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ABSTRACT

Spatial data structures are inherent part of many computer graphics applications. An example of
such structure is a rectilinear Binary Space Partitioning (BSP) tree, that is often used for solving
various types of range searching problems including ray shooting. We propose a novel method
for construction of rectilinear BSP trees for a preferred set of ray shooting queries. Particularly,
we study the ray sets formed by fixing either the direction or the origin of rays. We analyze and
discuss the properties of constructed trees. Theoretical considerations are followed by results
obtained from the practical implementation.
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1 INTRODUCTION

Visibility determination is a fundamental task
of computer graphics. One rather simple but
very important task for global illumination is ray
shooting [Watt92]. The problem is stated as fol-
lows: given a ray find its nearest intersection with
objects in the scene. The trivial solution would
test every object for intersection with the ray in
Θ(n) time. For complex scenes this time com-
plexity is very restrictive since a large amount of
rays is needed to synthesize an image.

In our contribution we study the possibility of
constructing a rectilinear BSP tree with im-
proved time complexity for preferred set of ray
shooting queries. We do not try to bound the

1This research was partially supported by Grant Agency
of the Ministry of Education of the Czech Republic num-
ber 1252/1998 and by Internal Grant Agency of the Czech
Technical University in Prague number 309810103.

worst case complexity. Instead, we exploit a
heuristic approach to improve the average query
time [Arvo89a].

Firstly, we select a preferred direction of rays,
for which the ray shooting should be as much as
efficient. This set corresponds to rays involved
in the parallel projection. Secondly, we form the
preferred ray set by fixing the origin of rays. This
ray set is related to the perspective projection. An
important aspect of our approach is that the con-
structed BSP trees can be used for other than pre-
ferred ray sets as well. Nevertheless, in the later
case the expected time complexity of the visibil-
ity query is higher.

The paper is organized as follows: Section 2 out-
lines some preliminaries regarding to the con-
struction and traversal of BSP trees. In Section 3
the construction of BSP trees for preferred sets of
rays is introduced. Section 4 presents results and



the statistical evaluation of the proposed method.
Finally, Section 5 concludes the paper outlining
several directions for future work.

2 BSP TREES

A rectilinear BSP tree (BSPT 2) is a higher di-
mensional analogy to the binary search tree. A
BSPT for a set S of objects is defined as fol-
lows: Each node v in BSPT represents a non–
empty axis–aligned box (cell) Bv. The box as-
sociated with the root of the tree is the bound-
ing box of all objects from S. Each interior
node v of BSPT is assigned a cutting plane
Hv, that divides Bv into two boxes. Let H+

v

be the positive halfspace and H−
v the negative

halfspace bounded by Hv. The boxes associ-
ated with the left and the right children of v are
Bv ∩ H+

v and Bv ∩ H−
v , respectively. The left

subtree of v is a BSPT for the set of objects
S−
v = {s ∩ H−

v 6= ∅|s ∈ Sv}, the right subtree
is defined similarly. Each leaf node l contains a
list of objects Sl that intersect Bl. The leaves of
the BSPT are either occupied by objects or va-
cant. A two dimensional example of BSPT is
depicted in Fig. 1.

Figure 1: A two dimensional example of
BSPT .

The fact that the cutting planes of BSPT are or-
thogonal significantly simplifies the computation
of ray shooting queries.

A BSPT is constructed hierarchically. At the
current leaf l a cutting plane is selected that sub-
divides Rl into two boxes. The objects of l are

2Rectilinear BSPT s are also called kD-trees [Berg97].

distributed into the new descendants of l. The
process is repeated recursively until certain ter-
mination criteria are reached.

An important feature of the rectilinear BSPT is
its adaptability to the scene geometry, that can
be significantly influenced by positioning of the
cutting plane. Traditionally, a cutting plane is po-
sitioned in the mid–point of the chosen axis, and
the order of axes is regularly changed [Kapla85].
In the following text we recall a more elaborate
approach for constructing BSPT using a surface
area heuristics.

2.1 Surface Area Heuristics

The surface area heuristics was introduced
in [MacDo90a]. Since this approach is essential
for our novel technique we describe the method
in more detail.

Using surface are heuristics the position of the
cutting plane is determined by minimizing a cost
function. The cost function accounts for the
probability p(B|A) that a ray hits an object ly-
ing inside a certain volume once it passes through
that volume (see Fig. 2.1).

Figure 2: Geometry involved in determi-
nation of the probability p(B|A).

Suppose that both object B and a volume A are
convex. Then the conditional probability p(B|A)
can be expressed as a ratio of the surface area of
the object B to the surface area of the volume A
(see [Arvo89a]):

p(B|A) =
SB

SA
(1)

=
2(xB.yB + xB.zB + yB.zB)

2(xA.yA + xA.zA + yA.zA)

Let us assume the situation at the beginning of
the BSPT construction. The root node contains
n objects. All of them would have to be tested for



intersection with a ray passing through the scene.
Assume that the intersection test for i–th object
takes computational time Ti. The cost for such
node is expressed as:

C =
n∑

i=1

Ti (2)

The further subdivision decreases the number of
intersection tests, but increases the number of in-
terior nodes (see Figure 3).

Figure 3: New costs after one cutting.

The node on the left side in Fig. 3 has been re-
placed by a tree shown on the right side the pic-
ture. The original cost C has changed to Cnew

given as the sum of three terms - CP , CL, and
CR. CP is the cost of traversing the parent node
and it does not incorporate any ray–object inter-
section tests. Costs for left and right child nodes,
CL and CR, depend on the conditional probabil-
ity that a ray hits the node L or R once it visits
the parent node P. The new cost Cnew is given as
follows:

Cnew = CP + CL + CR (3)

= TP + pL.
nL∑
j=1

Tj + pR.
nR∑
k=1

Tk + TT

pL =
SL

S
pR =

SR

S
(4)

, where
Tj , Tk is the time for intersection test with

j-th and k-th object respectively
TT is the time of traversal step
TP is the time of decision step in inte-

rior node
pL, pR is the probability that a ray will in-

tersect the left and right sub–cell
respectively

SL, SR is a surface area of left sub–cell and
right sub–cell respectively

S is the surface area of the node to be
subdivided

nL, nR is the number of objects intersect-
ing the left and right sub–cell re-
spectively

Note, that the Eq. 3 represents the case when the
ray visits both left and right sub–cells.

The goal is to build a BSPT with minimized
global cost. We focus on a greedy heuristics that
minimizes the cost function by selecting the cut-
ting plane inducing a minimal new cost.

3 RAY SHOOTING FOR PREFERRED
SETS OF RAYS

In the previous section we have described the
construction of BSPT using surface area heuris-
tics. The main idea of this paper concerns a mod-
ification of the surface area heuristics in order to
decrease the visibility query time for certain pre-
ferred set of rays.

The surface area heuristics is based on the as-
sumption that rays are distributed uniformly in
ray space. We break this assumption and change
the above presented equations to consider only
certain ray set.

In the following text we focus on three types of
ray sets that correspond to parallel, perspective,
and spherical projections.

3.1 Parallel Projection

Probably the most intuitive set of rays is formed
by fixing their direction. The rays of the same
direction are involved in the parallel projection
of the scene [Watt92].

In such a case rays are parallel to the projec-
tion plane. Let us suppose, that the distribution
of rays on the projection plane is uniform. Fur-
ther, we restrict the preferred set of rays to certain
viewport. The probability that a ray hits the box
B representing a node of BSPT can then be ex-
pressed using a surface area of the projection of
the B clipped to the viewport. The correspond-
ing geometry is depicted in Fig 4.

Let viewport WR be a rectangular window on
the projection plane PP . Let RPARW

be the set
of rays perpendicular to PP and intersecting the
WR.



Figure 4: Parallel projection of box B

The silhouette edges of B projected onto the PP

form a convex polygon PC(B). Optionally, we
can define PC(B) as a convex hull of all the ver-
tices of B projected to PP . To determine the
polygon Pol(B) = WR ∩ PC(B) lying on PP

a clipping algorithm must be applied [Watt92].
Let SAPAR(B) be the surface area of the poly-
gon Pol(B) and let BSC be the bounding box
containing the whole scene. Similarly to Eq. 2
we can express the probability, that a ray from
RPARW

hits the box B once it passes through
BSC as follows:

p(B) =
SAPAR(B)

SAPAR(BSC)
(5)

The Eq. 5 can be used to replace directly the Eq. 4
for both left and right sub–cells.

3.2 Perspective Projection

We form another preferred ray set by fixing their
origin. Similarly as before we focus only on
rays passing through certain viewport. The ori-
gin (viewpoint) and the viewport define a view-
ing frustum (see Fig. 5). Assuming rays are
uniformly distributed on the viewport, the corre-
sponding ray set RPERW

contains rays involved
in the commonly used perspective projection.

We compute the projected area SAPER(B) of
the box B clipped to the viewing frustum.
Again, the conditional probability, that a ray
from RPERW

hits the box B once it passes
through BSC can be expressed as:

p(B) =
SAPER(B)

SAPER(BSC)
(6)

Figure 5: The perspective projection of box B.

The clipping mentioned previously must be ap-
plied for each evaluation the estimated cost.
Hence the speed of the clipping is crucial for the
construction process. In the following text, we
outline the algorithms of clipping and computing
the surface area of the projected polygon.

3.3 View Frustum Clipping

A general algorithm determining area of the pro-
jection of a rectilinear box can be outlined as fol-
lows: Project all the vertices of the bounding box
to the projection plane and construct a convex
hull of the projected vertices. This convex hull
corresponds to certain polygon. Then clip the
polygon with respect to the viewport and com-
pute its area.

Obviously, the projection of all the eight vertices
of the rectilinear box for a specific viewpoint VP

is useless. We need to construct only the pro-
jection of the silhouette of the box. In such a
case the maximal number of projected points is
six, the minimal is four. According to the mu-
tual position of the viewpoint and the box we can
identify twenty–seven regions, for which the pro-
jected box has the same sequence of silhouette
edges. These regions are induced by six planes
bounding the box. Given a viewpoint the cor-
responding sequence of silhouette edges can be
determined by table lookup.



The sequence of silhouette edges is clipped
in object space by Sutherland–Hodgman algo-
rithm [Watt92] using the four planes that bound
the viewing frustum. The result forms again a
sequence of connected edges with at most ten
vertices. The vertices are projected to the pro-
jection plane forming a convex polygon. Finally,
the surface area of the polygon is evaluated. A
special case occurs when the viewpoint lies in-
side the box. Naturally, every ray originating at
the viewpoint must intersect the box. Thus the
conditional probability used in Eq. 6 equals one.

3.4 Spherical Projection

Another interesting set of rays is induced by
those involved in the spherical projection. As
with the perspective projection the origin of rays
is fixed. Nevertheless, in the spherical projection
directions of rays are uniformly distributed.

A data structure build according to such as set
of rays could be used to accelerate shadow–ray
visibility queries for point light sources. Note,
that in this case no clipping would be required.

Assuming the distribution of rays is uniform the
task is to compute a solid angle AS induced by
the frustum enclosing a given box. This task
is analogous to the computation of the point-
to-polygon form factor [Glass95]. Nevertheless,
in this case it involves determination of an area
bounded by Jordan’s curve on a unit sphere. Un-
fortunately, we did not succeed to find a closed
form solution to this problem.

4 IMPLEMENTATION AND EXPERI-
MENTAL RESULTS

We have implemented construction of BSPT s
within the GOLEM rendering system. In our ex-
periments we used three SPD scenes [Haine87a]
and one depicting the simulation of the liquid
flow. We have evaluated the BSPT construc-
tion for preferred ray sets induced by the paral-
lel projection (PAR) and the perspective projec-
tion (PER). The ordinary surface area heuristics
(SAH) was used as a reference. Table 1 gives
basic description of the scenes.

Scene fluid lattice rings tree

#objects 2515 8281 8401 8191
#spheres 2514 2197 4200 4095
#polygons 1 - 1 1
#cones - - - 4095
#cylinders - 6084 4200 -

Table 1: Testing scenes

The scenes were rendered in 513x513 resolution.
The maximal depth of ray–tracing recursion was
set to 1 to test the preferred ray sets only. All
BSPT s were constructed with following termi-
nation criteria: maximal depth was 16 and the
number of objects for a node to become a leaf
was 2. A hierarchical traversal algorithm similar
to [Sung92] was used.

Table 2 shows the result for BSPT constructed
for parallel projection with no clipping per-
formed.

Scene fluid lattice rings tree
ScnCov[%] 100 99.24 100 64.6
#rays[×104] 26.3 26.3 26.3 26.3
viewplane -0.40 0.0 0.0 -0.99
normal = -0.50 -0.71 1.0 -0.09

~(x, y, z) -0.86 -0.71 0.0 -0.11
# leaves of BSPT

SAH 1532 15722 11845 2750
PAR 1803 14611 12947 3156

# intersection tests per ray
SAH 8.15 47.3 8.12 5.63
PAR 6.13 37.7 7.97 4.55

# travesal steps per ray
SAH 18.7 71.0 31.2 19.4
PAR 18.1 30.1 26.1 15.3

Table 2: BSPT for parallel projection

The number of ray–object intersection tests for
parallel projection is decreased by 16 % and the
number of traversal steps by 24 % on average.
The speedup for the rendering time is scene de-
pendent.

Table 3 shows the results for BSPT s obtained
for perspective projection using viewing frustum
clipping in object space.

The number of intersection tests for BSPT con-



Scene fluid lattice rings tree
ScnCov[%] 100 99.24 100 64.6
#rays[×104] 26.3 26.3 26.3 26.3

# leaves of BSPT

SAH 1532 15722 11845 2750
PER 3132 13247 16322 3992

# intersection tests per ray
SAH 8.79 11.9 11.1 10.1
PER 5.32 9.13 9.15 6.39

# traversal steps per ray
SAH 19.6 44.9 40.9 23.1
PER 18.4 29.7 38.1 19.0

Table 3: BSPT for perspective projection

structed for perspective projection is on average
decreased by 29 % and the number of traversal
steps by 16 %.

The preprocessing times for constructing
BSPT s with SAH and PER do not differ
significantly. It is due to the fact that the
clipping algorithm is performed in incremental
way, that utilizes the coherence of clipping for
subsequent cutting planes along the tested axis.
The preprocessing times for SAH and PAR
are quite comparable, since parallel projection
corresponds to multiplying the surface area of
box sides with elements of the projection vector.

4.1 Impact on Traversal Algorithms

We have experimented with two different traver-
sal algorithms for BSPT s. The first one is based
on the hierarchical traversal algorithm presented
in [Sung92]. The second one uses a rope tech-
nique for BSP trees [Havra98a] that eliminate
traversal steps of interior nodes of the tree. We
have observed that the proposed modifications
have similar impact on both traversal algorithms.

4.2 Parallel Projection in Close–up

We have experimented with the sensitivity of
construction of BSPT to the direction of the
ray queries. We used scene tree, but with a dif-
ferent initial projection settings; viewpoint =
(4.5, 0, 1.5), lookat = (0, 0, 1.5), upvector =

(0, 0, 1). It corresponds to the normal of the pro-
jection plane ~N = (1, 0, 0) and azimuth = 0o.
For testing the observer moved around the tree.
That is, lookat and upvector remained constant
and both viewpoint and ~N have changed ac-
cording to the azimuth in interval < 0..90 >
(azimuth = 90o corresponds to viewpoint =
(0, 4.5, 1.5) and thus ~N = (0, 1, 0)).

First, we compared the BSPT s between SAH
and PAR. The BSPT for PAR was constructed
for the parallel projection corresponding to the
azimuth ( ~N ). The Fig. 6(a) shows the rendering
times including shading. The Fig. 6(b) depicts
the number of ray–object intersection tests. The
Fig. 7(a) shows the number of traversal steps per
ray. The curves for PAR on figures are referenced
as PAR-A.

Second, we tested the sensitivity of BSPT con-
structed for a fixed azimuth = 0.5o for render-
ing with other azimuth angles as well. Fig 7(b)
shows the rendering times for views specified by
changing azimuth. The curve is referenced as
PAR-B. The efficiency of rendering with BSPT
constructed with PAR is restricted to 40o for
other directions than the one used for construc-
tion. The difference between BSPT constructed
using SAH and PAR is illustrated in Fig .8.

4.3 Discussion

We made an observation, that BSPT
constructed for PAR with normal ~N =
(a, b, c), |a| = |b| = |c| correspond to SAH.
There are 8 vectors on a unit sphere with these
properties, and BSPT constructed for PAR with
other vectors than these 8 can be potentially
improved. The improvements are quite signif-
icant, both the number intersection tests and
traversal steps are reduced by more than one half
for tested scene tree. The tree constructed for
parallel projection for ~N = (1, 0, 0) degenerates,
because one axis of space is not taken into
account at all. It is reason why we selected for
Fig .7(b) as the reference the BSPT constructed
for azimuth = 0.5o.

There is a little problem with comparison of
BSPT s. Although the termination criteria were
the same, SAH, PAR, and PER approaches con-



(a) (b)

Figure 6: (a) Rendering times including shading for SAH and PAR-A (b) Number of intersection
tests per ray

(a) (b)

Figure 7: (a) Number of traversal steps per ray (b) Rendering times including shading for SAH
and PAR-B

structed BSPT with different number of leaves.
This makes more difficult to compare their per-
formances. Nevertheless, we verified, that the
achieved significant speedup for parallel projec-
tion cannot be obtained by SAH using other ter-
mination criteria settings.

5 CONCLUSION AND FUTURE WORK

In this paper we have shown that it is possible to
improve the efficiency of rectilinear BSPT by
preferring a given set of rays using modified sur-
face area heuristics. If we prefer perspective pro-
jection, both the number of intersection tests and
number of traversal steps are decreased, but the
reduction of time complexity is scene dependent.
The time of ray shooting is decreased by 20 % on
average in practical application.

The reduction of time complexity obtained for
set of rays induced by parallel projection can be
quite remarkable and can reach one half approx-
imately.

The technique developed is applicable to ray
casting for CSG primitives and implicit surfaces,
that cannot be efficiently rendered using image
space rendering techniques. It can be used for
the animation for primary rays only, when the ob-
server does not move.

We are going to implement ray tracing with
multiple BSPT s constructed for parallel pro-
jections, when for a given ray we select the
most advantageous instance of BSPT . Fur-
ther, we would like to improve the performance
of BSPT s by considering a blocking factor.
Mostly the sub–cells of a node have common
projection on the projection plane, that should be



(a)

(b)

Figure 8: Visualization of the BSPT . Fig. (a) depicts a BSPT built using the ordinary surface
area heuristics (SAH). Fig.(b) show a BSPT constructed for parallel projection(PAR). For sake
of the visual clarity the maximum depth of the tree was set to 10.

taken into account in construction of BSPT s.
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