

DEPARTMENT OF COMPUTER GRAPHICS AND INTERACTION

When it makes sense to use uniform grids for ray tracing

M. Hapala, O. Karlík, V. Havran

Czech Technical University in Prague Faculty of Electrical Engineering

Intro

- Ray tracing/casting
 - Basic visibility operation
 - Finding closest intersections between rays and objects in a scene
- Intersection search complexity
 - Naïve in O(N)
 - Acceleration data structure as fast as O(log N)
- Applications almost always use one data structure

Intro 2

- Uniform grid
 - Build in O(N)
 - Traversal in O(∛N)
- Hierarchical data structures (HDS)
 - Build in $O(N \cdot \log N)$
 - Traversal in O(log N)
- Hiddent constants for HDS traversal
 - "Quality" of the structure, how it can adapt to the scene
 - Implementation and hardware performance

Idea

- Take the best from both worlds
- Which is more efficient for a particular scene?
- Change from grid to HDS when advantageous
- Need rough number of rays to be computed

Calibration

- Executed once
- Set of representative scenes
- Build a HDS and measure
 - Time to build the data structure
 - Time to compute a single ray
- What do we need these for?

Calibration

- Executed once
- Set of representative scenes
- Build a HDS and measure
 - Time to build the data structure
 - Time to compute a single ray
- What do we need these for?

Application

- Build a uniform grid
- Compute a small set of representative rays
- Estimate HDS performance

Results

- Tested on 28 scenes
 - Primitive count 500 1.6M
 - Various levels of uniformity
 - X scenes for calibration
 - 28-X scenes estimated
- 2M rays
 - Randomly generated
 - Uniform distribution
- Estimate accuracy
- Speedup

Break-even point estimate accuracy

Speedup

Median time per ray

Speedup

Median time per ray

Speedup

Median hybrid algorithm speedup versus using only one data structure

Conclusion

- Choose a data structure based on the number of rays
- Minimal overhead
- High speedup
- Uniform grid efficient even for a significant number of rays
 - In the range of millions

