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Fig. 1. An example of a stylized sequence produced by our approach. One frame from the sequence is selected as a keyframe (a) and a corresponding style
exemplar is painted using watercolor (b). Then, for the rest of the sequence (c, e, g) our technique produces stylized output (d, f, h) which preserves the artistic

attributes of the specified style exemplar, reflects structural changes in the target video, and maintains temporal coherence. Video frames (a, c, e, g) courtesy
of © MAUR film, style exemplar (b) courtesy of © Pavla Sykorova, used with permission.

We introduce a new example-based approach to video stylization, with
a focus on preserving the visual quality of the style, user controllability
and applicability to arbitrary video. Our method gets as input one or more
keyframes that the artist chooses to stylize with standard painting tools. It
then automatically propagates the stylization to the rest of the sequence. To
facilitate this while preserving visual quality, we developed a new type of
guidance for state-of-art patch-based synthesis, that can be applied to any
type of video content and does not require any additional information besides
the video itself and a user-specified mask of the region to be stylized. We
further show a temporal blending approach for interpolating style between
keyframes that preserves texture coherence, contrast and high frequency
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details. We evaluate our method on various scenes from real production
setting and provide a thorough comparison with prior art.
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1 INTRODUCTION

In the past decades, advances in computer graphics led to a revolu-
tion in the art of animation, giving birth to an entirely new branch
of animation which is three-dimensional, and includes photoreal-
istic lighting effects and physically accurate simulation. Together
with lighting, material, and performance capture, the production
pipelines of animated video now resemble live-action production
more closely than traditional animation. An unfortunate side effect
of this is that, due to production and technical considerations, there
is a “style gap” between traditional and 3D animation, where the
latter has its own distinct look, and it has so far been impossible
to convincingly reproduce the look of the former using the afore-
mentioned production pipelines. Currently, there are no automated
methods that could use live-action performance capture to produce
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the look of traditional animation. Although artists have attempted
to bridge this gap for, e.g., abstract stylization (A Scanner Darkly')
or painterly look (Loving Vincent?), these were monumentally labo-
rious efforts that had to be created manually frame-by-frame.

One possible way to overcome this could be to employ example-
based style transfer techniques to transfer artistic style from a tra-
ditionally created style exemplar to a synthetic or live action tar-
get. This approach recently became popular thanks to advances
in neural [Gatys et al. 2016; Ruder et al. 2018] and patch-based
transfer [Frigo et al. 2016, 2019] techniques. These approaches can
alter the global appearance of the target to roughly resemble the
given visual style, but the effectiveness of stylization relies solely
on the internal representation of style and content of the respective
algorithm. They do not offer users any explicit controls and cannot
fulfill the need of artists to precisely express their artistic intent.

In an effort to provide this sort of control over style transfer,
Hertzmann at el. [2001] pioneered an Image Analogies framework
where the style exemplar, as well as the target, are extended with
additional guiding channels which provide spatial control of how the
style is transferred. This ensures that particular features of the style
exemplar will appear at desired locations in the target. It was shown
recently [Bénard et al. 2013; Fiser et al. 2016] that this additional
control allows for a more semantically meaningful transfer and
results in higher visual quality than the generic methods [Frigo et al.
2019; Gatys et al. 2016].

The main drawback of this approach is that the guidance channels
need to be generated first. Much research was done into algorith-
mic solutions for specific scenarios (e.g., rendering attributes from
known geometry [Bénard et al. 2013; FiSer et al. 2016] or using
landmark detectors and face segmentation [FiSer et al. 2017]), but
guidance generation for the general case of arbitrary images re-
mains an open problem. Efforts into neural-based guidance by Liao
etal. [2017] and later Gu et al. [2018] demonstrated that the response
of VGG net - a deep neural network trained for object classifica-
tion [Simonyan and Zisserman 2014] — can be used as a guide to
automatically control the transfer in certain cases. Unfortunately,
this approach is able to reliably discriminate features only on the
type of images VGG was trained on (faces, animals, objects, etc.). In
a more general scenario, the accuracy is insufficient and may lead
to obvious inconsistencies (see, e.g., transfer of facial patterns to the
legs of the target subject in Fig. 2). Moreover, those techniques do
not address temporal coherence which is crucial for video synthesis.

In this paper, we formulate an alternative analogy-based approach
for the artistically controlled stylization of video, which (a) addresses
the style gap by facilitating free-form artistic stylization of synthetic
or live-action video sequences, (b) gives artists control by allowing
them to explicitly specify local styles using traditional painting
techniques that are familiar to them, and (c) does not require “insider
knowledge” of the target content, such as segmentation, landmarks,
3D or rendering information.

We build on the keyframe stylization paradigm proposed by Be-
nard et al. [2013], where the artist paints one or more keyframes in
a preferred style, and the algorithm then propagates the specified

!https://en.wikipedia.org/wiki/A_Scanner_Darkly_(film)
Zhttp://lovingvincent.com
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style to the rest of the sequence. Our key difference from the afore-
mentioned approach is that we do not require any knowledge of
the underlying 3D structure of the target scene. Instead, we obtain
semantically meaningful transfer by using the original color infor-
mation from the input video together with approximate positional
and temporal guidance generated using optical flow estimation. We
further show that when used in conjunction with a state-of-art
patch-based synthesis algorithm [FiSer et al. 2016], this guidance
results in superior visual quality while preserving the artistic in-
tent. Finally, we demonstrate the practical utility of the proposed
approach on examples from real production settings.

Fig. 2. Common neural stylization artifacts. Style transfer guided by the
response of VGG network might transfer the facial pattern onto the leg
region. (a) target frame, (b) result of Gu et al. [2018], (c) our approach. Video
frame (a) courtesy of © MAUR film, used with permission.

2 RELATED WORK

Traditional image and video stylization methods employ algorith-
mic filters hand-crafted to transform an input image or video to a
particular style. These can be based on a physical simulation of a
given artistic medium [Curtis et al. 1997; Haevre et al. 2007; Lu et al.
2012], procedural techniques [Bénard et al. 2010; Bousseau et al.
2006, 2007; Montesdeoca et al. 2018], or compositing predefined
pen [Praun et al. 2001; Salisbury et al. 1997; Snavely et al. 2006] or
brush strokes [Hays and Essa 2004; Litwinowicz 1997; Schmid et al.
2011; Zhao and Zhu 2011]. While these approaches give impressive
results on the respective domains that they are designed for, they
are invariably limited to a single style or a small set of styles, and
suffer from unintuitive controls that make it difficult to express
artistic intent.

A more modern take on this problem are methods based on gen-
erative adversarial networks [Goodfellow et al. 2014], which can
be trained to perform image-to-image [Isola et al. 2017; Zhu et al.
2017a,b] as well as video-to-video [Tulyakov et al. 2018; Wang et al.
2018] translation, including stylization. Researchers have also intro-
duced neural network based approaches that target artistic styliza-
tion specifically [Johnson et al. 2016; Ulyanov et al. 2016a,b, 2017;
Wang et al. 2017; Wilmot et al. 2017], training one network per style.
These methods cannot reproduce styles that they are not trained on,



and for the styles they support, the results typically do not accurately
reproduce fine textural details. Sanakoyeu et al. [2018] attempted to
improve the stylization quality by introducing a style-aware content
loss, but the results still have some semantic inconsistencies (see
supplementary material). Researchers have also introduced styl-
ization techniques that transfer arbitrary visual styles to content
images using a single network at the expense of limited faithful-
ness to the target styles [Huang and Belongie 2017; Li et al. 2017].
In general, neural approaches require time-consuming and arcane
training process and offer limited user control [Gatys et al. 2017].

Example-based approaches naturally support stylization using
arbitrary style imagery, and no training is needed. The most wide-
spread approach formulated the concept of Image Analogies [Hertz-
mann et al. 2001], where guidance channels are added to both the
style exemplar and the target photo to guide a patch-based syn-
thesis algorithm [FiSer et al. 2016; Kaspar et al. 2015; Wexler et al.
2007] which decides how different features of the style should be
transferred to various regions of the target. The remaining problem
is finding appropriate guidance channels, which can be generated
algorithmically in certain cases [Bénard et al. 2013; Fiser et al. 2016;
Jamriska et al. 2015] or for particular content (e.g., faces [FiSer et al.
2017]). Creating the guiding channels manually is possible but un-
intuitive and highly laborious in the case of video.

To circumvent this problem, generic approaches which do not
require specific guidance [Frigo et al. 2016; Gatys et al. 2016] were
formulated. More recent neural-based techniques [Gu et al. 2018; Li
and Wand 2016; Liao et al. 2017] achieve this by using responses of
the VGG network trained on object classification [Simonyan and
Zisserman 2014] to guide the synthesis. These latter approaches
produce impressive results when used on images structurally similar
to those in ImageNet — natural photographs with a single identifiable
foreground object or scene — but are difficult to control and behave
unpredictably when generalizing to different types of images such
as complex natural scenes or paintings of abstract styles.

Stylization of video offers the additional challenge of handling
temporal coherence. This was itself a topic of previous research,
where coherence was formulated as an additional constraint for
patch-based synthesis together with the control over the amount of
visible temporal flickering [Dvoroziak et al. 2018; Fier et al. 2017,
2014]. Similarly, for generic style transfer not requiring specific
types of guidance, explicit temporal coherence was incorporated
into neural-based [Chen et al. 2017; Gupta et al. 2017; Ruder et al.
2018; Sanakoyeu et al. 2018] as well as patch-based [Frigo et al. 2019]
techniques. Lai et al. [2018] introduced a blind temporal coherency
approach that takes per-frame stylized video as input and outputs a
temporally consistent video as post-processing.

We based our approach on the image analogies framework that
offers both precise control as well as the ability to handle arbitrary
style. We combine keyframe-based user control as in the method
of Bénard et al. [2013] with a synthesis process similar to that used
in the approach of Figer et al. [2017]. A key added value of our
solution is that we overcome two significant drawbacks of these
previous methods: (1) dependence on a specific target domain (3D
computer-generated animation and facial video) and (2) inability to
handle challenging scenario when multiple inconsistent keyframes
are used to stylize the target sequence. To do that we design a new
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set of domain-independent guidance channels and formulate a cor-
responding error metric for the subsequent patch-based synthesis.
To combine content from multiple keyframes, we propose a solution
that prefers high-frequency details according to their relevance and
avoids loss of contrast.

3 OUR APPROACH

The input to our method is a target video sequence T and one or
more stylized keyframes or style exemplars, S. To create keyframes,
artists can paint digitally or physically using their preferred artistic
media over arbitrarily-selected frames of a video. Similar to the
physical painting process used in StyLit [Fider et al. 2016], we print
a low-contrast version of the frame with registration marks, which
allows accurate re-digitization and registration of stylized artwork.
The output of our method is a temporally coherent video sequence
O, in which every frame is stylized analogically to the style exemplar
S, i.e., various semantic parts of the input sequence are stylized the
same way as in the example frame.

One possible approach to example-based video stylization is to
estimate dense correspondences between the target keyframe T;
and all other frames in the sequence [HaCohen et al. 2011; Yiicer
et al. 2012], and then use the resulting deformation field to warp
the style exemplar. However, this naive approach would introduce
undesirable texture distortion to the example style and generate arti-
facts in situations like disocclusions or lighting changes in the target
sequence. To address this fundamental drawback we formulate our
problem as a guided patch-based synthesis similarly to [Bénard
et al. 2013; Fiser et al. 2017]. However, since in our scenario we do
not have any prior knowledge of the underlying scene we need to
design a new set of guiding channels that can be computed solely
based on the input video.

For clarity, we first explain the stylization process with just one
keyframe and then show how it extends to multiple keyframes.

3.1 Guidance for a single keyframe

Our new set of guiding channels consists of the original video frames
Geol, mask Gk, positional Gpos, edge Gedge, and temporal Gemp
guides (see Fig. 3). These will be explained next.

Color guide. G| corresponds to the original color frames of the
target sequence T (see Fig. 3a). It captures appearance changes, e.g.,
facial gestures, subtle cloth deformations, varying illumination, etc.

Mask guide. G, highlights the objects of interest. It helps the
algorithm distinguish object boundaries to handle occlusion and
also allow for layered stylization if preferred by artists. When there
is no strong occlusion in T or no need to accurately delineate object
boundaries, addition of the mask guide is optional otherwise Gp,5
can be obtained using, e.g., green screen matting (see Fig. 3b), color
separation or other semi-automatic segmentation method [Li et al.
2016].

Positional guide. Gpos helps the algorithm maintain the overall
structure of the stylized keyframe for meaningful transfer (see Fig. 3c).
It serves to resolve ambiguity between distinct features which have
similar appearance, but need to be stylized differently as artist de-
sired. In Fig. 5a,b the result of synthesis without using Gpos is visible.
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(a)
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Geol Grmask Gpos
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Fig. 3. The set of guidance channels used by our method. G, is essential to preserve the target appearance, Gyask helps to preserve sharp object boundaries,
Gpos is important to maintain overall structure, Gegge makes synthesis more robust to illumination changes and improves positioning of stylized features,
Gtemp is essential for temporal coherence. For further details, please refer to the text. Video frames (Ty and T;) courtesy of © MAUR film, style exemplar (S)

courtesy of © Pavla Sykorova, used with permission.

Note, how the light brown wood texture from behind the subject
shows up on the leather bag. We define Gjos as a dense correspon-
dence map between the current frame T; and the keyframe T.. We
compute this map by first estimating optical flow between con-
secutive frames of T using SIFT Flow [Liu et al. 2011]. This yields
a sequence of inter-frame motion fields D;, which we use to in-
crementally propagate the original pixel coordinates encoded in a
coordinate map Py (see Fig. 4a). We only perform this advection
on the pixels inside the object mask My (Fig. 4b), and use diffu-
sion [Orzan et al. 2008] to smoothly fill in the remaining values
(Fig. 4c,d). The resulting map could introduce considerable texture
distortion if used directly to warp stylized keyframes (see supple-
mentary material). However, when used as a guide for patch-based
synthesis, it encourages transfer of correct style features to the
intended locations. Singularities and distortions that would result
from direct advection are prevented by the other guiding terms, c.f,
error metric (1).

Edge guide. Gegge highlights the object edges and salient features
in the target sequence (see Fig. 3d), making the result less volatile
with respect to color variation in G.,; caused especially by changes
in illumination. Because many artistic styles emphasize edges, this

ACM Trans. Graph., Vol. 38, No. 4, Article 107. Publication date: July 2019.

(@) (b) (© (d)

Fig. 4. Generating the Gpos guiding channel. Red and green color channels
denote x and y coordinates. Gyos corresponding to the keyframe is con-
structed as a linear gradient in x - red, and y - green (a). Mask Gy is then
applied to the Gpos of the keyframe (b). Masked values are then propagated
through the sequence according to the motion field D (c). Values outside of
the mask are filled using diffusion [Orzan et al. 2008] (d).

term has the additional benefit of “anchoring” appropriate style
features (see Fig. 5¢,d). We define Gedge(Ti) = Ti — Ny o T;, where
Ny is a Gaussian filter with standard deviation o.
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Fig. 5. Importance of the Gpos and the Gegge guidance channels. (a) without the Gpos, some features with similar appearance cannot be fully distinguished.
Note that the light brown wood texture from box on the subject’s back appears on the leather bag at the bottom left corner. The Gp,o5 term in (b) helps preserve
the overall structure of the different features well. The Gegge (c-without, d-with) makes the synthesis less sensitive to illumination changes (see differences in
stylization on top of the box) and helps preserving boundaries between the individual style features, thus making the result sharper.

Temporal guide. Giemp is designed to encourage temporal coher-
ence by penalizing the synthesis from diverging too much from a
previously synthesized frame [FiSer et al. 2017; Jamriska et al. 2015]
(see Fig. 3e). We compute Gtemp by advecting the stylization result
of the previous frame O;_; using the motion field D; computed pre-
viously for Gpos. The advection produces a stylization prediction 0;
which is not a satisfactory result on its own due to texture distortion,
but as a guide, encourages temporally coherent stylization.

Error metric. The set of guiding channels we discussed thus far
G = {col, mask, pos, edge, temp}, defines a patch error measure that
is plugged into the original StyLit algorithm [FiSer et al. 2016]. We
use superscript S to denote the source part and 7 the target part of
each guiding channel. The error metric for matching two patches
peSandgq e T is then computed as follows:

E(S,0:,G%,G”,p,q) = 1I5(p) - 0u(@)l*+ > A4lIGS () - Gy (@)l
geG
(1)

where A4 is a weighting factor for each individual guiding channel
and the first term helps to preserve texture coherence by directly
matching colors in patches of stylized keyframe S to those in the
output frame O; (see Fig. 3f). The style S and all guiding channels re-
main unchanged during the synthesis. Only O; is iteratively updated.
See [Fiser et al. 2016] for more details about the optimization.

3.2 Handling multiple keyframes

In many cases, it is sufficient to have only one keyframe. If, however,
a sequence has new content appearing which did not exist in the
keyframe and was not stylized, the artist may choose to specify a
new keyframe to precisely control the stylization of the new content.
The use of multiple keyframes introduces difficulty to the algorithm,
since manually created keyframes will inevitably have subtle incon-
sistency in structure and colors. Previous approaches [Browning
et al. 2014; Darabi et al. 2012; Shechtman et al. 2010] either suffer
from detail clutter or produce temporal artifacts such as unnatural
“boiling” or “pumping”.

We propose a different solution which keeps the keyframe styliza-
tion unchanged while producing smooth and seamless transitions
between keyframes. We first stylize the sequence using keyframes
at the beginning (S]‘:) and at the end (Sf’ ) to produce two separately

stylized sequences 0% and O, To produce the final frame of index
i, we blend the corresponding frames Of and Og’. Now the question
becomes what blending technique should we use.

A trivial approach would be to perform a linear blend: O; =
(1- a)Ol‘: + aO;’, where @ = (i — k)/(I — k). Such a solution flattens
the original contrast and introduces ghosting artifacts (see Fig. 7b).
In addition, linear blending implicitly assumes that the content of
the frame changes smoothly in time; such an assumption is violated
when there is disocclusion in the sequence, which suddenly intro-
duces new local content that exists in keyframe S;’ but not in S¢. In

this case, we should stylize the new content using S;’ exclusively,
without blending in any features from SZ. To achieve this, we take
advantage of the fact that our algorithm gives a patch matching
error (1) for each pixel p in every frame for both O% and ob. Our
intuition is that between two patches from O¢ and 0P located at
pixel p, the one with lower matching error will lead to “better” result
and thus should be locally preferred.

Error-based gradient domain fusion. In order to merge the best
content from the two stylized sequences, we use gradient domain
fusion similar to that used in Image Melding [Darabi et al. 2012]
(see Fig. 6), where a screened Poisson equation [Bhat et al. 2008]
is applied to perform this task. Our solution, differs in how we se-
lect the gradient and how the screening value for reconstruction is
computed. For the gradient, we select VO¢(p) or VOf’ (p) according
to a pixel selection mask Z; (see Fig. 6) where white pixels indi-
cate the state where the synthesis error E¢(p) is lower than Ef’ )
and thus VO{(p) is selected, while the opposite holds for black
pixels. This ensures the blending result borrows the structure and
high-frequency content from the synthesis result that most closely
matches its respective keyframe.
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Fig. 6. Gradient domain mixing. Two stylized images O{ (a) and Of’ (b) are synthesized at frame i using two different keyframes Si. and S;. We compute a

pixel selection mask Z; (c) where black pixels indicate the locations where synthesis error E{ is lower than Elb and white pixels vice versa (gray indicates

background). We then pick gradients according to Z; (VO{ for the black pixels and VO;’ for the white ones) and run a screened Poisson solver on the

contrast-preserving blend Olf’b of Of and Oib (d). Note that the resulting image O; (e) contains high-frequency details according to Z;.

Fig. 7. Comparison of different blending methods. (a) Regenerative Morphing [Shechtman et al. 2010] exhibits some detail clutter and loss of detail. (b) Linear
blend leads to contrast loss and ghosting is visible. (c) The contrast-preserving linear blend [Heitz and Neyret 2018] has higher contrast, but the ghosting is
still apparent. (d) Our approach has high contrast and ghosting is significantly suppressed.

Preserving color histogram. To ensure the global color histogram
varies smoothly over time, we use a blended sequence 0% for
screening. Instead of linear blending, we use contrast-preserving
blending from Heitz and Neyret [2018], which blends two images
O and O;’ and produces an image Ol?‘b with a prescribed histogram
H which is constructed by tabulating the colors of pixels according
to pixel selection mask Z;, i.e., we count the colors from pixels
which have lower synthesis error. Though in Olqb ghosting artifacts
still exist (see Fig. 7c), they are suppressed by the screened Poisson
reconstruction in the resulting frame O;. The screening value O;‘b
only serves to regularize the color histogram of the result.

Temporal coherence of pixel selection mask. Although the synthe-
sis error usually increases as the target frame gets further away
from the keyframe, the increase in error might not be monotonous
in some local regions. This behavior may introduce visible flicker-
ing since the matching error constraint may cause the algorithm
to frequently alternate between choosing contents stylized from
different keyframes S, and Sp,. To avoid such temporal instability,
we explicitly enforce temporal coherence of the pixel selection mask
Z (see our supplementary material for illustrative figure). We store
pixel selection mask Z;_1 from the previous frame and use estimated
inter-frame motion field D; to produce an initial Z; which indicates
existing pixel selection advected from the previous frame. We then
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update Z; using the lower error constraint as described previously.
However, we prevent the situation where a pixel that has already
been assigned to take color and gradient information from an image
stylized using the later keyframe S from switching back to the
earlier keyframe S,.

After applying this refinement, the resulting fused image has
better contrast and less ghosting artifacts (Fig. 7d).

4 RESULTS

We pre-process guiding channels off-line on the CPU. This includes
green screen matting, optical flow estimation, advection of content
from the previous frame, and hi-pass filtering of the target video
frame (using o = 6). For a one-megapixel frame this process takes
less than 20 seconds with the most time-consuming part being
the computation of optical flow using SIFT flow method [Liu et al.
2011]. We use the following default setting of weights for individual
guiding channels: Aco] = 6, Apos = 2, dedge = 0.5, Amask = 1,
Atemp = 0.5.

The actual synthesis then runs on the GPU (with CUDA) using
the StyLit algorithm [FiSer et al. 2016] with the following settings:
5 X 5 patches, 6 pyramid levels, 12 search-vote iterations, and 6
PatchMatch sweeps [Barnes et al. 2009]. We also use the optimiza-
tion described in [FiSer et al. 2017], i.e., the nearest neighbor field
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Fig. 8. Eskimo sequence: digitally painted keyframe (a) was used to stylize the 148 frames long sequence (b, d, f), stylized frames (c) and (e). Video frames (b, d,
f) courtesy of © MAUR film, stylized keyframe (a) courtesy of © Jakub Javora, used with permission.

Fig. 9. Lynx sequence: digitally painted keyframes (a) and (g) were used to stylize the 100 frames long sequence (b, d, f, h). Keyframe (a) was painted
entirely while in keyframe (d) only few strokes were added on top of the synthesis result, stylized frames (c) and (e). Video frames (b, d, f, h) courtesy of
© kjekol / Adobe Stock, stylized keyframes (a, g) courtesy of © Jakub Javora, used with permission.

propagation is executed only on patches that lower the matching er-
ror in previous search step. With this fine-tuning, we can synthesize
one-megapixel frame in 9 seconds using GeForce GTX 1070.

For the fusion of sequences stylized from different keyframes
we implemented the method of Heitz and Neyret [2018] as well as
screened Poisson solver [Bhat et al. 2008] where we set the screening
parameter Ay = 0.1. The computation runs on the CPU and time
for merging two one-megapixel frames is on average 10 seconds.

We validate our approach on multiple sequences from real pro-
duction (please refer to our supplementary video) with varying
complexity using different styles including physical, artistic media
such as oil paint, watercolor, pencil drawing, and digital paint. The
number of keyframes used for synthesis depends on the shot com-
plexity. One keyframe is typically sufficient for shots where objects
move mostly in the camera plane without occlusion or significant
changes in illumination (see Figures 1, 8, 11, and 12). For more com-
plex shots with out-of-plane rotation and illumination changes, two
(Figures 9 and 14) or more keyframes (Figures 10 and 13) are neces-
sary. The keyframes painted by an artist are highlighted with red
rectangles in the figures. In a fully digital pipeline, not all keyframes
need to be prepared from scratch. Instead, one can stylize the entire
shot using one painted keyframe, and then manually fix deterio-
rated regions when needed. Frames with corrections become new

keyframes (see Figures 9 and 10). For shots with frequent occlu-
sions, we separate each frame into multiple layers for best synthesis
quality and lowest number of keyframes (see our supplementary
material).

(@)

Fig. 15. Comparison with patch-based techniques: (a) Frigo et al. [2019], (b)
Benard et al. [2013], (c) our approach.

We compared our approach with the stylization framework pro-
posed by Bénard et al. [2013] (see Fig. 15b). Although the original
method does not support generic video stylization, we prepared
the necessary guiding channels using our technique and provide
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Fig. 10. Swan sequence: five digitally painted keyframes out of which three are shown in this figure (a, b, c) were used to stylize the 437 frames long sequence (d,
e, f, j, k, 1). Keyframe (a) was painted entirely while in keyframes (b) and (c) only few strokes were added on top of the synthesis result, stylized frames (g, h, i).
Video frames (d, e, f, j, k, I) courtesy of © Primus1/ Adobe Stock, used with permission.

Fig. 11. Snowstorm composition: only one keyframe (b) was used to stylize video sequence with 521 frames including frames (a, c, d). The final composition (e).
Stylized keyframe (b) and the final composition (e) courtesy of © Jakub Javora, used with permission.

(@) (b) (© @ (e) (®) © (h)

Fig. 12. Two different style exemplars—oil paint (a) and pencil drawing (e) were used to stylize the same set of target video frames as in Fig. 1. Style exemplars
courtesy of © MAUR film, Vaclav Svankmajer (a), © Pavla Sykorova (e), used with permission.

them as an input to their algorithm. We also compared with another the entire sequence. We were interested in how well each algorithm
patch-based technique that supports temporal coherence [Frigo et al. preserves the quality of the original style exemplar and handles
2019] (see Fig. 15a). See our supplementary video for comparison on temporal coherence. From the results, Bénard et al’s method has
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Fig. 13. Long video sequence with multiple keyframes: (a—g) are the target frames, (i, j, I, m) are resulting synthesized frames using two respective nearest
keyframes (h, k, n). In total, the sequence contains 889 frames and 8 keyframes. Video frames (a-g) and stylized keyframes (h, k, n) courtesy of © MAUR film,

Vaclav Svankmajer, used with permission.

Fig. 14. Stylization between two keyframes: target video sequence (b, d, f, h) is first stylized using keyframe (a), then the same sequence is stylized using
keyframe (g), and finally, the two resulting stylized sequences are then fused together (c, €). To stylize 1545 frames, only two keyframes were used. Video
frames (b, d, f, h) and stylized keyframes (a, g) courtesy of © MAUR film, Vaclav Svankmajer, used with permission.

difficulty in preserving high-frequency details of the original style
exemplar and tends to produce visible drifting chunks resulting
in more temporal noise. Frigo et al’s method also fails to preserve
sharp details and cannot reproduce the colors in the style exemplar.
We also performed a comparison with state-of-the-art neural-
based approaches (see Fig. 16 and our supplementary video). The
method of Ruder et al. [2018] preserves temporal coherence, but
does not fully transfer the details of the style exemplar. The method
of Li et al. [2017] has similar appearance problems, and does not sup-
port temporal coherence. The approach of Liao et al. [2017] better
reproduces the style, but introduces visible misalignment of salient
features and again, does not preserve temporal coherence. The ap-
proach of Gu et al. [2018] can avoid the misalignment at the cost of
smoothing out important high-frequency details of the original style
exemplar. In addition, the last three methods suffer from severe tem-
poral flickering when applied on video. We tried to post-process all
three with the blind temporal consistency method of Lai et al. [2018].
Although the results were a bit temporally smoother, they exhibited
additional loss of contrast and detail. See supplementary video.

5 LIMITATIONS AND FUTURE WORK

Although our new technique improves visual quality over the state-
of-the-art and enables considerable reduction of manual labor in
the creation of stylized videos, there are still some limitations that
can motivate further research.

One of the key drawbacks of our approach is sensitivity to more
substantial illumination changes in the target video. This may hap-
pen, e.g., when a part of the stylized object is originally in light,
and then it enters a shadow. In this case, the inconsistent colors of
Geol can be misleading. Although the use of Gegge and the diffuse
studio lighting may suppress this behavior (see Fig. 5¢,d and our
supplementary material), a more advanced appearance matching
technique would be helpful. Fiser et al. [2017] used the method
of [Shih et al. 2014] that is, however, tailored to facial images. A
more generic approach is needed in our scenario.

Asarelated problem, structural changes between nearby keyframes
harm the synthesis quality. In some cases, separation into layers
may help to reduce clutter and preserve content coherence. How-
ever, the appearance of target objects may change considerably if
they contain dynamic high-frequency structures (e.g., distinct tex-
ture or wrinkles on clothing, see our supplementary material). This

ACM Trans. Graph., Vol. 38, No. 4, Article 107. Publication date: July 2019.
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Fig. 16. Comparison with recent neural-based methods: (a) Ruder et al. [2018], (b) Li et al. [2017], (c) Liao et al. [2017], (d) Gu et al. [2018], (e) ours. Fig. 13k

was used as the style exemplar for all methods.

change will lead to inconsistencies in G,]. In these scenarios, more
appropriate clothing or an additional detail-removing filtering [Bi
et al. 2015; Xu et al. 2011] may help improve the synthesis quality.

Although our technique for mixing two stylized sequences does
well in preserving contrast and suppressing ghosting, excessively
large structural changes may still lead to subtle ghosting effect due
to usage of blended screening target (see Fig. 7c, eyebrow in Fig. 14,
and our supplementary material). Though solutions exist that can
deform local features for better structural matching [Liao et al.
2014; Ruiters et al. 2010], we cannot apply them since we need to
avoid free-form deformations that may destroy the structure of the
original paint texture. A better warping scheme that preserves local
high-frequency structure could potentially improve our method’s
tolerance to these large structural changes.

6 CONCLUSION

We presented a new approach to temporally coherent artistic styl-
ization of video. Our two primary design considerations were (1) to
allow direct and free-form artistic control in the form of keyframes
painted in any desired traditional medium and (2) to support styl-
ization of arbitrary input videos. Our approach enables a practical
pipeline in real production shots for creating traditional-style ani-
mation from live-action performance capture. It further provides an
easier artistic video creation workflow eliminating the need for a te-
dious frame-by-frame painting process while preserving the unique
and rich visual qualities of traditional artistic media. We hope this
will help bridge the gap between live action, 3D animation, and
traditional hand-painted animation.
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