with the same
influence on measured performance. The memory requested
in each allocation is padded to a multiple of 16 Bytes in
our tests to have the same request sizes for all allocators
since ScatterAlloc and FDGMalloc are doing so in-
ternally [SKKS12, WWWG13].

6. Results

We evaluated the allocators on a PC with Intel Core i7-2600,
16 GB of RAM and NVIDIA GTX TITAN Black running
64-bit Windows 7 and CUDA Toolkit 4.2. The compared ex-
isting allocators should represent the fastest solutions to this
date. We measure the entire GPU time of a test using CUDA
events [NVI12]. Each test was run five times, with the me-
dian of the test times reported. Figure 3 shows several prop-
erties of the compared allocators using the generic tests. The
setting for all generic evaluation tests is given in Table 1.

[AD] Alloc Dealloc. First, we tested the influence of in-
creasing the size of memory requested by the threads (see
Figure 3(a)). CudaMalloc and FDGMalloc are by far
the slowest allocators in this test, with FDGMalloc be-
ing slower than CudaMalloc. This comes from the fact
that FDGMalloc also allocates its header data using Cu-
daMalloc. While for most allocators the performance is
nearly constant, for ScatterAlloc it is not. When the re-
quest size exceeds the page size there is a sharp decrease in
performance.

[ACD] Alloc Cycle Dealloc. Since the performance of
ScatterAlloc depends on the size of its pages we have
evaluated this influence in Figure 4. The resulting graph
shows several properties of the allocator. If the request size
exceeds the page size and a special allocation path for large
requests is used, the time of the evaluation test becomes
prohibitively high. Using a larger page size is not always
a solution, since this increases the allocation times for all re-
quest sizes. Also no available chunk may be found for very
large request sizes as indicated by the missing data point for
the highest page size. Moreover, for page sizes higher than
64MB the test fails completely.

Figure 3(b) shows the dependence of the time of the Al-
loc Cycle Dealloc test on the size of the memory pool.
The performance of CudaMalloc degrades with the in-
creasing size of the memory pool and so does FDGMalloc
which uses CudaMalloc. FDGMalloc is slightly faster
than CudaMalloc in this test since the first allocation of
a superblock is reused in the nine subsequent allocations.
ScatterAlloc is slower for smaller sizes of the memory
pool than for larger ones as conflicts of atomic instructions
are more likely to occur due to imperfect hashing. The per-

Test #Iters [-] #Blocks [-] Heap Size [B] Payload [B] Figure

[AD] 1 120 2GB 4B – 128KB 3(a)

[ACD] 10 120 2GB 4B – 128KB 4

[ACD] 10 120 128KB – 2GB 4B 3(b)

[ACD] 10 – 100 120 2GB 4B 3(c)

[P] 10 1 – 120 2GB 4B 3(d)

Table 1: The setting of our tests. The number of allocations
(and deallocations) performed by all threads is #Blocks×
8 (warps per block)× #Iters except for the Probability test
where the number of allocations is 1450 and the number of
deallocations is 986 when launching 120 blocks.

formance of the other allocators stays nearly the same re-
gardless of the size of the memory pool.

The graph in Figure 3(c) shows the influence of increas-
ing the number of successive allocations in the Alloc Cy-
cle Dealloc test. While the test time for most of the alloca-
tors increases linearly, the time for FDGMalloc stays al-
most constant. This is caused by successive allocations be-
ing handled separately by each warp in its own superblock
without any synchronization with other warps. More than 70
iterations are needed for FDGMalloc to surpass the perfor-
mance of the allocators other than CudaMalloc. However,
FDGMalloc may use any of the faster allocators for the al-
location of superblocks, while keeping the constant perfor-
mance in iterative allocations.

[P] Probability. Last, we tested the behavior under an in-
creasing number of threads allocating memory in the Proba-
bility test (see Figure 3(d)). We launched an increasing num-
ber of thread blocks containing 256 threads each. Since only
the first thread of a warp allocates memory (as discussed
in the previous section) 8 allocating threads are added with
each added block. All allocators show nearly linear scaling
in this test with AtomicMalloc, AWMalloc and Scat-
terAlloc having an almost flat slope.

The performance of ScatterAlloc can approach the one
of AtomicMalloc and sometimes even slightly surpass it
because there are fewer conflicts of atomic operations due
to hashing. For the same reason AWMalloc is faster than
AtomicMalloc in all of the generic tests; the extra code
causes variations in the time allocating threads access the
shared variable, alleviating the serialization. Limiting the
number of conflicts of atomic operations through using mul-
tiple offsets also makes CMMalloc and CFMMalloc faster
than CMalloc and CFMalloc. Comparing our fastest al-
locator CFMMalloc to ScatterAlloc in these generic
tests we observe that our allocator is 1.50× to 1.97× slower
as shown in Figures 3(c) and 3(d). This is likely due to the
conflicts of atomic operations.

[DS] Data structure build. The generic tests where only the
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 0.01

 0.1

 1

 10

 100

 0  20  40  60  80  100  120

T
im

e
 [

m
s
]

#Blocks [-]

(d) Probability test

ScatterAlloc
4096

AWMalloc CMalloc CFMalloc CMMalloc CFMMalloc

AtomicMalloc CudaMalloc FDGMalloc

Figure 3: Graphs showing the properties of the allocators in various benchmarks. (a) Alloc Dealloc test — increasing the size
of memory requested in each allocation, (b) Alloc Cycle Dealloc test — increasing the size of the memory pool, (c) Alloc Cycle
Dealloc — increasing the number of allocations per thread before the memory is deallocated, (d) Probability test — increasing
the number of allocating threads (8× the number of blocks).

allocation and deallocation operations are performed and all
threads allocate memory at the same time may not represent
the real workloads well. For this reason we also compare the
kd-tree build times when using different allocators (see Ta-
ble 2). The size of the memory pool is set to 200× the size of
the root node, which is sufficient to run the build even with
AtomicMalloc allocator. The FDGMalloc is excluded
from this test because it can only deallocate all of the mem-
ory at the end of the computation. Moreover, the memory

is tied to a particular warp requiring synchronization with
other warps before the memory can be deallocated. Although
the memory cannot be deallocated for AtomicMalloc and
AWMalloc as well, we chose to add results for them since
their performance can be considered as a lower bound on the
kd-tree build time.

From Table 2 we can observe that ScatterAlloc, which
proved to be almost as fast as AtomicMalloc in the
generic tests, is significantly slower in this real workload.
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Scene

Hand Fairy Crytek Happy
Stand Sponza Sibenik Forest Sponza Conference Armadillo Dragon Buddha Blade Sodahall

Ntris [−] 20K 76K 80K 174K 262K 283K 307K 871K 1,087K 1,765K 2,169K

Nre f [−] 6.12 6.79 4.70 5.42 6.30 5.96 6.63 7.95 8.84 8.35 5.28

Nalloc [−] 65K 141K 101K 240K 509K 251K 943K 3,740K 5,635K 7,286K 2,981K

X̄|alloc| [−] 45.8 81.8 100.8 101.8 79.8 167.8 51.9 44.5 40.2 45.7 113.2

σ|alloc| [−] 335.6 594.4 734.7 791.1 638.1 989.5 458.1 388.3 362.1 394.0 721.0

Allocator #Registers Tbuild [ms]

AtomicMalloc* 4 7.29 18.38 14.6 26.4 43.2 31.5 65.2 378.9 918.3 2175.1 325.5

Slowdown [−]

CudaMalloc 6 5.42 2.99 2.28 2.73 3.82 2.85 5.19 20.95 19.05 12.13 3.38

ScatterAlloc4096 38 1.66 1.74 1.39 1.56 2.01 2.67 2.15 1.78 2.08 1.05 5.08

ScatterAlloc8192 38 1.99 1.65 1.46 1.52 1.84 1.51 2.52 7.63 1.73 1.07 2.82

ScatterAlloc16384 38 1.78 1.70 1.55 1.79 2.47 1.60 3.52 6.90 6.87 4.99 1.87

FDGMalloc* 26 - - - - - - - - - - -

AWMalloc* 6 1.00 0.88 0.94 0.87 0.96 0.83 1.00 0.90 1.07 0.96 0.95

CMalloc 16 1.48 1.04 1.18 1.17 1.14 1.08 1.16 1.27 1.20 0.99 1.14
CFMalloc 10 1.31 1.20 1.10 1.06 1.08 1.17 1.12 1.17 1.26 0.93 1.17

CMMalloc 16 1.37 1.10 1.16 1.12 1.20 1.09 1.23 1.27 2.00 1.03 1.17

CFMMalloc 14 1.30 1.08 1.11 1.12 1.25 1.12 1.19 1.24 1.34 1.03 1.20

Table 2: The allocation properties and build times of kd-trees when using the compared allocators. Ntris is the number of scene
triangles, Nre f is the number of triangle references from leaves, Nalloc is the number of allocation (and deallocation) requests
during the build, X̄|alloc| is the mean of the allocation sizes and σ|alloc| is the standard deviation of the allocation sizes. For each
allocator the number of registers used in a kernel consisting of a single allocation and deallocation is reported (#Registers). For
AtomicMalloc the build times of kd-trees are given in milliseconds and this allocator is taken as the reference. For the other
allocators the ratio of their build times and the build time of the reference is reported. The fastest allocator for each scene is
typeset in boldface. The allocators marked with an asterix are not full allocators and are not considered as being the fastest.
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Figure 4: Dependence of ScatterAlloc on the page size
(the individual curves) in the Alloc Cycle Dealloc test. The
exact setting of the test is in Table 1.

There are two reasons for this. First, the allocation sizes vary
by several orders of magnitude in this test, which is prob-
lematic for the fixed page size of ScatterAlloc. Sec-
ond, ScatterAlloc consumes significantly more regis-
ters than AtomicMalloc and even CMalloc. When not
enough registers are present for the entire kernel the com-
piler optimizes the code to use fewer registers, slowing down
the computation. ScatterAlloc is by far the most de-
manding allocator, requesting almost the entire register file
when targeting full occupancy (maximum number of threads
capable of running simultaneously at the streaming multi-
processor). With the kd-tree build also being register hungry
this causes ScatterAlloc to be slower than the other al-
locators except CudaMalloc. However, this influence on
the allocators performance is hard to evaluate precisely since
artificially lowering the register pressure accelerates both the
allocator and the kd-tree build algorithm.

Contrary to the generic tests CMMalloc and CFMMalloc
allocators are often slower than CMalloc and CFMalloc

c© The Eurographics Association 2014.



M. Vinkler & V. Havran / Register Efficient Memory Allocator for GPUs

when used in the kd-tree build. In this test, the warps are not
requesting memory allocations at the same time during the
build cancelling the usefulness of multiple offsets into the
memory pool.

We have also tested the allocators on a different GPU: the
NVIDIA GeForce GTX 680. This GPU has 8 SMs (stream-
ing multiprocessors), while the NVIDIA GTX TITAN Black
features 15 SMs. This reduction in the number of processors
results into fewer conflicts of atomic operations on a shared
variable. In the generic test the GTX 680 was almost twice as
fast for all of the allocators except ScatterAlloc which
is less prone to these conflicts.

7. Conclusions and Future Work

In this paper we have propose a new dynamic memory allo-
cator designed for GPUs and its variants and compared them
to four existing allocators using three generic and one real
workload evaluation tests.

We can provide these recommendations for applications
with allocation properties similar to our generic tests:
AtomicMalloc or AWMalloc should be used if dealloca-
tion of memory is not needed. ScatterAlloc should be
used if the allocation requests have similar sizes, the memory
pool is large and enough registers are present for the kernel.
FDGMalloc should be used if each thread performs a large
number of successive allocation requests and CMalloc or
its variants should be used if the allocation properties are
unknown.

We showed that the limitations of the existing dynamic
memory allocators, which may not manifest in the generic
tests, cause significant slowdown in the real workloads. For
applications with large variability in allocation sizes or high
register pressure our proposed simple dynamic memory al-
locator CMalloc and its variants are capable of outper-
forming the state-of-the-art dynamic memory allocators. For
the memory allocation/deallocation pattern of the parallel
kd-tree building algorithm the speedup computed from the
whole running time when using CFMalloc compared to
ScatterAlloc with tuned page size is between 1.13×
and 4.33×. In addition our CMalloc does not need any pa-
rameters to be set.

To ease the use of the new allocators we provide their
source codes in the form of a library that can be accessed
at http://decibel.fi.muni.cz/~xvinkl/CMalloc/. In
future work we would like to investigate the pre-splitting
strategies of the memory pool in CMalloc allocator for
various real workloads. The more involved hybrid allocation
strategies could also be investigated.
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