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Abstract

Sketching is one of the simplest ways to visualize ideas. Its key advantage is its easy availability and accessibility, as it require
the user to have neither deep knowledge of a particular drawing program nor any advanced drawing skills. In practice, however,
all these skills become necessary to improve the visual fidelity of the resulting drawing. In this paper, we present ShipShape—a
general beautification assistant that allows users to maintain the simplicity and speed of freehand sketching while still taking into
account implicit geometric relations to automatically rectify the output image. In contrast to previous approaches ShipShape works
with general Bézier curves, enables undo/redo operations, is scale independent, and is fully integrated into Adobe Illustrator. We
show various results to demonstrate the capabilities of the proposed method (Figure 1).
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Figure 2: Incremental beautification workflow. Every newly drawn stroke
(blue) is beautified using previously created data (gray). The first stroke is
left unchanged. As the drawing continues, more suitable geometric constraints
emerge and are applied, such as path identity (2,6,7), reflection (2,6) or arc
fitting (3,4). For comparison with the final beautified output (8), I shows the
original input strokes.

1. Introduction1

Sketching with a mouse, tablet, or touch screen is an easy2

and understandable way to create digital content, as it closely3

mimics its real-world counterpart, pen and paper. Its low de-4

mands make it widely accessible to novices and inexperienced5

users. However, its imprecision means that it is usually only6

used as a preliminary draft or a concept sketch. Making a more7

polished drawing requires significantly more time and experi-8

ence with the drawing application being used. Furthermore,9

when working with drawing or sketching software, users are of-10

ten forced to switch between different drawing modes or tools11

or to memorize cumbersome shortcut combinations.12

While we do not question the necessity or usefulness of13

complex tools to achieve non-trivial results, we argue that for14

certain scenarios, such as geometric diagram design or logo15

study creation, the interactive beautification [1] approach is16

more beneficial. Such workflows retain the intuitiveness of17

freehand input while benefiting from an underlying algorithm18

that automatically rectifies strokes based upon their geomet-19

ric relations, giving them more formal appearance. With the20

quickly growing popularity of touch-enabled devices, the ap-21

plicability of this approach expands greatly. However, what-22

ever the potential of automatic beautification in a more general23

sketching context, most of the existing applications focus on24

highly structured drawings like technical sketches.25

One of the biggest challenges in drawing beautification is26

resolving ambiguity of the user input, since the intention and27

its execution are often considerably dissimilar. Additionally,28

this issue becomes progressively more complex as the number29

of primitives present in the drawing increases.30

In this paper, we present a system for beautifying freehand31

sketches that provides multiple suggestions in spirit of Igarashi32

et al. [1]. Strokes are processed incrementally (see Figure 2) to33

prevent the combinatorial explosion of possible outputs. Unlike34

previous work, our approach supports polycurves composed of35

general cubic Bézier curves in addition to simple line segments36

and arcs. The system is scale-independent, and can easily be37

extended by new operations and inferred geometric constraints38

that are quickly evaluated and applied. The algorithm was in-39

tegrated into Adobe Illustrator, including undo/redo capability.40

We present various examples to demonstrate its practical us-41

ability.42

2. Related Work43

The need to create diagrams and technical drawings that44

satisfy various geometric constraints led to the development of45

complex design tools such as CAD systems. However, these46

systems’ complexity often limits their intuitiveness. Pavlidis47

and Van Wyk [2] were one of the first to try to alleviate this48

conflict by proposing a method for basic rectification of simple49

rectangular diagrams and flowcharts. However, their process50

became ambiguous and prone to errors when more complex51
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Figure 1: Examples of drawings created using ShipShape. The final drawings (black) were created from the imprecise user input (gray) by beautifying one stroke at
a time, using geometric properties such as symmetry and path identity. See Figure 17 for more results.

endpoint snapping endtangent alignment line parallelism line perpendicularity line length equality

path offset path identity path transformation step transformationarc center snapping

Figure 3: Supported geometric rules and transformations in our framework. The blue paths represent the data being beautified, while gray paths are data already
processed. For more detailed description of the criteria used to evaluate these constraints, see Section 3.1.

drawings were considered, since the method needed to drop52

many constraints to keep the solution tractable.53

To alleviate this limitation, Igarashi et al. [1] proposed an in-54

teractive beautification system in which the user added strokes55

one by one and the system improved the solution incrementally56

while keeping the previously processed drawing unchanged.57

This solution kept the problem tractable even for very complex58

drawings. Moreover, the system also presented several beauti-59

fied suggestions and let the user pick the final one. This brought60

more user control to the whole beautification process. Follow-61

ing a similar principle, other researchers developed systems for62

more specific scenarios such as the interactive creation of 3D63

drawings [3], block diagrams [4, 5], forms [6], and mathemati-64

cal equations [7].65

However, a common limitation of the approaches mentioned66

above is that they treat the image as a set of line segments. To67

alleviate this drawback Paulson and Hammond [8] proposed a68

system called PaleoSketch that fit the user input to one of eight69

predefined geometric shapes, such as line, spiral or helix. In70

a similar vein, Murugappan et al. [9] and Cheema et al. [10]71

allowed line segments, circles and arcs.72

Related to drawing beautification, there are also approaches73

to beautify curves independently, without considering more com-74

plex geometric relationships. Those approaches are orthogonal75

to our pipeline. They use either geometric curve fitting [11, 12]76

or some example-based strategy [13, 14]. Additionally, ad-77

vanced methods for vectorizing and refining raster inputs have78

been proposed [15, 16], which enable users to convert bitmap79

images into high quality vector output. However these do not80

exploit inter-stroke relationships. In our case we assume that81

the built-in curve beautification mechanism of Adobe Illustra-82

tor preprocesses the user’s rough input strokes into smooth, fair83

paths.84

This paper extends our previous work [17]. In Section 3.185

we discuss improvements to the arc and circle center rules, and86

introduce a generalized transformation adjustment framework.87

Section 3.4 describes a new method for curve alignment, and88

Section 3.5 describes the transformation adjustment mechanism89

in detail. Finally, Section 4 describes a new framework for han-90

dling curves with corners.91

3. Our Approach92

A key motivation for our system is wanting to work with ar-93

bitrarily curved paths. This capability was not available in pre-94

vious beautification systems. Although some can recognize a95

variety of curves including spirals and general 5th degree poly-96

nomials (PaleoSketch [8]), they recognize them only in isola-97

tion and do not allow to take other existing paths into consider-98

ation, which is important for interactive design.99

Systems like that of Igarashi et al. [1] generate a set of po-100

tential constraints and then produce suggestions by satisfying101
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subsets of these. A key challenge that prohibits simply gen-102

eralizing these systems to support general curved paths is the103

number of degrees of freedom, which boosts the number of po-104

tential constraints that need to be evaluated. Moreover, unlike105

line or arc segments, many of a general path’s properties, for106

example the exact coordinates of a point joining two smooth107

curves, do not have any meaning to the user. It would not be108

helpful to add constraints for this point. Finally, satisfying con-109

straints on a subset of the defining properties might distort the110

path into something that barely resembles the original. Sup-111

porting generalized paths requires a different approach.112

Our system is based on an extensible set of self-contained113

geometric rules, each built as a black box and independent of114

other rules. Every rule represents a single geometric property,115

such as having an endpoint snapped or being a reflected ver-116

sion of an existing path. The input to each rule is an input path117

consisting of an end-to-end connected series of Bézier curves,118

and the set of existing, resolved paths. The black box evaluates119

the likelihood that the path conforms to the geometric property,120

considering the resolved paths, and outputs zero or more mod-121

ified versions of the path. Each modified version gets a score,122

representing the likelihood that the modification is correct.123

For example, the same-line-length rule would, for input that124

is a line segment, create output versions that are the same lengths125

as existing line segments, along with scores that indicate how126

close the segment’s initial length was to the modified length.127

Each rule also has some threshold that determines that the score128

for a modification is too low, and in that case it does not output129

the path.130

The rules also mark properties of the path that have become131

fixed and therefore can no longer be modified by future rules.132

For example, the endpoint-snapping rule marks one or both133

endpoint coordinates of a path as fixed. The same-line-length134

and parallel-line rules do not attempt to modify a segment with135

two fixed endpoints.136

Since the rules do not depend on each other, it is easy to add137

new rules to support additional geometric traits. Figure 3 shows138

an illustrated list of rules supported in our system.139

Chaining the rules can lead to complex modifications of the140

input stroke and is at the core of our framework. We treat the141

rule application as branching in a directed rooted tree of paths,142

where the root node corresponds to the unmodified input path.143

Each branch of the tree corresponds to a unique application of144

one rule and the branch is given a weight corresponding to the145

rule’s score.146

To find suitable transformations for the user input, we tra-147

verse down to the leaf nodes (see Figure 4).148

Formally, given a node ni with Bézier path pi, the set of149

resolved paths S , and the set of all rules r j ∈ R, we compute an150

output set Pi =
{
r j

(
pi, S

)}
. We then create a child node ni

j for151

each pi
j ∈ Pi. If Pi is empty, ni is a leaf node.152

Since we need to compare scores among different rules,153

likelihoods are always normalized into the interval [0, 1]. If154

a rule generates any modified paths, it also generates a copy of155

the unmodified path, indicating the suggestion that the rule did156

not apply. The likelihood for the unmodified path is 1 minus157

the maximum likelihood of any modified path.158

We can then use all scores from the nodes we visited while
descending into a particular leaf node n to calculate the overall
likelihood score for the chained transformation as

Li = 1 −
d−1∏
k=1

(
1 − L

(
r j

(
ak, S

)))
(1)

where d is the depth of n in the tree, ak is the kth ancestor of159

n, and L
(
r j

(
ak, S

))
denotes the likelihood score from applying160

rule r j to node ak.161

We expand the search tree in a best-first search manner,162

where the order of visiting the child nodes is determined by the163

overall score L of the node’s path. While traversing the tree,164

we construct a suggestion set Q of leaf nodes, which is initially165

empty and gets filled as the leaf nodes are encountered in the166

traversal. Once not empty, Q helps prune the search. Before we167

expand a particular subtree, we compare the geometric proper-168

ties of its root with properties of each path q ∈ Q. If all tested169

properties are found in some path q, the whole subtree can be170

omitted from further processing (see Figure 5).171

Furthermore, to keep the user from having to go through172

too many suggestions, we limit the size of Q. Since we traverse173

the graph in a best-first manner, we stop the search after finding174

some number of unique leaf nodes (10 in our implementation).175

3.1. Supported Rules and Operations176

Geometric transformations in our framework are evaluated177

by testing various properties of the new path and the set of pre-178

1.0 0.5 0.75

0.25 1.0

0.75

Figure 4: Successive rule evaluation and application. In this example, the eval-
uation engine consists of three geometric rules—endpoint snapping, perpen-
dicularity, and length equality. The old data (gray path) is fixed in the canvas.
When a new path (blue) is added, it becomes the root node of the evaluation
graph and the expansion begins by testing all rules on it. A likelihood score is
calculated for each rule application and the tree is expanded using a best-first
search scheme, until leaf nodes are reached. Due to the significant redundancy
in the search space, many leaf nodes will contain duplicate suggestions. There-
fore, we prune the graph during the expansion step using the information from
already reached leaf nodes (see Section 3 and Figure 5 for more information).
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Figure 5: Search graph pruning. The rules are represented by colored boxes
with hue being distinct rules and lightness their unique applications (e.g., if red
color represents endpoint snapping, then different shades of red correspond to
snapping to different positions). An inner node n has been expanded into three
branches (a,b,c). Before further traversal, all subtrees stemming from the child
nodes of n are tested against suggestions q ∈ Q. Here, branches (a) and (c) are
fully contained in q0 and q2 respectively and thus only branch (b) is evaluated
further.

viously drawn and processed paths. While tests of some prop-179

erties are simple, others, such as path matching, require more180

complex processing. We first summarize rules supported by181

our system (illustrated in Figure 3), and then we present some182

additional implementation issues including a more detailed de-183

scription for non-trivial rules.184

Line Detection We estimate a path’s deviation from straight-185

ness by measuring the ratio between its length and the distance186

between its endpoints, as in QuickDraw [10].187

Arc Detection We sample the input path and perform a least-188

squares circle fit on the samples to obtain center and radius pa-189

rameter values. To determine the angular span value, we project190

the samples onto the circle fit. The arc is then sampled again191

and we evaluate the discrete Fréchet distance [18] between the192

arc samples and the samples of the input path. When the span is193

close to 2π or the path is closed, we replace it with a full circle.194

Endpoint Snapping We look at the distance between each of195

the path endpoints and resolved endpoints. Additionally, we196

also try snapping to inner parts of the resolved paths. Special-197

ized tests based on the properties of line segments and circular198

arcs lower the computational complexity of this operation. Note199

that we do not join the two end-to-end-snapped paths. This can200

cause unpleasant artifacts where they meet, but the effect of a201

join can be mimicked by using round end caps on the strokes.202

End Tangent Alignment If the path endpoint is snapped, we203

measure the angle between its tangent and the tangent of the204

point it is attached to.205

Line Parallelism and Perpendicularity We compare the an-206

gle between two line segment paths with the angle needed to207

satisfy the parallelism or perpendicularity constraint. Addition-208

ally, we also take the distance between the line segments into209

account to slightly increase the priority of nearby paths. To210

evaluate these properties on the input non-rectified paths, we211

use their line segments approximations, i.e., line segments con-212

necting their two endpoints.213

Line Length Equality We evaluate the ratio of length of both214

tested line segments. As in previous case, we incorporate their215

mutual distance in the final likelihood computation.216

Arc and Circle Center Snapping Similar to endpoint snapping,217

we evaluate the distance between the current arc center and po-218

tential ones, in this case endpoints of other paths, other centers,219

centers of rotations, and centers of regular polygons composed220

from series of line segments. However, as arcs with small angu-221

lar span are noticeably harder to draw without a guide (see Fig-222

ure 6a), the center of the initial arc fit might be located too far223

apart from the desired center point (Figure 6b) and therefore us-224

ing fixed distance, when looking for potential center-snapping225

points, might not be sufficient. To address this issue, we adap-226

tively change this distance to max (D, 2r (1 − θ/2π)), where θ227

is the span of the tested arc, r is its radius and D is the stan-228

dard search distance radius (D = 30 view-space pixels in our229

implementation).

(a) (b) (c)

D′D

d
θ

Figure 6: Adaptive arc/circle center-point-snap search distance refinement. Arc
segments with small angular span are often drawn very imprecisely (a). When
the engine fits an exact arc into such data, its center is often too far from the
desired center point, as the distance d between them is bigger than the limit D
under which the prospective center point positions are looked for (b). Adap-
tive expansion of the search radius D′ increases the likelihood that even the
imprecise input will give the user the expected (precise) output.

230

Path Identity To detect that two paths have similar shapes, we231

align them and compute their discrete Fréchet distance. More232

details are given in Section 3.4.233

Transformation Adjustment For a tested path x and resolved234

reference path y of the “same shape” (determined by successful235

application of the path-identity rule) we perform a variety of236

modifications to the transformation to create symmetries, align237

paths, and equalize spacing. More details are given in Sec-238

tion 3.5.239

Path Offset Offset paths generalize line parallelism. To detect240

them, we go along the tested path and measure its distance to241

the reference path. More details are given in Section 3.6.242

3.2. View-Space Distances243

Testing paths for different geometric properties ultimately244

requires measuring lengths and distances. While many path at-245

tributes can be compared using relative values, absolute values246

are still necessary, e.g., for snapping endpoints. Using abso-247

lute values, however, leads to unexpected behavior when the248

canvas is zoomed in and out. To eliminate this problem, we249

compute all distances in view-space pixels, making all distance250

tests magnification-independent.251
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(a) (b)

(c) (d)

< ε

Figure 7: Path sample simplification. The original Bézier path (a) is equidis-
tantly sampled, giving a polyline (b). The Ramer–Douglas–Peucker algorithm
then recursively simplifies the polyline by omitting points closer than ε (c) to
the current approximation, finally constructing simplified polyline (d).

3.3. Path Sampling252

Working with cubic Bézier curves analytically is inconve-253

nient and difficult. Many practical tasks, such as finding a path’s254

length or the minimal distance between two paths, can only be255

solved using numerical approaches. Therefore, we perform all256

operations on sampled paths. Since the resolved paths do not257

change, we can precompute and store the samples for resolved258

paths, and sample only new paths. Furthermore, to reduce the259

memory requirement and computational complexity of different260

path comparisons, we simplify the sampling using the Ramer–261

Douglas–Peucker algorithm [19, 20]. For a polyline p, this262

finds a reduced version p′ with fewer points within given tol-263

erance ε, i.e., all points of p′ lie within the distance ε of the264

original path (see Figure 7). Our implementation uses ε = 4265

view-space pixels at the time the path was drawn.266

3.4. Path Matching267

A key part of our contribution involves resolving higher-268

level geometric relations like path rotational and reflection sym-269

metry. To identify these relations, we must first classify paths270

that are the “same shape”—paths that are different instances of271

the same “template”.272

To evaluate the similarity between two sampled paths pa

and pb, we employ a discrete variant of Fréchet distance [18],
a well-established similarity measure. Formally, it is defined as
follows: Let (M, d) be a metric space and let the path be defined
as a continuous mapping f : [a, b]→ M, where a, b ∈ R, a ≤ b.
Given two paths f : [a, b] → M and g : [a′, b′] → M, their
Fréchet distance δF is defined as

δF ( f , g) = inf
α,β

max
t∈[0,1]

d ( f (α (t)) , g (β (t))) , (2)

where α (resp. β) is an arbitrary continuous non-decreasing273

function from [0, 1] onto [a, b] (resp. [a′, b′]). Intuitively, it is274

usually described using a leash metaphor: a man walks from275

the beginning to the end of one path while his dog on a leash276

walks from the beginning to the end of the other. They can277

vary their speeds but they cannot walk backwards. The Fréchet278

distance is the length of the shortest leash that can allow them279

to successfully traverse the paths.280

(a) (b)

Figure 8: Discrete Fréchet distance. The minimum length of the line connecting
ordered sets of point samples (a). Since we store the resolved paths in the
simplified form, we compute the Fréchet distance between an ordered set of
points and an ordered set of line segments (b) rather than between two point
sets.

As outlined by Eiter and Mannila, this can be computed for281

two point sets using a dynamic programming approach. The282

extension to point and line-segment sets (Figure 8b) is then283

straightforward. However, the measure takes into account the284

absolute positions of the sample points, while we are inter-285

ested in relative difference. Therefore, we have to adjust the286

alignment of the two tested paths. We then compute the dis-287

crete Fréchet distance between the aligned paths, divided by the288

length of the new path to obtain the relative similarity measure.289

An affine similarity transform is a composition of a rotation,290

a uniform scale, and a translation. To align the paths, we find291

the affine similarity matrix that transforms the reference path to292

match the new path as closely as possible.293

Assume the rotation angle is θ, the scale is s, and the trans-294

lation is (tx, ty). Define scos = s ∗ cos θ and ssin = s ∗ sin θ.295

The matrix is then296 scos −ssin 0
ssin scos 0
tx ty 1

 (3)

We compute the affine similarity transformation matrix M297

as follows. We first create two equal-length lists of points, each298

consisting of N equally-spaced samples from the reference and299

new paths. If {Pi} are the points from the reference path and {Qi}300

the points from the new path, we find the M that minimizes the301

sum of the squared distances302

E =

N∑
i=1

||Pi ∗ M − Qi||
2 (4)

This is a quadratic function of scos, ssin, tx, and ty and can303

be solved as a least-squares problem over these four variables.304

Before computing the Fréchet distance, we multiply the ref-305

erence path samples by M. If the Fréchet distance indicates that306

the paths are sufficiently similar, we create a suggestion consist-307

ing of the reference path transformed by this same M.308

A path that is a transformed copy of another path is perma-309

nently annotated as such, thereby allowing us to optimize path310

matching by only testing against a single instance of the path.311

For later processing, we also annotate the path with the trans-312

formation matrix.313

If the drawing already contains multiple instances of a path,314

we consider it more likely that the user intended a new path315
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to match. We therefore boost its score s by replacing it with316

1 − (1 − s)ln i where i is the number of existing instances.317

Because the new path might be a reflected and/or reversed318

version of the reference path, we perform four tests between319

them to determine the correct match.320

3.5. Transformation Adjustment321

If the test path is a transformed version of a reference path,322

there are various tests we perform to adjust the transformation323

matrix to make the result more pleasing. We first begin by sepa-324

rating the matrix in Equation 3 into separate rotation, scale, and325

translation components as follows:326

rotation = atan2(ssin, scos)

scale =
√

scos2 + ssin2

translation = (tx, tx)

(5)

The transformation can be adjusted in various ways, often327

generating multiple suggestions. Although we optimized path328

matching to only compare against one instance of a path that329

has multiple copies in the drawing, we test the transformation330

relative to each copy; see Figure 9a.331

Rotation Snapping If the rotation component is close to an332

angle that is an integral divisor of 2π, it is snapped to being that333

angle (e.g., to 45 degrees; see Figure 10b4).334

Scale Snapping If the scale component is close to an integer335

or to 0.5, it is snapped to being that exact scale.336

Translation Snapping Translation snapping takes several forms:337

• If the transformation contains a rotation component, we338

find the rotation center and compare it to existing points339

in the drawing. If it is sufficiently close we adjust the340

translation to place the center of rotation at that point.341

• If the test path is a reflected version of the resolved path,342

we first compute the axis of reflection and reflect the re-343

solved path across this axis. If the test path is sufficiently344

close to this reflected path, we adjust the translation to345

move it to that position.346

• In other cases, we snap the x and y components of the347

translation to zero.348

Step Transform Snapping Step transform snapping allows the349

user to create multiple, equally transformed copies of a path350

(see Figure 10b3). When we snap a path to an instance of a351

path, we store the relative transformation to that instance as the352

step transform. The step transform is the relative transform of353

the most highly-scoring suggestion. In Figure 9b, the exist-354

ing drawing contains three resolved paths that are all the same355

shape. R was drawn first, and is the reference path. C is the356

first copy, and its step transform is the transformation from R357

to C. D is the second copy, and it was horizontally snapped358

to C. Because the transformation from C scored more highly359

(containing a snap) than the transformation from R, the step360

transform for D is the relative transform from C to D.361

Step transform snapping compares the transformation from a362

path instance to the step transform for that instance. If the two363

transformations are similar, then a step-snapping suggestion is364

generated. In Figure 9c, the newly drawn path T is compared365

to all three existing instances R, C and D. The transformation366

MDT from D to T is similar to the step transform of D. This367

generates a step-snapping suggestion to place T in the position368

that exactly matches the step transform; see Figure 9d.369

(a) (b)

(2)

(3)

(1)

(4)

Figure 10: Practical application of transformation adjustment of the imprecise
input (b) to obtain highly symmetrical output (a). We apply reflection axis (1),
step transform (2,3) and rotation (2,4) snapping. Also note that the whole draw-
ing is composed of strokes of the same shape.

Although this example only includes translation in the step trans-370

form, they are fully general, and can include rotation, scale, and371

reflection (see Figure 10b2).372

Reflection Axis Snapping Users often want to reflect multiple373

paths against the same axis of reflection (for example, see the374

bear in Figure 1), or want to reflect a path across an existing375

line segment. To accommodate this, we collect all existing axes376

of reflection and line segments. If the new path is reflected,377

we compare its axis of reflection to these potential axes, and if378

it is close, we generate a suggestion to reflect across this axis379

(see Figure 10b1). Further, we strengthen the likelihood for an380

axis that has already been used multiple times by replacing the381

score s with 1 − (1 − s)ln i where i is the number of times that382

axis has been used.383

3.6. Offset Path Detection384

Offset paths extend the concept of parallelism from line seg-385

ments to paths. To detect them, we construct a normal line from386

each sample of the new path. If the line hits an existing refer-387

ence path, we measure the distance between the sample point388

and the closest point on the reference. Note that we do not use389
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Figure 9: Transformation adjustment and transformation step snapping. The reference path R already has a copy C in the drawing, with MRC being the transformation
from R to C. D is the test path with MRD being the transformation from R to D. Transformation adjustment considers both MRD and the derived relative matrix MCD
that transforms C to D (a). The step transform for D is then MCD, the relative transform from C (b). The relative transform for T relative to D is similar to the step
transform for D (c). Applying MCD to D generates a well-spaced suggestion (d).

the distance between the sample point and the line-path inter-390

section, since this would require the user to draw the approxi-391

mate offset path very precisely. We store the measured distance392

along with its sign, i.e., on which side of the new path the hit393

occurred. We then sort all the hit information according to the394

distance, creating a cumulative distribution function, and pick395

two values corresponding to (50 ± n)-th percentiles (n being 25396

in our implementation). By comparing the sign and distance397

values of these samples, we calculate the likelihood of the new398

path being an offset path of the reference path (see Figure 11).399

If the likelihood is high, we replace the new path with an offset400

version of the reference.401

Figure 11: Offset path detection. A line is constructed from each point on the
sampled path (blue circles) in the normal direction. If an existing reference
path is hit (red rays), the minimal distance from the sample to the reference
path is calculated (dashed lines) and used in offset-path-likelihood computation
(see 3.6).

4. Multi-Segment Stroke Processing402

The single stroke processing approach gives the user the403

opportunity to immediately see the results of the input being404

beautified. However, in certain cases, like drawing simple trian-405

gles or squares, this workflow can be tedious and decrease the406

overall fluency of the beautification pipeline. To this end, we407

introduce an additional step into our scheme that lets the eval-408

uation engine process strokes with multiple segments. These409

segments are defined as parts of the unprocessed user input,410

split by corner features. Once divided, the evaluation engine411

can process the simple segments using the geometric rules in-412

troduced in Section 3.1.413

4.1. Corner Detection414

When the raw freehand input stroke is drawn by the user, it415

is converted to a sequence of cubic Bézier curves and passed to416

the beautification pipeline. The first step is to test it for the pres-417

ence of corner points. Because the initial curve fitting is done by418

the host application (e.g., Adobe Illustrator), we cannot simply419

rely on the assumption that corners can only occur at the junc-420

tion of two Bézier curves. For example, in Figure 12a, the ap-421

parent corner in the lower right is actually a small-radius curve.422

We initially sample the curves with a small step size (2 view-423

space pixels) and calculate the tangent vector at each sample424

point. Using a sliding window of three successive samples, we425

calculate the angular turn value at every sample position except426

the first and last. Local maxima in this turn sequence provide427

the places to break the original input sequence into segments.428

To handle outliers like the unwanted “hooks” at the ends, we429

discard segments whose length is small compared to the rest430

of the segments (less than 15% of the length-wise closest other431

segment).432

4.2. Segment Processing433

The segments of the complex user input can then be pro-434

cessed one at the time using the same approach used for the sim-435

ple input described in Section 3. There are, however, important436

issues to address. Most notably, processing multi-segment in-437

put involves automatic selection of intermediate outputs, which438

would otherwise be done by the user. As the number of po-439

tential outputs rises exponentially, we cannot explore the whole440

search space. Therefore, we perform two reduction steps to441

make the evaluation of complex inputs computationally feasible442

within real-time-to-interactive response time. First, we limit the443

number of unique suggestions for each segment to 3 (whereas444
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Figure 12: Multi-segment stroke processing pipeline. When a complex stroke is drawn (a), it is tested for the presence of corner points. If no corner points are found,
the processing continues as described in Section 3. If one or more corner points are detected (see Section 4.1 for more details), the original stroke is split and broken
into segments (b). The segments are then processed sequentially. After each individual segment is added (c, from top to bottom), suggestions are generated (d)
using previous segments as well as old strokes. In particular, beginning with the second segment, the beginning endpoint is constrained to match the final endpoint
of the previous segment (c, red circles, see Section 4.3). After generating suggestions for a segment (d, from top to bottom), an optional set reduction can be done
(e) to keep the evaluation sufficiently fast (see Section 4.2).

the single-segment input can produce up to 10 suggestions).445

This might seem to be a very severe restriction, but the split seg-446

ments are typically simple paths with very little ambiguity. Sec-447

ond, we process the individual segments in a breadth-first man-448

ner that lets us execute another reduction once all the parallel449

states reach the same depth (i.e., they all have the same number450

of processed segments; see individual rows in Figure 12d). For451

this step, we assign each intermediate state a value calculated452

as the arithmetic mean of the scores of the processed segments.453

Then, only NIS intermediate states are kept and evaluated fur-454

ther while the rest are discarded (Figure 12e). The performance455

of multi-segment input processing is determined by the num-456

ber of segments K and the intermediate stack size NIS , with457

NIS = 1 being performance-wise equal to sequential process-458

ing of individual segments. In our implementation, NIS = 10459

and strokes constituted of up to 10 segments can be processed460

without noticeable lagging.461

4.3. Internal Segment Restrictions462

As the individual segments are pieces of one original input463

curve, we must ensure that the beautified segments are consec-464

utively joined. Thus, we constrain the position of the first end-465

point of each segment after the first (rows 2,3 in Figure 12c).466

Additionally, if the input stroke is closed, we also constrain the467

last segment’s final endpoint (row 3 in Figure 12c). As a side468

effect, this also helps to decrease the ambiguity.469

4.4. Segment Joining And Further Behavior470

Once all the segments have been processed, we create the471

final output stroke by joining them together. This way, the com-472

bined beautified input stroke can be used by rules such as curve473

identity. Internally, the beautification engine keeps also tracks474

the individual segments so that they behave as if they were475

drawn one after each other. This lets the geometric rules show476

the expected behavior, e.g., the corners of a complex stroke can477

be used as snapping points.478

5. Implementation Details479

While using an existing API requires us to conform to its480

design rules, it also eliminates the need to handle many tasks481

unrelated to the research project, such as tracking the input de-482

vice, fitting paths to the samples, and managing the undo/redo483

stack. It also benefits the users, as they are not forced to learn484

yet another user interface, and can instead take advantage of485

built-in tools of the existing program. Therefore, we decided to486

integrate our system into Adobe Illustrator as a plugin using its487

C++ SDK.488

As described previously, our method is based on evaluat-489

ing different geometric rules on a new path using the previously490

drawn and resolved paths. Thus, we need to be able to detect491

when a new path is created or an old one is modified or deleted.492

To this end, we serialize all the path data and store a copy in the493

document. Illustrator activates our system whenever the user494

modifies the document. We deserialize the data and compare495

the paths to the actual paths in the document to detect changes.496

If we find a new path, we process the new path and update the497

serialized data. Similarly, when a path is modified, it is treated498

as new one and reprocessed. Deleting paths does not affect the499

remaining ones. To support undo and redo, we store the se-500

rialized data into a part of document that is managed by the501

undo/redo system.502
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Figure 13: Examples of multi-segment stroke processing. The input strokes (blue) are broken into individual segment that are sequentially processed using the
single-segment evaluation engine (Section 3) and merged after the processing is finished (see Section 4 for details).

The presentation of the suggestions is deliberately kept as503

simple as possible and only one suggestion is shown at the time.504

The user switches among the suggestions using an additional Il-505

lustrator tool panel. The last suggestion in the list is always the506

original input path and is thus easily accessible. Currently, the507

list of inferred constraints is shown in textual form in the order508

in which they were traversed in the search space tree (see Fig-509

ure 18c). The user selects the current suggestion by drawing a510

new path or changing the selection. To provide additional as-511

sistance for the user, we also present a simple visualization of512

the applied rules together with rectified path. This visual an-513

notation provides immediate feedback about the imposed con-514

straints and relations of the user input (see Figure 15).515

To further exploit the built-in tools, we support the “Trans-516

form Again” feature for rotational symmetry. If the resolved517

path is a rotated copy of an existing path, it is noted as such518

so that a new, properly-rotated copy will be created if the user519

invokes the “Transform Again” command. The user only needs520

to draw two rotated instances of a path and then can create ad-521

ditional properly-rotated paths without drawing them (see Fig-522

ure 18d). Recall that the rotation angle is adjusted to the nearest523

integer quotient of 2π, so additional paths can form full n-fold524

rotational symmetry.525

The constraints imposed by ShipShape can easily be avoided526

for certain paths by placing them in layers that are not being527

rectified. In our implementation, ShipShaperuns only on the528

default layer.529

6. Results530

To evaluate the effectiveness of our method, we conducted531

a preliminary study. We created a plugin for Adobe Illustra-532

tor that was installed on a PC with a 23in LCD monitor and a533

consumer computer mouse as the input device. Six people par-534

ticipated in this study. All of them worked with Illustrator on535

a daily to weekly basis, but in all cases, their primary work-536

related tool was a CAD program. First, the users were given a537

brief introduction and demonstration of our system’s concept,538

capabilities and limitations, with a few practical examples. The539

participants could adjust Illustrator settings and the mouse sen-540

sitivity according to their needs, and then spent 1 to 3 minutes541

in free drawing, to get briefly accustomed to the system and the542

workflow.543

Figure 14: Evaluation study drawings. The users were asked to recreate these
drawings using our ShipShape prototype: Task drawing (left, black), represen-
tative raw input (right, gray).

The users were then shown three simple illustrations (see Fig-544

ure 14) and presented with the task of drawing each of them545

anew, using both native Illustrator tools and our prototype, while546

we measured their drawing times. First, the participants were547

asked to recreate the figures using any suitable tools and ap-548

proaches, i.e., they could use all the available tools and modes,549

such as copying or reflecting. Rather than creating the exact550

copies of the reference drawings, we directed them to focus on551

preserving the geometric relations. Interestingly, despite the552

users’ relatively equal level of experience, they often took very553

dissimilar ways to recreate the task’s drawing.554

In the second part of the test, the participants were only555

allowed to use the pencil tool with the ShipShape prototype556

turned on. The only additional allowed operation was undo.557

Similarly to the first part of each drawing, the users took a dif-558

ferent approaches to complete the goal, however, with a sin-559
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(a) (b) (c)

Figure 15: Visual annotation hints. Overlaid visual annotations show which
rules have been applied, e.g., line perpendicularity and endpoint snapping (a),
line parallelism and single coordinate snapping (b) or path identity (c).

gle exception, they were all able to finish all three designated560

drawings from Figure 14. The initial measurements (Figure 16)561

suggest that drawing beautification is more suited for simpler562

drawings and tasks. For example, copying a large part of the563

bottom-left drawing in Figure 14 was always faster than redraw-564

ing it.565

The main interest of this study was to identify the weak566

points and bottlenecks of our approach and to test how success-567

ful our prototype was in generating correct suggestions. The568

overall feedback from the participants was positive. They found569

the tool useful and easy to use. Most of the participants, how-570

ever, considered the limitation of using a single tool only too571

restrictive, and suggested incorporating parts of our approach572

(smart snapping, automatic tangent adjustments, etc.) into the573

relevant built-in tools. All the participants liked the idea of vi-574

sual annotations (Figure 15) and found it helpful. Several users575

did not like the way the alternative suggestions were presented576

and explored (see the small gray box in canvas in Figure 18)577

and preferred to undo and redraw the particular strokes.578

Additional results are shown in Figure 17. Note that an im-579

portant part of the drawing workflow was relying on Illustra-580

tor’s built-in support for curve smoothing when creating origi-581

nal paths—those that are not copies of other paths. These are582

shown in blue in Figure 17, and they function as “template”583

paths for the beautification. Other strokes drawn afterwards can584

be much more imprecise (see Figure 1 and Figure 17c–g).585

7. Limitations and Future Work586

A common problem of drawing beautification techniques is587

the quick growth of the number of possible suggestions as the588

drawing becomes more complex and many satisfiable geomet-589

ric constraints emerge. Our approach addresses this by com-590

bining best-first search with a limited suggestion set size, but591

additional heuristic-based pruning of the search space, possibly592

based on empirical measurements, could improve the sugges-593

tion set.594

Currently, when the user changes an already-resolved path,595

it is treated as a new one. In some cases, however, it would be596

beneficial to not only reprocess the modified path but also all597

other paths being in relationship with it, for example changing598

any reflected or rotated versions of the path.599

(a) (b)

(d)(c)

Figure 18: Exploiting the “Transform Again” feature. Illustrator allows the user
to repeat the last transformation. When a new path is added (b) to the canvas (a),
it is processed and output suggestions are generated. If the user chooses a sug-
gestion that is a rotation (c) we enable the “Transform Again” feature. The user
can then easily complete the 8-fold rotational symmetry drawing (d). See Sec-
tion 5

8. Conclusion600

In this paper, we presented an efficient method for beautifi-601

cation of freehand sketches. Since the user input is often impre-602

cise and thus ambiguous, multiple output suggestions must be603

generated. To this end, we formulated this problem as search604

in a rooted tree graph where nodes contain transformed input605

stroke, edges represent applications of geometric rules and suit-606

able suggestions correspond to different paths from root node607

to some leaf nodes. To avoid the computational complexity of608

traversal through the whole graph, we utilized a best-first search609

approach where the order of visiting tree nodes is directed by610

the likelihood of application of the particular geometric rules.611

On top of this framework, we developed a system of self-612

contained rules representing different geometric transformations,613

which can be easily extended. We implemented various rules614

that can work not only with simple primitives like line segments615

and circular arcs, but also with general Bézier curves, for which616

we showed how to detect previously unsupported relations such617

as curve identity or rotational and reflection symmetry.618

We demonstrated the usability and potential of our method619

on various complex drawings. Thanks to the ability to process620

general curves, our system extends the range of applicability621

of freehand sketching, which was limited previously to draw-622

ings in specialized, highly-structured applications like forms or623

technical diagrams. We believe that this advantage will become624
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Figure 16: Comparison of drawing performance. The participants were asked to recreate the drawings from Figure 14 using either native tools of Adobe Illustrator
(red) or ShipShape prototype (blue line). For simpler drawing, such as the spiral or the clock, ShipShape typically outperformed Illustrator. However, with more
complex drawings (table), the utilization of different tools is faster.

even more apparent with the widespread adoption of touch-625

centric devices, which rely much less on classical beautification626

techniques that are based upon menu commands and multiple627

tools.628
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Appendix A. Rules Evaluation639

The rules are evaluated using a piecewise-linear ramp func-640

tions, both continuous and discontinuous. These functions trans-641

form the input values, such as angular differences or view-space642

distances, to likelihood values from the interval [0, 1] used to di-643

rect the tree expansion and final suggestion sorting described in644

the paper. For each rule listed in section 3.1 in the main paper,645

we show the exact scoring function we used in our implemen-646

tation.647

Appendix A.1. Line Detection648

As in QuickDraw [10], we calculate the deviation from straight-649

ness D = |1 − |lc|/|ll||, where |lc| is length of sampled Bézier650

curve and |ll| length of line segment between its endpoints. If D651

is lower than the threshold 0.05, we set the likelihood LLD of652

the curve being a line segment to 1 − D.653

Appendix A.2. Arc Detection654

The arc is described by three parameters – center, radius655

and angular span. We initially sample the input path and obtain656

the circle fit center location and radius value using least-squares657

approach. We then project the samples onto the optimal circle,658

using the circle center as the center of the projection, to deter-659

mine the span value. Having these three values, we construct660

the arc suggestion and compute its similarity with the input us-661

ing discrete Fréchet distance between the original samples and662

the suggested arc’s samples. This distance is then used to cal-663

culate the final output likelihood LAD (Figure A.19). If the de-664

tected span is higher than 2π − π/13 or the input path is closed,665

the output span is set to 2π to suggest full circle output.
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Figure A.19: Relative discrete Fréchet distance evaluation in Arc Detection
rule.

666

Appendix A.3. Endpoint Snapping667

We measure the distances between the endpoint and the668

points of interest (other endpoints, arc centers, etc.) in view-669

space pixels and transform them to final likelihoods LES (Fig-670

ure A.20). As the users can end strokes relatively precisely even671

with devices such as mouse or touchpad, there is no tolerance672

zone in the scoring function.673
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Figure A.20: View-space distance evaluation in Endpoint Snapping rule.

Appendix A.4. End Tangent Alignment674

The angular difference between the curve endpoint and the675

endpoint it is connected to is directly transformed to final like-676

lihood LET A (Figure A.21).677
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(a) (b)

Figure 17: Various results obtained using our method. The side-by-side pairs show the beautified output (black) and the original input strokes (gray). Note that we
do not perform any curve smoothing, beyond what is provided by Illustrator. Therefore, when dealing with general curves, the first “template” strokes (blue) have
to be drawn more precisely or be smoothed using built-in Illustrator capabilities.
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Figure A.21: Angular difference evaluation in End Tangent Alignment rule.

Appendix A.5. Line Parallelism and Perpendicularity678

We measure the angular difference between the direction679

vectors of two line segments to obtain the likelihood Ld f f (Fig-680

ure A.22 top). To increase the final likelihood of nearby line681

segments, we also score the view-space distance between tested682

line segments – Ldst (Figure A.22 bottom). The output sugges-683

tion with likelihood LLP = Ld f fLdst is produced, if LLP > 0.7.684
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Figure A.22: Angular difference evaluation (top) and view-space distance eval-
uation (bottom) in Line Parallelism and Line Perpendicularity rules.

Appendix A.6. Line Length Equality685

We measure the line length difference relative to a tested686

line segment to get the likelihood Ld f f (Figure A.23 top) and687

also the likelihood Ldst (Figure A.23 bottom) based on rela-688

tive distances of existing line segments to the tested one. Sim-689

ilarly to line parallelism rule, the final likelihood is computed690

as LLLE = Ld f fLdst and an output suggestion is produced, if691

LLLE > 0.7.692

Appendix A.7. Arc and Circle Center Snapping693

Based on the arc’s span θ and radius r, we first determine the694

search distance D′ = max (D, 2r (1 − θ/2π)), where the default695

distance D = 30 (view-space pixels) is equal to the one used in696

endpoint snapping and also the final likelihood LACCS is then697

computed using the same ramp function (Figure A.20).698

Appendix A.8. Path Identity699

We compute the discrete Fréchet distance between the tested700

path and the existing one, as described in Section 3.4. The abso-701

lute distance δF is then made relative to the length of the tested702

path and used to compute the likelihood LPI (Figure A.24).703
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Figure A.23: Relative length difference evaluation (top) and relative distance
evaluation (bottom) in Line Length Equality rule.
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Figure A.24: Relative discrete Fréchet distance evaluation in Path Identity rule.

Appendix A.9. Path Transformation Adjustment704

We compute four separate likelihoods for the angular dif-705

ference La, the scale difference Ls, the x offset Lx, and the y706

offset Ly, and perform only those with non-zero values. The707

final likelihood is LT A = 1 − (1−La)(1−Ls)(1−Lx)(1−Ly).708

Note that the maximum likelihood is relatively small compared709

to other rules; if they were larger, this would usually overwhelm710

the likelihoods of other suggestions.711

Appendix A.10. Path Offset712

The process to obtain samples along the tested path together713

with their signed distances to the existing path is described714

in Section 3.6. To compute the likelihood LPO we evaluate715

the relative distance difference between 25th and 75th quantile716

from the sorted hit data (Figure A.26).717
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Figure A.25: Angular difference evaluation (top), relative scale evaluation
(middle) and view-space distance evaluation (bottom) in Transform Adjustment
rule.

0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3

0

0.5

1

Relative Distance Difference

Li
ke

lih
oo

d

Figure A.26: Relative distance difference evaluation in Path Offset rule.
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