
E�cient View Frustum Culling

Daniel Sýkora

sykorad@fel.cvut.cz

Josef Jelínek

jelinej1@fel.cvut.cz

Department of Computer Science

Faculty of Electrical Engineering

Czech Technical University

Prague / Czech Republic

1. Abstract

We have implemented e�cient algorithms for view frustum culling introduced in the articleOptimized

View Frustum Culling Algorithms for Bounding Boxes [1] by Ulf Assarson and Thomas M�oller (2000).

We measure and evaluate the e�ciency of selected speed-up techniques used in static and dynamic scenes.

Keywords: view frustum culling, bounding volumes, scene hierarchy.

2. Introduction

The main idea how to make VFC e�cient was invented by Clark [2] who used scene hierarchy.

Slater and Chrysanthou [3] developed VFC probabilistic caching scheme which is signi�cantly faster but

in some cases produces unacceptable errors. Lots of improvements based on traversal coherency of the

scene hierarchy were also presented by Bittner and Havran in [4].

We have examined the article Optimized View Frustum Culling Algorithms for Bounding Boxes [1]

and also the following technical report by the same authors Optimized View Frustum Culling Algorithms

[5] which presents generalized and detailed parts of the basic article.

In this section we will describe brie
y the main novel ideas of optimization methods that Assarson

and M�oller introduced in [1]. The following explanation is also used as the basic information about our

implementation of the presented methods. We will also include a detailed description, critical comments

and remarks about changes in our implementation. The presentation of the abilities of our application

will take place in Section 3 including the discussion about the results in Section 4 and 5.

2.1 Motivation and results in [1]

The main goal was to speed-up the elimination of the invisible objects in complex scenes from the

rendering pipeline. This part of code may not be crucial in most cases but its speeding up will help

especially in huge scenes.

Moreover the general methods the authors of [1] present also speed-up techniques which use low

degree of freedom of the camera motion in the user-driven walk-through the scene. This is signi�cant

for well known 3D computer games driven by a player from his own point of view.

All methods are independent each other. It is possible to determine stand-alone success in compar-

ison with another VFC algorithms. M�oller et al. used the VFC algorithms of DirectModel (DirectModel

1.0 Speci�cation, Hewlett Packard) and Cosmo3D (Cosmo3D programmers' guide, Silicon Graphics Inc.)

as a measure ethalon for establishing presented speed-ups.

All measurements were performed for several types of bounding volumes and their hierarchy in

scenes consisting of about 150 thousands of polygons. They provide a solution which is 3{10 times faster

than DirectModel a system that uses the axes aligned bounding boxes hierarchy, and 1.2{1.4 times faster

than Cosmo3D with the hierarchy of bounding spheres.

2.2 Camera, bounding volumes and hierarchy

We could reduce the whole problem of elimination of invisible objects to the test of the collision of

two volume objects: the visible volume of a camera, also known as the viewing frustum, and the bounding

volume of the current object.



The visible volume of the camera is represented by six planes. Two of them (near and far) are

parallel. The other four are connected in one point of space that represents the viewpoint. They inclined

a spatial angle that represents the FOV �eld of view of camera. The far plane bounds visibility of far

objects in space. The near plane determines the distance of the view-port from the viewpoint.

M�oller et al. specify the VF (viewing frustum) as an axes symmetrical quadrilateral frustum. Often

the reduced versions of the viewing frustum without the far plane and sometimes without the near plane

are used in practice. The near plane of VF could be changed to the spherical surface in cases when we

need to render objects in a panoramatic projection.

The most commonly used bounding volumes for the VFC are already mentioned AABBs and spheres,

but also the OBB (oriented bounding box) or the k-DOP (discrete oriented polytope) [7]. The volume

of the object in proportion to the volume of its bounding solid determines the conservativity of the

elimination algorithm. The closer are the volumes the harder is the implementation of such a VFC

algorithm. The VFC algorithm based on bounding spheres is simple and fast. That is the reason for no

really signi�cant speed-up improvements as is shown on the results in [1].

The most commonly used structure that is good compromise between the tight-�tting k-DOPs

and conservative spheres is the AABB. The important property of the AABB is aligning to the world

coordinates. In contrast to the OBB, that is transformed by the same matrix as the vertices of the

bounded volume, many transformations can be removed in the case of AABB. Still there is need to

transform the AABB if the object rotates. Good compromise for this case can be a combined hierarchy

of the bounding boxes. There are the OBBs in leafs of the oriented acyclic graph of the scene, from

which the AABBs on the higher levels of the hierarchy can be easily computed only by a transformation

and by �nding the bounds of the eight vertices set.

Clark [2] shown that the scene hierarchy is really important data structure that helps speeding up

the VFC signi�cantly. M�oller et al. obtain the best results for speeding up the eliminating phase with

the hierarchy of the AABB. The more complex hierarchy with the k-DOP elements was not used by the

authors, but most of the optimization ideas can be used even for these complex structures.

There should be noted that the authors did not describe the way how the AABB hierarchy was

created, its implementation, how and how often they refreshed the dimensions of the bounding volumes,

whether the scenes consisted of some animated solids etc.

2.3 Basic VFC algorithm

Although M�oller et al. mentioned the system with VFC algorithm that they used as the base for

the comparison, but they did not give any further details. They only stated that DirectModel uses the

general test of the collision of two AABBs. There was not mentioned its conservativity only the way

how to convert the test of the axes aligned box to the quadrilateral frustum.

AABB’’

VF’

AABB

VF

AABB’

VF’

Figure 1: Transformation of the AABB and VF to AABBs.

The entire procedure is in Figure 1. The AABB and the VF is transformed by the perspective

transformation that reduces the VF to a box. This transformation needs 72 multiplications. The new

AABB is constructed around the original VF. The collision detector is applied on this couple and can

be realized by the six comparisons.

An important feature of the basic algorithm is its conservativity in the sense of the detection of the

state where the bounding volume intersects the visibility volume of the camera. Low precision of this

test can cause unnecessary culling of a big amount of triangles of an object inside the bounding volume.

For an objective comparison of methods with di�erent conservativity the global time measurement is

needed because the results of the VFC in this case a�ects the load of the output device that can be

hardware accelerator or software renderer.



Considering that we did not have all details of the implementation of the same basic VFC algorithm

for comparison as the authors of the article, we have used another much less expensive in the term of

time that has the same conservativity as the so called Assarson-M�oller's basic test (basic intersection)

that will be described later. The acceleration can be correctly measured even on less complex scenes

by comparison of the CPU needed to compute only the VFC test routines. But we have compared the

algorithms with same which producing the same results. The fact that the M�oller et al. do not take care

about conservativity of the compared algorithms a�ects reliability of the presented results.

The idea of the basic VFC algorithm for com-

parison is taken from the article Improved frustum-

object cull [6] where Villi Miettinen gives many ex-

periences with the practical applications for solving

the VFC problem. His algorithm is optimized for

AABB and uses one of the Assarson-M�oller's opti-

mization. We used only the core of Miettinen's test

without this additional optimization.

The Miettinen's basic VFC algorithm uses the

collision detection between the VF and a sphere. In

this case the bounding sphere is determined by the

center of the AABB and a half of the diagonal con-

necting the minimal and the maximal vertex of the

AABB. So it is su�cient to compute only the dis-

tance of the center of the AABB from the tested

plane and consists of one dot product and the com-

parison to the radius of the bounding sphere.

r

d

Figure 2: Basic VFC algorithm idea.

Figure 2 demonstrates the fact that the conversion of the AABB to the bounding sphere is not exact.

If we measure the entire radius of the sphere and the distance from the center of the AABB we can see

that we only need to compare its projection to the direction of the normal vector of the tested plane.

There is one more dot product compared with the simple sphere-plane test. The following pseudo-code

describes more implementation details of this method:

int AABBvsFrustum(AABB *b, FRUSTUM *f)

{


oat m, n; int i, result = INSIDE;

for (i = 0; i < 6; i++) { PLANE *p = f->plane + i;

m = (b->mx * p->a) + (b->my * p->b) + (b->mz * p->c) + p->d;

n = (b->dx * fabs(p->a)) + (b->dy * fabs(p->b)) + (b->dz * fabs(p->c));

if (m + n < 0) return OUTSIDE;

if (m - n < 0) result = INTERSECT;

} return result;

}

Vector (mx;my;mz) represents the center of the AABB. Absolute values of the normal vector of

the plane (a; b; c) transform all possible values to the �rst octant so its dot product with the vector

representing a half of the AABB diagonal (dx; dy; dz) will be always positive.

Three di�erent values are possible as the output of the test that determines the continuation of the

rendering pipeline.

� OUTSIDE: Bounding box is totally outside of the VF so the bounded volume is also outside. The

object or the dot hierarchy is eliminated from the further processing.

� INSIDE:Bounding box is totally inside of the VF. There is no need for further culling of the geometry

of the bounded object or down traversal the hierarchy. This state is also useful information for the

software renderer that could avoid the low-level polygon clipping.



� INTERSECT: Object could intersect the VF. The down

traversal the hierarchy is needed and in the case of

leafs the sending of the entire object for culling on the

level of the object geometry.

Accuracy of reporting INTERSECT value depends on

the conservativity of the used method. Beside the inac-

curacy caused by the size of the AABB and the size of

the bounded object there are another inaccuracies in the

corners of the VF. The algorithm detects the INTERSECT

state even when the bounding volume is in fact outside the

VF. This case is displayed on Figure 3 where the regions

of failure of the algorithm are in edges of sweep frustum.

VF

Figure 3: VFC algorithm inaccuracy.

2.4 Basic intersection test

The �rst optimization in the article is the basic test

(basic intersection) of the collision of the AABB with the

VF. Instead of �nding out locations of all vertices in rela-

tion to the tested plane, it is possible to determine one of

the AABB states (OUTSIDE, INSIDE, INTERSECT) only by

the test of two vertices: the n-vertex and the p-vertex.

Figure 4 explained the geometric meaning of n,p-vertices.

They are de�ned in the following way: the farthest vertex

of the AABB in the positive resp. negative sense in the

direction of the normal vector of the plane is the p-vertex

resp. n-vertex. Because of the geometry of the AABB it is

possible to reduce the determining of the n and p-vertices

using look-up Table 1. This table is indexed by the signs

of the normal vector parts of the given VF plane.

p−vertex

p−vertex n−vertex

n−vertex

Figure 4: Examples of n,p-vertices.

n

x

n

y

n

z

p-vertex n-vertex

+ + + [x

max

; y

max

; z

max

] [x

min

; y

min

; z

min

]

+ + � [x

max

; y

max

; z

min

] [x

min

; y

min

; z

max

]

+ � + [x

max

; y

min

; z

max

] [x

min

; y

max

; z

min

]

+ � � [x

max

; y

min

; z

min

] [x

min

; y

max

; z

max

]

� + + [x

min

; y

max

; z

max

] [x

max

; y

min

; z

min

]

� + � [x

min

; y

max

; z

min

] [x

max

; y

min

; z

max

]

� � + [x

min

; y

min

; z

max

] [x

max

; y

max

; z

min

]

� � � [x

min

; y

min

; z

min

] [x

max

; y

max

; z

max

]

Table 1: Look-up table for determining the n and p-vertices.

The basic test uses only two dot products. The �rst one detects if the n-vertex is outside the half-

space de�ned by actual VF plane. In this case the AABB is also outside VF. If the test fails the next

test of the p-vertex is processed. If it is outside then the AABB intersects the plane. In the opposite

case the AABB is inside the half-space. The whole algorithm of this basic test is described in the next

pseudo-code listing.

Index-vectors (nx; ny; nz) and (px; py; pz) gain min and max vertices. The implementation of the

Table 1 is reduced to 6 values that are used for indexing of the table of two items with the minimal and

maximal parts of the AABB coordinates. The test for the OUTSIDE state can be done only by one dot

product.



int AABBvsFrustum(AABB *b, FRUSTUM *f)

{


oat m, n; int i, result = INSIDE;

for (i = 0; i < 6; i++) { PLANE *p = f->plane + i;

m = (p->a * b->v[p->nx].x) + (p->b * b->v[p->ny].y) + (p->c * b->v[p->nz].z);

if (m > -p->d) return OUTSIDE;

n = (p->a * b->v[p->px].x) + (p->b * b->v[p->py].y) + (p->c * b->v[p->pz].z);

if (n > -p->d) result = INTERSECT;

} return result;

}

2.5 Plane masking and coherency

The next two optimization have the best e�ect on the speed: plane masking and using the plane

coherency of the VFC between frames (temporal coherency).

To take advantages of the hierarchy the authors

invented an incremental reduction of planes that are

needed to test for collision with the AABB in the

given level of hierarchy. If the parent bounding box

is inside the half-space then this test is not needed

in lower levels of the hierarchy. Each child is then

also inside this half-space. See Figure 5.

In the recursive traversal the bit-mask of the

planes is sent from a parent to its children. In

the position of the second dot product that is used

for determining the INTERSECT state the plane is

masked out in the case of the negative test for the

elimination of further tests on the next levels of the

hierarchy.

Figure 5: Plane masking.

int AABBvsFrustum(AABB *b, FRUSTUM *f, int in_mask, int *out_mask)

{


oat m, n; int i, k, result = INSIDE; *out_mask=0;

for (i = 0, k = 1; k <= in_mask; i++, k += k) if (k & in_mask) {

PLANE *p = f->plane + i;

m = (p->a * b->v[p->nx].x) + (p->b * b->v[p->ny].y) + (p->c * b->v[p->nz].z);

if (m > -p->d) return OUTSIDE;

n = (p->a * b->v[p->px].x) + (p->b * b->v[p->py].y) + (p->c * b->v[p->pz].z);

if (n > -p->d) { *out_mask |= k; result = INTERSECT; }

} return result;

}

The plane coherency optimization provides both theoretically and practically the highest acceleration

of the current VFC algorithm. This method used the temporal coherency that cause little changes of

the con�guration of the VF and AABBs. It is very likely that if a test with a plane fails then it fails also

in the next frame with the same plane. So it is su�cient to remember the index of the last tested plane

and begin with this test in the next frame. One more item in the AABB structure is then needed where



this plane index is stored. Also the modi�cation of the algorithm is needed to use both tests together

correctly. This situation is shown in Figure 6 where the re-ordering of the plane tests depending on the

tests in the previous frame.

4

2

31

1

3

2
4

Figure 6: The plane index renumbering in the plane coherency method.

int AABBvsFrustum(AABB *b, FRUSTUM *f, int in_mask, int *out_mask)

{


oat m, n; int i, k = 1 << b->start_id, result = INSIDE;

PLANE *sp = f->plane + b->start_id; *out_mask=0;

if (k & in_mask) {

m = (sp->a * b->v[sp->nx].x) + (sp->b * b->v[sp->ny].y) + (sp->c * b->v[sp->nz].z);

if (m > -sp->d) return OUTSIDE;

n = (sp->a * b->v[sp->px].x) + (sp->b * b->v[sp->py].y) + (sp->c * b->v[sp->pz].z);

if (n > -sp->d) { *out_mask |= k; result = INTERSECT; }

}

for (i = 0, k = 1; k <= in_mask; i++, k += k)

if ((i != b->start_id) && (k & in_mask)) { PLANE *p = f->plane + i;

m = (p->a * b->v[p->nx].x) + (p->b * b->v[p->ny].y) + (p->c * b->v[p->nz].z);

if (m > -p->d) { b->start_id = i; return OUTSIDE; }

n = (p->a * b->v[p->px].x) + (p->b * b->v[p->py].y) + (p->c * b->v[p->pz].z);

if (n > -p->d) { *out_mask |= k; result = INTERSECT; }

} return result;

}

2.6 Octant test

In this optimization method M�oller et al. used the symmetry of the VF. If the radius of the

sphere bounding the AABB is smaller than the smallest distance of the VF plane from the center of the

symmetric pyramid then the test with only three planes of the octant, where the AABB center lies, is

needed. The situation is in Figure 7.



M�oller et al. do not give more detailed description of

the implementation so we could not implement the octant

test to be as good as the authors present. The problem is

that the octant that the AABB center belongs to could be

determined only by three dot products. This means per-

manent loss of nine multiplications before the test with the

�rst plane. The next problem is the test of the functional-

ity of the octant test. The comparison of two distances are

needed that are computed after any change in the geometry

of the AABB and the VF. These computations are called

heavily in dynamic scenes so after the activating of this

test the VFC is slowed down. Because of this we do not

�nd this test useful and we will not introduce its relatively

complicated implementation.

d

r

Figure 7: Octant test.

2.7 Translation and rotation coherency

This optimization signi�cantly a�ects the degree of freedom of the camera and can be used only in

the case where none of the AABBs did not move or rotate and when the VF movement is controlled

by the user using only simple translations and rotations. It cannot be applied on general walk-through

dynamic scenes where the translation and rotation of the camera is is 
uently changed. Villi Miettinen

[6] veri�ed that TR-coherency achieves not so good results as Assarson and M�oller presented. We have

not implemented this method but the description is presented here. See Figure 8:

a

d

Figure 8: Examples of TR-coherency.

� rotation coherency: If in the last frame the bounding volume is outside the left plane and the whole

rotation of the camera was only to the right, we can report that in the current frame this object is

also outside the VF. The rotation need to be less than 180

�

� � where � is the angle between the

left and right plane of the VF.

� translation coherency: Assume that VF only translated after the last frame and the distances of the

VF and the bounding volumes changed by a little �d. We compute the projection of this increment

to the directions of the normal vectors of all VF planes. Before the test for a collision of the given

bounding volume with the VF plane we compare the distance to the given plane from the last frame

with the current increment. If the increment is greater than this distance the collision detection

with the given plane has to be processed.

2.8 Analogy of VFC with the collision detection

The collision test with the VF and the AABB can by easily transformed to the test of two AABBs.

In practice, only the plane masking and the plane coherency can help. Speed-up is based only on

eliminating several comparisons. The collision test of two AABBs can be done in the six comparisons

so a big speed-up could not be expected. Much better optimization could be expected in the test for

collision of the two OBBs where the general collision detection is very complex.



3. Our implementation

For verifying the e�ciency of the optimization we developed an application that can load hierarchical

scenes with a camera and animation, process objects and camera motion, correctly traverse a scene

hierarchy, constructs bounding volumes and visualizes the results of tests from the viewpoint including

real time measuring.

As an input the internal format of the 3D Studio 4.0 was chosen. It has all necessary properties

mainly for scene motion. The application supports animation based on the interpolation of the quater-

nions using Kochanek-Bartels piece-wise continuous spline functions. The hierarchy of the AABBs is

automatically actualized. The AABB hierarchy is generated from the current OBB leafs by a transfor-

mation.

Figure 9: Example output from our application.

The user can watch the scene from the point above the scene or directly by the view of the tested

camera. All eight degrees of freedom and the geometry can be controlled by a mouse or by hot keys. The

current state of the VFC algorithm can be seen in the output window (see Figure 9). Each of the six

camera planes has its own color that is used for coloring the objects that collide with this plane. Objects

inside the VF are of white color and objects outside are not displayed at all. The current used level

of the hierarchy can be seen on the displayed AABBs. The algorithm can be switched to the collision

detection mode where the VFC test is applied to the bounding box chosen by a user.

The OpenGL application was compiled using GCC 3.0 under Linux and Windows (MinGW 1.1).

For measurement reasons more functions with di�erent optimization are run simultaneously and the

time is measured for each of them. The obtained results is then sent using TCP/IP to the independent

application (it can be on another computer) that takes care about their processing and displaying.

4. Measurement and results

The e�ciency of the optimization was veri�ed on two tested scenes. Both are fully motion, contain

simple geometric solids (sphere, cylinder, box and pyramid) in the hierarchy. The �rst scene (vfc.3ds) is

smaller in the number of triangles and the camera 
ies over the entire scene. The second scene (big.3ds)

is more complex. The camera 
ies over the entire scene and in one case even outside it.

The measurement was processed in two modes. The �rst mode (see Graph 1 and Graph 3) represents

the in
uence of a motion of the camera and the objects movement on the VFC e�ciency. In the

second mode (see Graph 2 and Graph 4) the animation of the objects is disabled in the whole scene.

All measurements were performed in the 200-frames animation where in each of the frame di�erent

optimization of the VFC algorithm were applied. The measured time is shown relative to the time of

the basic VFC algorithm without any hierarchy. The results are in the graphs where is shown time

dependency and in the tables where there are the average values for the entire measurement.



4.1 Results from the vfc.3ds scene

0 % 

10 % 

20 % 

30 % 

40 % 

50 % 

60 % 

70 % 

0 25 50 75 100 125 150 175 200

Graph 1: vfc.3ds - full objects motion.

basic VFC algorithm 43.37%

n,p-vertex test 40.73%

+octant test 38.04%

+plane coherency 22.11%

+plane masking 18.12%

0 % 

10 % 

20 % 

30 % 

40 % 

50 % 

60 % 

70 % 

0 25 50 75 100 125 150 175 200

Graph 2: vfc.3ds - without animation.

basic VFC algorithm 39.35%

n,p-vertex test 37.04%

+octant test 34.47%

+plane coherency 18.10%

+plane masking 14.59%

4.2 Results from the big.3ds scene

0 % 

10 % 

20 % 

30 % 

40 % 

50 % 

60 % 

70 % 

0 25 50 75 100 125 150 175 200

Graph 3: big.3ds - full objects motion.

basic VFC algorithm 50.72%

n,p-vertex test 47.61%

+octant test 44.24%

+plane coherency 31.76%

+plane masking 25.41%

0 % 

10 % 

20 % 

30 % 

40 % 

50 % 

60 % 

70 % 

0 25 50 75 100 125 150 175 200

Graph 4: big.3ds - without animation.

basic VFC algorithm 46.39%

n,p-vertex test 43.61%

+octant test 40.73%

+plane coherency 28.07%

+plane masking 22.39%



5. Conclusion

The results show that the best acceleration was reached using the plane coherency of the VF as was

theoretically predicted. The presented reasons caused that the results of Assarson and M�oller were not

reproduced. The results show how important is the scene hierarchy. The graphs of the speed-up with

relation to time proves ine�ciency of our implementation of the octant test. On average we provide

2{3 times faster solution compared to the basic algorithm. In the case of static scenes the results of

optimization are better then in the case of dynamic scenes as expected. We have veri�ed even the

possibility of using of the shown optimization for the collision detection. The side e�ect of our work is

visualization of the VFC algorithm that can be used for the teaching purposes.

6. References

[1] Ulf Assarson and Tomas M�oller. Optimized View Frustum Culling Algorithms for Bounding Boxes.

In Journal of Graphics Tools, 5(1), pages 9{22, 2000.

[2] James H. Clark. Hierarchical Geometric Models for Visible Surface Algorithms. In Communications

of the ACM 19(10), pages 547{554, 1976.

[3] Mel Slater and Yiorgos Chrysanthou. View Volume Culling Using a Probabilistic Caching Scheme.

In Proceedings of the ACM Symposium on Virtual Reality Software and Technology, pages 71{78,

1997.

[4] Jiøí Bittner and Vlastimil Havran, Exploiting Temporal and Spatial Coherence in Hierarchical Vis-

ibility Algorithms. In Proceedings of Spring Conference on Computer Graphics, Budmerice, SK,

2001.

[5] Ulf Assarson and Tomas M�oller. Optimized View Frustum Culling Algorithms (technical report

99-3). Chalmers University of Technology, Sweden 1999.

[6] Villi Miettinen. Improved frustum-object cull. In Sourceforge mailing list, gdAlgorithms-list, 2000.

[7] J.T. Klosowski, M. Held, J.S.B. Mitchell, H. Sowizral and K. Zikan. E�cient Collision Detection Us-

ing Bounding Volume Hierarchies of k-DOP. In IEEE Transactions on Visualization and Computer

Graphics, 4(1), pages 21{36, 1998.


