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In this supplementary material, we provide details re-
garding ground truth data generation and the training pro-
cedure for the proposed approach, as well as minor clarifi-
cations on the text of the paper. Additionally, we show more
detailed results and ablations of our model.

1. Terminology
Although we use the terms shadow map and specular

map throughout this work, these terms could be seen as
somewhat misleading. In reality, these maps represent areas
where the amount of light is lower or higher, respectively,
than if the lighting in the scene were diffusely blurred (by
cos+(θ)). As such, they can be seen as relative illumina-
tion maps. However, it is useful to conceptually think of
them as representing their extremes, i.e. shadows and spec-
ular reflections, as those are the primary perceptual effects
of strong directional light we are aiming to suppress.

2. Data Generation
To train the proposed model, we require supervised pairs

of input portraits I and output diffused images Id, as well
as intermediate shadow and specular maps. Following pre-
vious work [7], we rely on a Light Stage [2, 6] to capture
the full reflectance field of multiple subjects as well as their
geometry.

In particular, we recorded a set of 70 diverse partici-
pants with different skin tones, performing 9 different fa-
cial expressions and wearing different apparels. For each
sequence, we acquired 331 images, corresponding to one
specific light source in the Light Stage. The full set of
one-light-at-time (OLAT) images is then used to perform
HDR relighting from each acquired viewpoint, by linearly
combining the reflectance field [1]. Specifically, we used
a sparse set of 58 cameras placed all around the acquired
subject, with 6 frontal facing views, simulating close up
framing typical of portrait photography (see [7] for more
details).

Additionally, we use a multi-view system with custom

infrared (IR) depth sensors to infer high quality geometry
[2].

We then selected 279 medium to high contrast
HDR panoramic lighting environments sourced from
www.HDRIHaven.com [9] to relight the subjects with the
original HDR map as well as the convolved, diffused ones
to obtain diffused images Id, as well as specular and shadow
maps. We split the dataset into training and testing subsets,
manually selecting 7 subjects with diverse skin tones for
evaluation, as well as 10 lighting environments unused dur-
ing training.

2.1. Synthetic Shadow Augmentation

The described OLAT summation technique is incapable
of producing soft shadows without heavily specialized and
expensive techniques [8], especially for small area lights.
Therefore, we augmented our data with additional soft
shadows cast from synthetic objects in the scene. In princi-
ple, one could use raytracing techniques to synthesize these
shadows, but raytracing accurate soft shadows requires so-
phisticated denoising algorithms or long computation times.
Instead, we augmented our dataset with a novel and ef-
fective technique that approximates realistic shadows that
match the diffusiveness of the casting environment, requir-
ing onlyO(1) additional operations per pixel versus regular
OLAT summation.

First, we generate a shadow map in image space. Con-
ceptually, we place a virtual cylinder in the scene with an
alpha texture mapped to the surface, and project that tex-
ture to the subject’s geometry (acquired using [2]) using ray
casting. More precisely, suppose we have a light source (in-
finitely far away, an OLAT), a depth image (rendered from
the captured geometry for a given camera and take), and a
virtual shadow casting cylinder around the subject. For each
pixel in the depth image, we cast a ray from the pixel’s po-
sition towards the light source. For these rays, we compute
the intersection with a virtual cylinder in the environment,
and use the corresponding shadow map texture value as the
amount that the light is covered by the virtual shadow. This
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Figure 1. Multiple settings of shadow diffusion for relit images.
With our synthetic shadow augmentation, a method of matching
the shadow diffusion to the target relight Gini is required. A mis-
calibration of the parameters would result in inconsistent behavior
as the diffusion parameter is varied. We calibrated our parameter
settings by consulting with professional photographers with the
goal of producing images with perceptually plausible amount of
shadow diffusion.

process generates a shadow map in image space for a sin-
gle light source (i.e. OLAT image). We manually created
28 shadow map textures, comprising of silhouettes of trees,
geometric patterns, people, fences, and building architec-
tures.

Next, we soften the shadow map to match the light
environment’s absolute diffuseness. We experimentally
obtained a new parameter d = α(G − 1)2 + (1 −
α)max

(
0, β−Gβ

)
where α = 0.5, β = 0.65, andG ∈ [0, 1]

is the Gini coefficient of the HDR environment map, as de-
scribed in the paper (smaller G corresponds to more dif-
fuse lighting). We then adjusted the shadow map’s opac-
ity by 1 − 0.4d and applied a Gaussian blur with kernel
size 0.03dW , where W is the image width in pixels. This
technique, while not physically accurate, softens the edges
and lightens the shadow enough that they match the internal
shadowing (i.e. nose shadows, etc) given from the OLAT
based relighting. We consulted our tuning of proposed pa-
rameter setting with professional photographers. An exam-
ple of different configurations is shown in 1.

Finally, we generate two relit images of the subject: one
using the entire lighting environment as the baseline light-
ing, and one with the brightest OLAT (for the source en-
vironment map) removed, as the shadow color. Using the
softened shadow map, generated from the light correspond-
ing to the brightest OLAT, we blend these two relit images
to generate the final rendering with a synthetic shadow. This
method is shown in Figure 2. Note this method assumes
the shadow is cast by a single light source – the light cor-
responding to the brightest OLAT image. For the kind of
images we are targeting, a single bright light source is very

Figure 2. Synthetic shadow generation method. We project a
shadow map onto a captured depth image and then use a blurred
and lightened version of it to blend between two relit images.

common and so this assumption is reasonable.
This process has some similarities to the augmentation

done by Zhang et al. [11], but we match the diffusivity of
the lighting environment and incorporate captured geome-
try, allowing us to generate soft shadow maps that realisti-
cally conform to the subject’s surface.

With this proposed data generation technique, we gener-
ated 17M training examples. In particular, for each Light
Stage capture, for each front facing camera, and for each
HDR environment, we created 16 samples, by taking the
cross product of 4 random rotations of the HDR environ-
ment and 4 random shadow maps (one always blank). Each
training example contains three levels of diffusion: the orig-
inal HDR environment, a random integer specular expo-
nent (selected on a log-uniform distribution in [4, 64]), and
a fully diffused image (specular exponent 1).



Figure 3. Further results demonstrating the respective outputs our method produces. We first extract specular/shadow maps from the input
image and then produce a fully diffuse image. Additionally, we can recover a uniformly lit image, i.e. tinted by the average light color, from
which we can estimate the untinted albedo. The bottom rows illustrate the application of editing the input photo by gradually increasing
the amount of light diffusion.

2.2. Additional augmentations

During training, we applied additional augmentation to
the training examples. While the selected HDR environ-
ments cover a broad range of possible lighting conditions,
they are biased towards softer environments, whereas we
expect our method to provide largest benefits when applied
to images with relatively harsh lighting environments.

To simulate this, we apply a range of brightness-
adjusting augmentations to our training samples. Although
naive scaling in linear RGB space works well to produce
overexposed images, we find that it alone produces im-
ages with lower contrast between overexposed and under-
exposed, shadowed areas. To remedy this, our brightness
adjustments take the estimated shadow map into account
and scale the shadowed areas by a different factor.

Similarly, we observe that in-the-wild image post-
processing often leads to non-linear color shifts in shad-

owed areas, and attempt to replicate this effect in our train-
ing data by color-tinting shadowed areas.

Lastly, while the light stage captures some subsurface
scattering effects, we would like to emphasize their re-
moval, since they are much more prominent under direct
sunlight. To this end, we add approximate subsurface color
tinting around shadow edges on the skin. In particular, we
apply a skin segmenter to create skin map K. Then, we de-
tect edges in shadow map D (described in the paper) where
it overlaps K. We isolate these edges and blur them with a
Gaussian filter, then map the result into smooth color tinting
map, with heavy bias towards red tones, similar to ones that
would be produced by light scattering through blood vessels
under the skin.
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Figure 4. Examples of applying our skin subsurface scattering
augmentation. Left example shows inpainting in the nose and head
shadow regions, example on the right shows inpainting in the hair
shadow region.

2.3. Training Details

We implemented our training pipeline in TensorFlow,
distributing the training across 8 NVIDIA Tesla V100 GPUs
with 16GB of memory. Each iteration randomly picks 8
images of subjects relit with a random HDR environment,
a diffused version of the same HDR environment with ran-
dom specular exponent, and a fully diffused version with
specular exponent 1. We use the ADAM optimizer [3] with
a learning rate of 5× 10−5. We optimized our system for 2
million iterations for the training to converge, taking four-
teen days.

To train our N -diffusions albedo model, we first trained
a model that just predicts the fully diffused image using the
above method. We then used this model inside the full N -
diffusions architecture, and trained end-to-end for an addi-
tional 1 million iterations for an additional week of training.

Loss functions We have two main image-based losses:
the pixel-wise L1 difference between the model output and
the target image, and the (L1) difference between the VGG
features [10] of the model output and target; we call these
L1 and VGG losses, respectively.

For our parametric diffusion model, we compute these
two losses for a random diffusion level to get Ldiff =
λL1Ldiff,L1 + λvggLdiff,vgg, a face crop of the random diffu-
sion to get Lface = λL1Lface,L1 + λvggLface,vgg, and a second
inference of a fully diffused image and the fully diffused im-
age (where fully diffused means lit by environment blurred
with cos+(θ) kernel) to getLfull = λL1Lfull,L1+λvggLfull,vgg.
We empirically determined parameters λvgg = 6, λL1 = 1.
For the specular and shadow maps, we only used L1 losses
to obtain Lmaps = λL1(Lspec,L1 + Lshad,L1). We also use a
least squares discriminator between the diffused image and
the ground truth diffused image to obtain Ladv [5]. We then
computed our total loss as

Lparametric = Ldiff + Lface + Lfull + Lmaps + Ladv

For our N -diffusions albedo model, we use the same
Lfull, Ladv, and Lmaps losses as the parametric model, and

computed additional losses for the face crop of the first full
diffusion to get Lfullface = λL1Lfullface,L1 + λvggLfullface,vgg,
the third full diffusion with respect to the tinted albedo
ground truth to get Ltintalb = λL1Ltintalb,L1 + λvggLtintalb,vgg,
and a face crop of the tinted albedo to get Lfacealb =
λL1Lfacealb,L1 + λvggLfacealb,vgg. For the HDR tint predic-
tor we computed the L1 loss between the predicted RGB
tint and the average illumination of the HDR map, Ltint =
λL1Ltint,L1. We then computed our total loss as

Lalb =Lfull + Lfullface + Lmaps + Ltintalb

+ Lfacealb + Ltint + Ladv

with the same empirically determined parameters λvgg, λL1
as above.

3. Additional Results and Ablations
In this section, we present further results on a wider

range of subjects as well as ablation studies of our model.

Figure 5. Albedo ablation study. Left to right: source image,
U-Net predicting albedo from a fully diffuse image, U-Net pre-
dicting tinted albedo from a fully diffuse image with tint correc-
tion, n-diffusions with tint correction. We observed that plain U-
Net based approaches had similar performance on face regions but
generalised poorly to clothing regions, exhibiting poor color sta-
bility and accuracy.



Albedo ablations In Figure 5 we compare our proposed
N -diffusion albedo estimation approach to naively predict-
ing the albedo image directly from the fully diffuse im-
age using a U-Net. We also show results for predicting
the tinted albedo using another U-Net instead of perform-
ing N -diffusions. It can be observed that the naive full im-
age albedo prediction approach suffers from patchiness on
clothing due to color ambiguities. While predicting a tinted
albedo using U-Net has fewer artifacts, we found that the
general color correctness and image quality is higher with
the proposed N -diffusion approach. This is also validated
through quantitative metrics on Light Stage data in Table 1.

Model MAE ↓ MSE ↓ SSIM ↑ LPIPS ↓
N -diffusions 0.024 0.003 0.915 0.102
Tinted albedo U-Net 0.030 0.005 0.907 0.107
Albedo U-Net 0.025 0.004 0.911 0.108

Table 1. Quantitative metrics for albedo prediction ablation study.

Face parsing Figure 7 shows additional results for im-
proving face parsing (segmenting parts of the face) in im-
ages with difficult lighting conditions. Unusual shadow pat-
terns and blown out pixel areas throw off state-of-the-art
face parsing methods, but the results improve significantly
after diffusing the lighting.

Naive blending comparison A naive approach to para-
metric diffusion would be to compute the fully diffuse im-
age and use alpha blending with the original source image.
This approach, however, has significant shortcomings, es-
pecially around hard shadow edges, which remain in the
resulting image. Figure 6 shows a comparison between this
simple blending approach and the output of our model.

a) b) d)

c)

Figure 6. Side by side comparison of linear blending approach
vs parametric diffusion. a) input image, b) partial diffusion by
linear blending of a) with c), d) output of parametric model. When
blending with fully diffuse image, the shadow edge on the cheek
stays hard and looks unnatural, in contrast, the edge becomes soft
when using parametric diffusion model.

Original Image Original Image Parsing Diffused Image Diffused Image Parsing

Figure 7. Additional results demonstrating improved face pars-
ing [4] after applying light diffusion.

Additional Diffusion Results Figure 8 shows additional
results for full diffusion on a diverse set of in the wild sub-
jects.

Additional Parametric Diffusion Results Figure 9
shows additional results for parametric diffusion on a di-
verse set of in the wild subjects. These results highlight
how having control over the diffusion level can allow the
user to select the right diffusion for a given image.

Additional Albedo Comparison Results Figure 10
shows additional results for albedo prediction in compari-
son to state of the art approaches. Our approach produces
an albedo image more robust to external shadows and shows
fewer artifacts on clothing.

Additional Portrait Shadow Manipulation Comparisons
Figure 11 shows additional results for our full diffusion
model on in the wild images as compared to [11].

4. Fairness Study
Research focusing on automatic editing of portrait im-

ages inherently raises questions about fairness of outcome
across diverse groups of people. To study this issue, we



Figure 8. Additional light diffusion results. Note how our method can produce convincing diffused results for a variety of in-the-wild
images.



Figure 9. Additional parametric light diffusion results. Our approach provides controllability over the amount of light diffuseness with 0.0
being full diffused.



Figure 10. Additional albedo comparison results. Our approach produces a more consistent albedo over many challenging lighting condi-
tions.



Figure 11. Additional comparisons with Portrait Shadow Manipulation [11]. We show how our approach can more faithfully remove
shadows and specular highlights for many challenging cases.



Figure 12. Sample results across the Fitzpatrick skin tone scale,
taken from our Lighstage dataset. Left to right is skin tone cate-
gories 1 to 6, top to bottom is source image, fully diffused, and
albedo images.
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Figure 13. Average LPIPS error for our fully diffuse and albedo
models.

clustered our light stage dataset into six skin tones, defined
by the Fitzpatrick skin type. Figure 12 shows a sample of
subjects. We then computed our quantitative error metrics
for each cluster to analyse how well our models treat each
skin type. The results for the fully diffused and albedo mod-
els are shown in Tables 2 and 3. We note that while most
error metrics do not show significant correlation across skin
tones, LPIPS does show a small increase for the darkest
categories, which is more pronounced in the albedo model.
Figure 13 shows this trend. Although no strong bias is ap-
parent in our results, we hypothesize the need for detailed
user studies to gauge the correlation between these metrics
and perceived skin tone.

Skin tone MAE ↓ MSE ↓ SSIM ↑ LPIPS ↓
1 0.0084 0.00036 0.98 0.022
2 0.0076 0.00028 0.99 0.018
3 0.0075 0.00030 0.98 0.022
4 0.0068 0.00024 0.98 0.021
5 0.0077 0.00030 0.98 0.024
6 0.0079 0.00029 0.98 0.027

Table 2. Fairness study for diffusion.

Skin tone MAE ↓ MSE ↓ SSIM ↑ LPIPS ↓
1 0.12 0.033 0.82 0.15
2 0.12 0.034 0.83 0.15
3 0.12 0.032 0.84 0.15
4 0.12 0.032 0.83 0.15
5 0.13 0.036 0.81 0.16
6 0.13 0.034 0.77 0.19

Table 3. Fairness study for albedo prediction.

5. Additional Applications
Video In addition to single-photo enhancement, we can
apply our light diffusion technique frame-by-frame to
video. See the supplementary video for examples.

Editing with shadow and specular maps Besides light
diffusion of photos taken under difficult illumination condi-
tions our approach can also be used to control the amount of
shadowing as well as the amount of specular highlights. To
do so, we leveraged information stored in the two interme-
diate shadow D and specular S maps (see Fig. 14b–c) esti-
mated using the shadow+specular network operating on the
original image I (Fig. 14a). We combine the fully diffused
image Id (Fig. 14d) with S and D to produce enhanced im-
age Ie:

Ie = (1− wd ·D) · Id + ws · S. (1)

Here weight wd can be used to adjust the strength of shad-
ows whilewd controls the amount of glossiness. Two exam-
ples of Ie are visible in Figures 14e–f. With this approach
we can produce specular-free photo with stronger shadows
(Fig. 14e) or shadow suppression with enhanced specular
highlights (Fig. 14f).

References
[1] Paul Debevec, Tim Hawkins, Chris Tchou, Haarm-Pieter

Duiker, Westley Sarokin, and Mark Sagar. Acquiring the
reflectance field of a human face. SIGGRAPH ’00, page
145–156, USA, 2000. ACM Press/Addison-Wesley Publish-
ing Co. 1

[2] Kaiwen Guo, Peter Lincoln, Philip Davidson, Jay Busch,
Xueming Yu, Matt Whalen, Geoff Harvey, Sergio Orts-
Escolano, Rohit Pandey, Jason Dourgarian, Danhang Tang,



(a) (b) (c)

(d) (e) (f)

Figure 14. An example of image enhancement combining the dif-
fused image with the shadow and specular maps. The original
image I (a) is fed into the shadow+diffusion network to produce
shadow D (b) and specular S (c) maps. Then the diffusion network
is used to produce fully diffused image Id (d). By combining Id
with D and S, we can produce enhanced images Ie that, e.g., con-
tain less specular highlights and stronger shadows (e) or vice versa
(f).

Anastasia Tkach, Adarsh Kowdle, Emily Cooper, Ming-
song Dou, Sean Fanello, Graham Fyffe, Christoph Rhemann,
Jonathan Taylor, Paul Debevec, and Shahram Izadi. The re-
lightables: Volumetric performance capture of humans with
realistic relighting. ACM Trans. Graph., 38(6), nov 2019. 1

[3] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In Yoshua Bengio and Yann LeCun,
editors, 3rd International Conference on Learning Represen-
tations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings, 2015. 4

[4] Yiming Lin, Jie Shen, Yujiang Wang, and Maja Pantic. Roi
tanh-polar transformer network for face parsing in the wild.
Image and Vision Computing, 112:104190, 2021. 5

[5] Xudong Mao, Qing Li, Haoran Xie, Raymond Y. K. Lau,
Zhen Wang, and Stephen Paul Smolley. Least squares gener-
ative adversarial networks. 2017 IEEE International Confer-
ence on Computer Vision (ICCV), pages 2813–2821, 2017.
4

[6] Abhimitra Meka, Rohit Pandey, Christian Häne, Sergio Orts-
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