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Figure 1: Color has been applied on the grey-scale image in the middle without user intervention using left color image as an example.
Source images courtesy c© Vı́t Komrzı́, Universal Production Partners & Digital Media Production.

Abstract
We present a novel color-by-example technique which combines
image segmentation, patch-based sampling and probabilistic rea-
soning. This method is able to automate colorization when new
color information is applied on the already designed black-and-
white cartoon. Our technique is especially suitable for cartoons
digitized from classical celluloid films, which were originally pro-
duced by a paper or cel based method. In this case, the background
is usually a static image and only the dynamic foreground needs
to be colored frame-by-frame. We also assume that objects in the
foreground layer consist of several well visible outlines which will
emphasize the shape of homogeneous regions.

CR Categories: I.2.6 [Artificial Intelligence]: Learning (Analo-
gies); I.3.4 [Computer Graphics]: Graphics Utilities (Graphics edi-
tors); I.4.6 [Image Processing and Computer Vision]: Segmentation
(Edge and feature detection); J.5 [Computer Applications]: Arts
and Humanities (Fine arts);

Additional Keywords: image processing, image registration, im-
age segmentation, image analogies, color-by-example, patch-based
sampling, probabilistic relaxation

1 Introduction
In the history of cartoon-making, it is possible to discover really
valuable and artistically advanced work which stand up in front of
the world-wide, modern cartoon production. They provide an in-
valuable source of imagination for each new generation of children.

Old cartoons were often shot in black-and-white on classical cel-
luloid film which are now usually stored in depositories with non-
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optimal humidity conditions. When one wants to restore them, it is
necessary to end the progressive destruction and convert them to a
digital format.

Digital image processing results in significant reduction of time
consuming handmade work connected with movie restoration, and
also allows us to apply missing color information into the already
designed black-and-white world. The main motivation for this
modification is the well known virtue of color enhancement to spe-
cific artistic impressions which are well perceived, especially by an
adolescent audience.

Unfortunately a semi-automatic toolbox able to simplify color
transfer into the sequence of grey-scale images is not available in
commercial cartoon authoring systems (e.g. Toonz,1 FlipBook, 2

etc.). An artist who wants to color black-and-white cartoon usu-
ally has to focus on featureless, repetitive work which prevents him
from doing really creative artwork.

In this paper we show that using our novel example-based tech-
nique, one is able to automate colorization pipeline, reduce the
amount of hand-made intervention and make the whole process
temporarily feasible and thus cost effective. We bring forward
an interactive performance and straightforward implementation by
which our method may be successfully incorporated into the exist-
ing cartoon authoring system.

This paper is organized as follows. In the first instance we
present an overview of existing colorization approaches and address
the main disadvantages which led us to develop our novel approach.
Next, we describe in detail our method including implementation
details and optimization issues. Finally we present several experi-
ments performed on real cartoon images to confirm the efficiency
of the proposed solution.

2 Previous work
Colorization has been extensively studied in the movie industry
since 1970’s. Brute force or various semi-automatic analogue tech-
niques have been used to accomplish this challenging task [Markle
1984]. In this section we focus on digital colorization only.

2.1 Luminance keying
To transfer color into the grey-scale image it is possible to use lu-
minance keying [Gonzalez and Woods 1987]. This simple approach
exploits the user defined look-up table which converts each level of

1http://www.toonz.com
2http://www.digicelinc.com
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grey-scale intensity into the specified hue, saturation and bright-
ness. The problem arises when one wants to apply different colors
at the same intensity level. It is usually possible to overcome this
limitation using simultaneously a few luminance keys for different
manually segmented regions. This tedious process significantly in-
creases the amount of hand driven work. However, luminance key-
ing is usually only one way how to apply color on the grey-scale
image in recent commercial post-production systems (e.g. Com-
bustion,3 After Effects,4 etc.) and is extensively used.

2.2 Image analogies
A more advanced technique [Welsh et al. 2002] exploits textural
information. It is inspired by a method of color transfer between
images [Reinhard et al. 2001] and by the framework of image analo-
gies [Hertzmann et al. 2001]. This technique transfers color to the
grey-scale image from the already colorized example using local
luminance distribution matching in lαβ color space. A subset of
representative swatches in the color and in the grey-scale image is
selected manually or using jitter sampling. This technique is sur-
prisingly successful when it is applied to some specific natural sce-
narios. However homogeneous regions in black-and-white cartoons
do not provide textural information. In this instance luminance dis-
tribution matching reduces to the single intensity level comparison
which has the same properties as luminance keying.

2.3 Motion estimation
Recently Pan et al. [2004] introduced a novel method which is
based on the motion estimation. They assume that the same ob-
jects between adjacent frames move slightly hence it is possible to
use optical flow to track this motion and assign the corresponding
chromatic information from reference color frames. This method
is similar to video compression algorithms where spatial and tem-
poral correlation between consecutive frames provide possibility to
store color information only in several key frames.

However in cartoons motion seems to be coarse in contrast to
real videos (see Figure 2). The same animation phase is usually
shot twice using two consecutive frames. Accordingly the struc-
tural differences between the current and the new animation phase
becomes really noticeable. It is usually impossible to track this
rapid motion using optical field estimation.

Figure 2: Common example of structural differences between two
consecutive animation phases. Arrows point to the important topol-
ogy changes and small holes.

3http://www.discreet.com
4http://www.adobe.com

2.4 Image segmentation
In order to simplify color transfer into the black-and-white cartoon
Sýkora et al. [2003] suggest to use an unsupervised image seg-
mentation. This method is suitable especially for cartoons which
consist of two planar layers (background and foreground). The dy-
namic foreground layer contains homogeneous regions surrounded
by visible outlines and the background layer is usually a more com-
plicated textural image which remains static during the animation.
This important property allows us to divide the original grey-scale
image into the set of regions using robust outline detector [Sýkora
et al. 2003] and classify them roughly as foreground or background
via region size thresholding (see Figure 3).

Figure 3: Segmentation in progress (from left to right) – original
image, edge detection, outline detection, outline extraction, and the
final segmentation.

Information about the scene structure allow us to reconstruct one
big image which contains only the visible area of the whole back-
ground layer (see Figure 4). On such image the color transfer is
applied only once using the standard image manipulation software
or some specialized colorization tool (see BlackMagic5).

.

...

Figure 4: Scene separation – static background layer (top) needs to be
managed only once in contrast to dynamic foreground layer (bottom)
which is colorized frame-by-frame.

In the dynamic foreground layer color is applied frame-by-
frame. However the assumption is that at least one animation frame
is correctly colorized by a color expert. This means that each fore-
ground region has associated with one index from the palette of
available colors and it is possible to predict color-to-region assign-
ment for the rest of the sequence using already colored frames as
an example.

Finally color composition of each animation frame is made by
pasting previously extracted and already colorized foregrounds into
the correct position on the reconstructed and colorized background
(see Figure 4).

2.5 Color prediction
The simplest way how to predict color-to-region assignment in the
foreground layer is to use position-based prediction. In this method
the extent of spatial intersection between target and already colored
regions in the example frame determine which color index will be
propagated to the target region (see Figure 5). To increase predic-
tion performance it is useful to select the best example phase from
the database of already colored frames using the sum of absolute

5http://www.neuraltek.com/bmagic
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differences and pose alignment based on the log-polar phase cor-
relation [Reddy and Chatterji 1996]. This technique is able to es-
timate optimal shift and in some special cases also the rotation and
scale alignment when correlation is applied only to the foreground
layer to hide possible structural differences in the background layer.

color prediction

database

maximal intersectioncurrent frame

be
st

 m
at

ch

Figure 5: Position-based prediction – the best animation phase is se-
lected from the database and color index from example region which
has the largest spatial intersection with target region is propagated.

Usually previous animation frame is selected to be the best ex-
ample frame. However when the target animation is looped or con-
sists of several phases randomly used during animation sequence,
this approach automatically retrieves the best example phase from
the sequence of already colored frames and transfers complete color
information to the new animation frame. However for completely
novel frames this method produce usually large derangement.

Another useful color prediction technique is based on the grey-
scale intensity. It compares intensity medians of example regions
with medians of target regions and propagates color indices be-
tween regions which have the minimal median difference. Usually
this method produces better results when it is applied on completely
new frames in contrast with position-based prediction because of
the independence of the region shape and its spatial location. How-
ever like luminance keying this method suffers from wrong predic-
tion when different colors are assigned to the similar intensity.

A more advanced color transferring scheme exploit region-based
prediction which has been originally developed to automate cel
painting. This problem is even more complicated in contrast to
black-and-white cartoon colorization due to missing grey-scale in-
tensity cue. To match regions in order to transfer color informa-
tion Madeira et al. [1996] use region shape similarity, Chang and
Lee [1997] include topological relations, and Seah and Feng [2000]
proposed position-based prediction where pose alignment is done
by motion estimation similarly to Pan et al. [2004].

Unfortunately these methods perceive cartoon drawing as a pla-
nar image. Occlusion and other topology variations imposed by
virtual depth (see Figure 2) usually destroy important region shape
features and spatial relations. To overcome this limitation Qiu et
al. [Qiu et al. 2003] use couple of predefined master frames to de-
fine pseudo 3D appearance of individual characters. In our case this
modification is not available. However it is possible to select couple
of dissimilar frames from the whole animation sequence and treat
them as pseudo master frames.

3 Unsupervised colorization
In this section we present our novel feature-based color transferring
scheme which exploit image segmentation, patch-based sampling
and probabilistic relaxation. Our goal is to eliminate some of the
problems illustrated in the previous section. To understand better
we redefine our problem.

Problem statement: We have two segmented frames. First
frame serves as a color example where each region has one color
index assigned from the user-defined palette. The second frame
contains unlabelled target regions. Our task is to assign color in-
dices to target regions similarly to as they are assigned in the ex-
ample frame (see Figure 1).

3.1 Patch-based sampling
To accomplish this task we use patch-based sampling. Our ap-
proach is similar to the segmentation-by-example technique pre-
sented in [Borenstein and Ullman 2002] where an optimal cover
strategy has been used. This exhaustive approach is not necessary
for our purpose. Instead we deterministically select a subset of im-
age patches which belong to important outline features (see Fig-
ure 6) and we match correspondent features between the example
and the target frame using patch-based structural similarity.

Figure 6: Feature extraction – high curvature points and junctions.

Before feature extraction begins we mask the background layer
to avoid any detection of points which are not important for our pur-
pose. Afterwards we apply Kanade-Lucas-Tomasi feature extractor
[Tomasi and Kanade 1991; Birchfield 1998] to mark out a prede-
fined number of well scattered features. We also exploit the simple
bottom-up clustering scheme to reduce any coverage redundancy.

3.2 Structural matching
To find out the best structural correspondences between example
and target features we use a backward mapping. This single direc-
tion matching technique is able to retrieve a good example patch for
each target feature.

Figure 7: Structural matching – target patches are transformed to fit
the best matching location in the example frame. See samples of the
best matching pairs (dashed boxes) where example patches (left box)
have already been transformed to emphasize structural similarity.

3



It is also possible to apply reverse forward mapping or sym-
metric one-to-one mapping. Unfortunately these two approaches
significantly reduce the prediction performance, because forward
mapping does not guarantee coverage of all target features and one-
to-one mapping avoids any possibility of reusing one example patch
several times.

To estimate the degree of structural similarity between two image
patches we use normalized sum of squared differences (L2-norm):

D(Pe,Pt) =
1

w2

w

∑
x=1

w

∑
y=1

(Pe(x,y)−Pt(x,y))2, (1)

where D(Pe,Pt) is structural difference ratio of example Pe and tar-
get Pt square patches w pixels wide and high.

Example features serve as a good starting points for the final
alignment of target patches. We align each target patch to fit the best
matching location close to the corresponding example feature (see
Figure 7). Such alignment provides us to transfer color information
pixel-to-pixel from the example to the target image.

We assume that the distance between features is able to be
smaller than the size of patches. Due to this property, it usually
occurs that the target and example patches overlap each other. To
avoid the loss of valuable information we introduce a quality buffer
which we describe later in Section 3.3.

Due to computational feasibility we suppose that arbitrary defor-
mations are large enough in comparison with patch size. We also
assume that the scales of the example and the target image are simi-
lar. This assumption is realistic since the camera field-of-view usu-
ally remains static during animation. When it changes we perform
global image re-scaling to reach the same scale. This simplification
allows us to use the rigid transformation model:

x′ = xcosα − ysinα + x0
y′ = xsinα + ycosα + y0

(2)

Unknown rotation (α) is estimated using an exhaustive search
over the set of all example patches in all possible orientations. Hi-
erarchical block motion estimation [Nam et al. 1995] is then used to
obtain the final translation alignment (x0,y0) in the small neighbor-
hood of the pre-selected example feature (for details see Section 4).

3.3 Patch pasting

When the best matching location (x0,y0) of each target patch is es-
timated, rectangular areas with the same patch size are extracted
from the same position in the example color buffer. Elements of
this buffer only contains information about the corresponding re-
gional color.

Figure 8: Patch pasting – quality buffer (left), color buffer after
patch pasting (middle), and color buffer after non-maxima suppres-
sion (right). For better lucidity we superimpose black outlines onto
the color buffer to mark out the original regions. Values in the quality
buffer are visualized as follows: pixels with better matching quality
have the closer intensity to the same pixel in the original image.

After extraction, we apply inverse rotation (−α) and we paste
the transformed rectangles into the proper position on the target
color buffer (see Figure 8 in the middle). Finally a non-maxima
suppression is applied to emphasize the most likely color-to-region
assignment. To do this, we accumulate a color histogram for each
target region and select the most frequently used color index.

This straightforward approach is not the best due to the possibil-
ity of patches overlapping. To overcome this problem we first sort
out example patches by a nondecreasing matching quality which
guarantees that better matches will be pasted into the color buffer
before inferior ones. Additionally to avoid each pixel being over-
ridden by a patch with a lower local matching quality, we use an
already introduced quality buffer (see Figure 8 on the left). This
technique is similar to z-buffer visibility culling:

if |Ie(x′,y′)−Pt(x,y)| < Qt(x,y) then
{ Qt(x,y) = |Ie(x′,y′)−Pt(x,y)|

Ct(x,y) = Ce(x′,y′) }
(3)

Before we paste a pixel (x′,y′) from the transformed color patch
Ce we compute the absolute intensity difference between the corre-
sponding pixel (x,y) in the transformed target patch Pt and in the
example image Ie. If such differences are smaller than the actual
value stored in the quality buffer Qt , we allow color pasting to be
done to the target color buffer Ct and we then update the value in
the quality buffer using a lower difference. Otherwise, we simply
preserve the original color index and difference.

3.4 Probabilistic relaxation
Proposed patch-based sampling scheme is far limited by the number
of local structural correspondences and may completely fail when
different colors are applied on a similar structural pattern. In this
case the most frequently used color label has a relatively small peak
in the final color histogram and consequently two or more color la-
bels have similar frequency and so all of them have similar proba-
bility to be assigned for such a region.

Figure 9: Attributed relational graphs – regions (bullets) and their
neighborhood relations (lines) in the example (left) and in the target
(right) foreground layer.

However this ambiguity usually disappears if we consider local
neighborhood relations between regions in the example frame. To
exploit this cue we use probabilistic relaxation [Christmas et al.
1995] on planar attributed relational graphs (ARG) which was
proven to be efficient especially for graph matching problems and
model-based object recognition [Ahmadyfard and Kittler 2000].

In our case local neighborhood relations in the foreground layer
are represented using a single ARG (usually discontinuous). ARG
nodes correspond to individual regions i ∈ R. If regions i, j ∈ R
share the same boundary contour then their graph nodes are con-
nected using undirected arc [i, j] (see Figure 9). Additionally each
example graph node i∈RE has two important attributes: median of
region intensity Îi and previously assigned color label ĉ ∈ C. This
single label is replaced by the vector of a priori probabilities Pi(c)
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for each color c ∈ C in the target graph node i ∈ RT . Such vector
is initialized immediately after patch-based sampling using normal-
ized frequencies from resulting color histogram.

Our basic relaxation rule computes posterior Pk+1
i (c) as a prod-

uct of a prior Pk
i (c) and neighborhood support function Qk

i (c) nor-
malized over all possible color-to-region assignments:

Pk+1
i (c) =

Pk
i (c) ·Qk

i (c)

∑
ci∈C

Pk
i (ci) ·Qk

i (ci)
. (4)

For our purposes we define a novel neighborhood support function
Qk

i (c) as follows:

Qk
i (c) = ∑

j∈R+
i

∑
[m,n]∈E

Pk
j (ĉn) ·Sc([i, j], [m,n]). (5)

For target arcs [i, j] ∈ T which correspond to local neighborhood
of region i we sum up weighted similarity with all example arcs
[m,n] ∈ E. Here the weight factor is a prior probability Pk

j (ĉn)
taken from corresponding neighbor region j, where ĉn denote to
color label assigned in the example node n ∈ RE . We use simple
arc similarity function Sc([i, j], [m,n]) which is defined using this
formula:

Sc([i, j], [m,n]) =

 exp
(
− (Îi−Îm)2

+(Î j−În)2

σ 2
I

)
iff c = ĉm,

0 otherwise.
(6)

When the actual color label c is the same one as the label ĉm as-
signed to the example node m ∈ RE then the arc similarity is ex-
pressed as weighted difference of region intensity medians Î. User
defined parameter σI affects the tolerance to global or local inten-
sity fluctuation between the example and the target images.

To terminate relaxation it is possible to examine differences be-
tween actual and novel posterior probabilities till they fall under
some user defined threshold. Afterwards in each region the color la-
bel with the maximum posterior probability is selected to produce
the most probable color-to-region assignment. Our novel proba-
bilistic relaxation scheme converges very fast by the reason that
actually a lot of color labels are assigned with initial probabilities
close to one.

4 Implementation issues
In this section we discuss a couple of implementation issues which
stand behind the robustness and interactive performance of the pro-
posed method.

First we allow the user to select an optimal patch size. By default
we assume the patch size 48x48 which produced an optimal results
in our experiments with cartoon images scanned in the full PAL
resolution (720x576) using standard camera field-of-view where
outline thickness varies from 2 to 6 pixels (see Figure 10).

It is also important to extract an optimal number of well scattered
features to cover all significant curvature points and junctions in
the original image. To fulfil this constraint roughly 200 features
per image were sufficient in our experiments. We let the user to
trade-off between the computational complexity and the prediction
performance (see Figure 11).

Using brute force, backward mapping allows us to perform color
prediction in non-interactive times. To reduce the computational
overheads we retrieved suboptimal matching pairs in interactive
speed using a hierarchical approach based on quad-tree pyramid
[Liang et al. 2001] and approximate nearest neighbor (ANN) search
[Arya et al. 1998; Mount and Arya 1998]) where the axis orthog-
onal kd-tree [Friedman et al. 1977] is used as a data partitioning
structure.

For each feature in the example frame we extract a patch with the
size 68x68 (to fit the horizontal width of the rotated 48x48 rectan-
gle by 45◦ which equals its diagonal b48

√
2c). Then we compute

16 rotation patches incrementally by the angle of π

8 ≈ 23◦ radians
using bilinear interpolation (see Figure 12 on the right). Such ro-
tated bitmaps are then cropped back to the 48x48 patch and three
levels of quad-tree pyramid are precalculated. Finally we store all
these patches in the kd-tree structure.
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Figure 10: Comparison of the patch size with the number of pre-
diction errors (left) and corresponding execution time for 200 aligned
patches (right). Dashed line is for a) and solid line for b) in Figure 13.
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Figure 11: Comparison of the number of patches with the number of
prediction errors (left) and corresponding execution time for 48x48
patches (right). Dashed line is for a) and solid line for b) in Figure 13.

In our experiments we allow displacement of the optimal solu-
tion to be ±1 pixels for translation and ± π

16 radians for rotation. An
optimal alignment marginally affects the prediction performance,
however it significantly increases the computational overhead. This
simplification also allows us to precalculate and store only two up-
per sub-sampled levels of the quad-tree pyramid.

Figure 12: For each target patch we precalculate 16 rotations (right).
Rotation patches are aligned on the small area close to the example
feature (left). Dashed rectangles depict the search area. Black rectan-
gle (right) indicate the best rotation and white rectangle (left) the best
alignment.

Using k-ANN search we retrieve eight best example candidates
for each target patch. We keep corresponding locations of candidate
features in the example image and we align properly oriented target
patch to fit the best matching location in a small area (±8 pixels)
close to the example feature. Afterwards we select the best align-
ment with the lowest structural difference D(Pe,Pt) (see Figure 12
on the left) and we perform inverse patch pasting between color
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buffers using patch sorting and quality buffer to avoid overlapping
problems.

Notwithstanding that the proposed preprocessing requires negli-
gible computation and storage overheads, it provides a significant
speed up during the feature matching phase. On 750MHz CPU it
takes approximately 8 seconds to retrieve the matches and align the
200 patches with size 48x48, in contrast to 7 minutes of exhaustive
searching.

The structural similarity between example and target frame does
not depend on the actual color-to-region assignment hence it is pos-
sible to execute patch-based sampling as a stand-alone thread dur-
ing hand driven error correction phase. This parallelism allow us
to reach interactive performance in real-time application because in
average it takes a couple of seconds to locate and correct possible
prediction errors. Patch correspondences for a new animation frame
can be pre-calculated during this idle time.

In contrast to patch-based sampling the probabilistic reason-
ing scheme produce negligible computational overhead. However
sometimes resulting error correction is negligible or inferior in con-
trast to stand-alone patch-based sampling. Due to these circum-
stances it is useful to let user call probabilistic relaxation on demand
as an optional post-processing tool which has ability to correct pos-
sible derangement when different colors are applied on a similar
structural pattern.

5 Results
Our experiments have been performed on images from old Czech
black-and-white cartoon “O loupežnı́ku Rumcajsovi” which were
originally produced by Radek Pilař in 1967. The proposed col-
orization approach has been implemented as a plug-in for our pro-
prietary semi-automatic PC application that allows us to effectively
apply novel color information on the already designed black-and-
white cartoons.

The whole colorization pipeline consists of five independent
phases: image segmentation, foreground layer color prediction,
color brightness modulation, background layer reconstruction and
colorization, and the final composition. In this paper we focus on
color prediction only. Selected results are presented in Figure 13.
They readily confirm that the proposed method significantly re-
duces the amount of hand driven correction needed in contrast to
the pure intensity-based approach.

However prediction performance of our method is greatly lim-
ited by the number of local structural matches between the example
and target images. It may completely fail when the example and
target images are widely dissimilar.

6 Conclusion
In this paper we have introduced a novel color-by-example tech-
nique which successfully extends the toolbox of existing example-
based image processing approaches. The proposed method auto-
mates colorization of already designed black-and-white cartoons.
It significantly reduces tedious manual work in contrast to widely
used brute force, intensity-based and position-based approaches.
Using our color transferring scheme one is able to make coloriza-
tion of aged black-and-white cartoons cost effective and temporar-
ily feasible.
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many useful comments. Images in this paper are published by the
courtesy of c©Vı́t Komrzı́, Universal Production Partners and Dig-
ital Media Production. This work has been partly supported by the
Ministry of Education, Youth and Sports of the Czech Republic un-
der the research program No. Y04/98: 212300014 (Research in the
area of information technologies and communications), and under
the student research program FRVŠ-2004-2067.
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a)

b)

c)

d)

e)

Figure 13: Unsupervised colorization in progress. From left to right in every row: example color buffer, target color buffer, intensity-based prediction for
comparison and final target color buffer after non-maxima suppression. Prediction errors are emphasized using gray regions with dot markers. Interesting
properties of individual examples: a) Intensity-based prediction is not able to detect holes in contrast to our novel approach. b) Intensity-based prediction
completely fails when the scene consists of regions with similar intensity levels and when different colors are assigned to the same level. c) In this case
intensity levels of all shoes are similar, hence only matching based on the scene structure is able to determine which color is more suitable for a particular
shoe. d) Our algorithm still behaves satisfactorily in the presence of changes that are not modelled by the proposed transformation model (mirroring
effect). e) In this case the quality buffer has not been used. Example patches were pasted only in decreasing order of matching quality. The result is still
superior in contrast to the intensity-based prediction.
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