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Abstract

In this paper, we introduce a light-weight and robust tracking technique based on color balls. The algorithm builds
on a variant of randomized Hough transform and is optimized for a use in real-time applications like on low-cost
Augmented Reality (AR) systems. With just one conventional color camera our approach provides the ability to
determine the 3D position of several color balls at interactive frame rates on a common PC workstation. It is fast
enough to be easily combined with another real-time tracking engine. In contrast to popular tracking techniques
based on recognition of planar fiducial markers it offers robustness to partial occlusion, which eases handling
and manipulation. Furthermore, while using balls as markers a proper haptic feedback and visual metaphor is
provided. The exemplary use of our technique in the context of two AR applications indicates the effectiveness of
the proposed approach.

Categories and Subject Descriptors (according to ACM CCS): I.4.6 [Image Processing and Computer Vision]: Seg-
mentation (Edge and feature detection) I.4.7 [Image Processing and Computer Vision]: Feature Measurement (Size
and shape) I.4.8 [Image Processing and Computer Vision]: Scene Analysis (Tracking) I.5.5 [Pattern Recognition]:
Implementation (Interactive systems)

1. Introduction

A popular low cost technique for tracking objects in
AR is optical recognition of planar fiducial markers
(e.g. ARToolKit [KB99], [CF04], ARTag [Fia05], reacTIVi-
sion [BKJ05], ARToolKitPlus [WS07]). It allows estimating
relative positions and orientations of a large amount of visi-
ble markers in real-time. However, the main limitation of this
common technique is the necessity of a non-flexible planar
area fixed close to or onto a real object. Such an unnatural
modification typically decreases the ease of manipulation,
inconveniently affects haptic feedback and causes objects
to look strange. Another disadvantage of fiducial markers
is their high sensitivity to occlusions. Even if a small part
of the marker is obstructed, e.g. due to user’s manipulation,
the object tracking is lost. Redundancy is used to overcome
this issue. Furthermore, a large amount of artificial markers
within a working area are visually disturbing and therefore
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significantly decrease the important feeling of a real object
being augmented. This is the main aspect of AR.

In this paper we propose a new interaction technique that
uses color balls of known diameter as markers. The main ad-
vantage as compared to planar markers is that balls are nat-
urally perceived as real objects; they provide pleasant haptic
feedback and can be detected even under partial occlusion.
Although a single ball allows estimating only a 3D position,
dipoles [GF03] or balls with color dots [BR05] can be used
to express the orientation.

In contrast to related work [GF03, BR05] we introduce
a general, easy-to-implement color ball tracking that is ro-
bust to noise and clutter, overcomes occlusion and is able
to track many color balls simultaneously in real-time (only
11 ms needed to process 8 balls in general position on a stan-
dard PC with a 0.3 Mpix camera). In practice our proposed
approach is the first one published providing such high pro-
cessing speed on commodity hardware. This important fea-
ture allows instant cooperation with another (e.g. marker-
based) tracker and still keeps high performance.
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Our paper is structured as follows: We first elaborate on
related work done in the field of circle detection and the us-
age of tracked balls as 3D interaction devices. Then, our ap-
proach for a real-time color ball tracking technique suitable
for AR is presented in Section 3. Our achievement regard-
ing performance, accuracy and limitations of the proposed
technique as well as the exemplary integration in two AR
applications is demonstrated in Section 4. Final conclusions
are given in Section 5.

2. Previous work

Ball detection and tracking can be understood as a special
case of a more general problem studied in low-level vision:
detection of parametric curves in images. Since the perspec-
tive projection of a sphere is always a circle, in our case we
consider only circle detection.

Research in this field started with the seminal Circle
Hough transform (CHT) [DH72] that extend the basic prin-
ciples of Hough transform to circle detection. The key idea is
similar as in line detection, i.e. to extract edges first and then
for each edge pixel accumulate votes in an appropriate sub-
set of parametric space (here represented by a 3D histogram
of circle centers and radii) using all possible circles passing
through it. Significant peaks in such a 3D histogram deter-
mine centers and radii of salient circles in the image. Al-
though original CHT is recognized to be robust to noise and
occlusions, its main drawback is computational complexity.
To overcome this issue and still keep robustness of the orig-
inal CHT a bunch of derived techniques were developed.

One of the first improvements is based on a hierarchi-
cal paradigm pioneered by Li et al. [LLL86] who start with
coarse grid and perform subdivisions only when the num-
ber of votes exceeds some predefined threshold. Similarly
dimensionality reduction of the parametric space is used to
reduce the number of votes [XJ02, JC05]. In this method a
selected subset of parameters is estimated first (e.g. a circle
center) and then such an initial solution is used to reduce the
number of required votes for remaining parameters (e.g. a
radius). Although these approaches can reduce the number
of votes considerably, their computational complexity is still
far from being considered to be usable in real-time applica-
tions since the number of edge pixels in images can be very
large.

Another idea is to take into account also the gradient ori-
entation at edge pixels. Kimme et al. [KBS75] use this ap-
proach to estimate circle segments instead of whole circles.
Guil and Zapata [GZ97] decompose circle detection into
two phases. First circle centers are computed from intersec-
tions of gradient vectors and then corresponding radii are
estimated using distances between circle center and image
pixels by voting in an one dimensional histogram. Recently,
Rad et al. [RFQ03] use pairs of opposite gradient vectors
and clustering on Euclid distances to estimate most prob-
able circle parameters. However, these methods have two

important drawbacks. First is computational complexity hid-
den in the pre-processing phase where a robust edge detector
(e.g. [Can86]) is used in order to estimate precise locations
and orientations of edges in noisy images. The second issue
is caused by the existence of negligible gradient magnitudes
on ball boundaries due to shading and shadow casting. Their
presence hinders a correct estimation of the orientation and
forces lower gradient magnitude thresholds that increase the
overall number of edge pixels that have to be processed.

Our approach is inspired by methods based on random-
ized access to input data. This technique was first introduced
to circle detection by Xu et al. [XOK90] who iteratively
take several randomly chosen triplets of edge pixels, con-
struct a circle and use its three parameters to vote in 3D his-
togram represented by dynamic data structure. Cheng and
Lee [CL95] and later Chen and Chung [CC01] use RANSAC
based voting instead of blind CHT where the quality of each
circle candidate is evaluated using distance of image pix-
els from counted circle boundary. This procedure is repeated
several times and a circle with smaller error is taken. Al-
though randomized approaches gain significant speed-ups,
they still require many random votes to perform when the
number of edge pixels is large, i.e. when the gradient mag-
nitude thresholds are low (as in our case). However, as we
show in this paper, color-based edge detection allows to
reduce the number of edge pixels so that randomized vot-
ing becomes computationally tractable and more efficient as
compared to other techniques.

Since approaches based on CHT allow only pixel precise
estimation of circle center and radius least squares fitting
techniques are used [GGS94] to gain sub-pixel accuracy.
However, these methods are very sensitive to outliers and
so they have to be used carefully. In practice it is necessary
to first preselect a meaningful subset of edge pixels using
some robust (e.g. CHT based) techniques. The same strat-
egy is used also in our approach, but in addition to previous
approaches we incorporate also weighting by gradient mag-
nitude to improve the accuracy.

Balls were used as 3D interaction devices in few related
works. Bradley and Roth [BR05] use a blue ball covered
with red and green dots to estimate position and orientation.
Their real-time ball detection algorithm is based on a simple
color thresholding and bounding circle estimation that is un-
fortunately sensitive to background clutter and occlusions.
Greenspan and Fraser [GF03] introduced a more robust ball
tracking algorithm for sphere dipole pose estimation. In this
case dipole means two balls connected with a stick yield-
ing five degrees of freedom. Their algorithm has two phases.
First is locking (1 to 2 seconds) that allows to find balls in
general positions and the second phase is real-time tracking
that takes into account the previous position of the balls. The
main disadvantage of this approach is a locking phase which
introduces noticeable lags in interaction.
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Figure 1: Color calibration: (a) input color image, (b) result of mean-shift color image segmentation and circle fitting, (c) mea-
sured non-parametric color distribution, (d) four distinct color clusters, (e) resulting pixel-wise classification.

3. Our approach

In this section we introduce our novel approach to real-time
ball tracking. The key idea that actually enabled both robust-
ness and high processing speed is the usage of color edge
detection based on a fast color segmentation that produces
a much lower number of edge pixels in contrast to standard
approaches based on luminance. This reduction dramatically
decreases the number of votes required for robust detection
of circle parameters so that the pose of many color balls can
be estimated in real-time.

The whole framework consists of two main phases. In the
first off-line calibration phase the camera’s intrinsic param-
eters and radial distortion are estimated and a simple color
classifier is learned from an exemplar image of color balls.
Then the on-line real-time tracking phase follows where the
color classifier is applied to the input images, balls are de-
tected and their 3D positions are returned. In the following
sections we describe each phase in more detail.

3.1. Calibration

The off-line calibration phase consists of two steps. First
intrinsic and radial distortion parameters of the camera are
estimated from several photographs of a chessboard pattern
taken under different orientations and positions. We exploit
the GML Camera Calibration Toolbox [VV05] to perform
image analysis and optimization. The extracted camera pa-
rameters are used immediately to precalculate a look-up ta-
ble that allows unwrapping pixel positions at runtime.

In the second step we estimate the color distribution of
each ball that should be recognizable during the real-time
tracking phase. For that purpose we arrange color balls to be
well visible from the camera and acquire a single color im-
age (see Figure 1a). Then we perform color image segmen-
tation using a modified version of the popular mean-shift
based algorithm [CM97]. In our case only color constancy
of regions is important, therefore we perform mean-shift
segmentation regardless luminance using only color com-
ponents (of LUV color space [WS82]). This modification

provides robustness to brightness variation across the ball’s
surface (see Figure 1b).

When the input image is segmented we perform con-
nected components analysis [RK82] to label regions. On
each sufficiently large region a circle fitting algorithm is ap-
plied (see Section 3.2.2). When the ratio between the region
area and the area of a fitted circle is nearly equal to one, we
determine this region as a ball. Afterwards pixels inside the
detected circle serve as color samples to non-parametric dis-
tribution (see Figure 1c) represented by a 2D image where
rows and columns represent color components α and β of
a selected color space (in our implementation we use a and
b from CIE Lab, however, any other color space with de-
coupled color and intensity components can be used, e.g.
lαβ [Rud98]).

When all color samples are gathered, an image closing
operation [Ser93] is applied to fill-in small holes and filter
noise (see Figure 1d). Finally, the resulting non-parametric
distribution of colors is used to precalculate a simple RGB
classifier that allows converting input color to a single in-
dex. The classifier is implemented as a 3D look-up table that
converts RGB triplets to integer values. To avoid huge mem-
ory requirements a 6-bit representation is used for each color
component). Figure 1e shows the result of image segmenta-
tion when the RGB classifier is applied on the input image.

3.2. Real-time tracking

The real-time tracking phase consists of four main steps:
(1) color image segmentation where the input image is con-
verted to several regions, (2) robust estimation of circle pa-
rameters, (3) refinement of circle parameters, and (4) ball to
track assignment where each circle is assigned to a specific
instance of a ball track to ensure temporal consistency. In the
following sections each step is described in more detail.

3.2.1. Segmentation

First we acquire an image from the camera (see Figure 2a)
and apply the RGB classifier to obtain a unique color index

c© The Eurographics Association 2008.
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Figure 2: Ball detection: (a) input color image, (b) pixel-wise classification, (c) noise reduction and hole filling, (d) superim-
posed detected balls, (e) region boundaries and circle center histogram, (f) first detected circle and removed part of the original
boundary, (g) all detected circles and close image gradients, (h) circles refitted to real ball boundaries.

for each pixel (see Figure 2b). Then as in the color calibra-
tion phase the connected component analysis [RK82] is used
to obtain a list of regions and their neighboring relations. To
reduce noise and remove holes small regions are connected
to their sufficiently large neighbors. After this we obtain a
set of regions where each can represent one or more balls
(see Figure 2c). For the following processing each region is
represented by a set of undistorted boundary pixels.

The problem is now much simpler as compared to general
circle detection from luminance edges since now we have to
search only in a very restricted subset of the 3D paramet-
ric space. However, still a robust estimation is necessary to
handle multiple balls per region, occlusion and background
clutter.

In our experiments we implemented and tested many dif-
ferent variants of Hough transform, RANSAC, and least-
squares based approaches. Finally we decided to develop
a new approach where in the first phase an initial circle is
robustly estimated using blind randomized voting with di-
mensionality reduction of the parametric space and then the
circle parameters are refined to better fit real ball boundaries
using a least-squares technique. Such a combination allows
to reach an optimal balance between robustness, accuracy
and processing speed. Each step of the proposed algorithm
will be described in more detail in the following sections.

3.2.2. Robust estimation of circle parameters

As was stated before, the basic assumption is that the
boundaries of detected regions trace approximately real ball
boundaries. Therefore, if we perform many random picks
of tree boundary pixels and construct a circle which passes
them, then there is a high probability that we obtain similar
circles repeatedly. An important fact is that computing the
location of the circle center (cx,cy) from three points (xi,yy)
(with integer coordinates) can be done very fast (2 integer
divisions and 18 multiplications):

cx =
d1y32 +d2y13 +d3y21

2(x1y32 + x2y13 + x3y21)
(1)

cy =
d1x32 +d2x13 +d3x21

2(y1x32 + y2x13 + y3x21)
(2)

where xi j = xi−x j, yi j = yi−y j, and di = x2
i +y2

i . Therefore
we can perform many random votes and gather solutions in a
2D histogram with the same resolution as the original image
(see Figure 2e). Voting is stopped when the accumulator in
the currently updated bin crosses a predefined limit or when
the maximum number of random votes exceeds. The latter
case is rare and occurs when balls with the same color form
blobby regions as shown in Figure 2c.

With the estimated circle center we proceed to a simple
deterministic vote for the radius, i.e. we compute the dis-
tance (in pixels) of each region boundary pixel to the cir-
cle center and increment the accumulator of the correspond-
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ing bin in a 1D histogram. Finally we treat the index of the
most frequented bin as an estimation of the circle radius. We
can do this estimation also during the previous random vot-
ing phase; however, in this case the computation takes two
more multiplications and a floating point square root which
is computationally demanding in contrast to the proposed
deterministic vote.

When the most salient circle is estimated, we have to en-
sure that the underlaying region does not encompass any
other ball with the same color index (as in Figure 2e,f). This
can be done by searching for another maximum in the 2D
histogram of circle centers. However, when the second circle
occupies only a small portion of the whole region boundary
then there is also a small probability that the center bin will
have a sufficient number of votes. To overcome this issue, we
simply remove boundary pixels (see Figure 2f) near the first
estimated circle and perform repeatedly circle center and ra-
dius voting phases till the remaining number of boundary
pixel become considerably low.

Another problem arises when non-circular objects with
similar colors appear in the image. In this case the circle
center voting phase typically exceeds the maximum num-
ber of random votes, the voting histogram is noisy without
significant peaks and the global maximum is considerably
small (see Figure 3). To recognize this situation we propose
a simple but robust circle quality metric:

Qc =
cmax · rmax

Nvotes ·Npoints
(3)

Here cmax and rmax are global maxima in the circle cen-
ter and in the radius voting histograms, Nvotes is the num-
ber of circle center votes, and Npoints is the number of re-
gion boundary pixels. Typically Qc for nearly circular re-
gion is about four orders of magnitude higher as compared
to non-circular regions. The most doubtful situation is the
case where balls form blobby regions (like in Figure 2c),
nevertheless also in this case the Qc is about one order of
magnitude higher.

Figure 3: Circle center voting histogram: When the region
has a circular shape the histogram has one significant peak
(left); in the case of a non-circular region the histogram is
noisy and there are no significant peaks (right).

3.2.3. Refinement of circle parameters

When the robust estimation of a circle is done we have to re-
fine its center and radius to better fit the real ball boundary.
To simplify this task we assume that pixels representing ball
boundaries have a large magnitude of intensity gradient and
are simultaneously close to the estimated circle. According
to this basic assumption we apply simple central differences
on pixels intensities in a small annulus around the estimated
circle (see Figure 2g) and select pixels with large responses.
In general this approach does not guarantee that we actually
select real boundary pixels since occlusions and background
clutter can easily violate our basic assumption. However, the
shape of the annulus usually restricts the selection area in
such a way that outliers do not affect the final solution con-
siderably.

We formulate the task as a non-linear least-square opti-
mization problem with the following energy function:

E(c) = ∑
p
‖∇I ·C(c)‖2 (4)

where ∇I is the image gradient at pixel p and C(c) is the
distance of pixel p from circle c:

C(c) =
√

(px− cx)2 +(py− cy)2− cr (5)

In order to minimize such a function we use a standard it-
erative Gauss-Newton method [PTVF92], where in each it-
eration first order derivatives of (4) are set to zero and the
function is linearized using a first order Taylor expansion:

∇E(c) = 0 ⇒ 2∑
p
∇C ·‖∇I‖2 ·(C+∇C ·∆c) = 0 (6)

where

∇C =
(

1
d

(cx− px),
1
d

(cy− py),−1
)

(7)

and

d =
√

(px− cx)2 +(py− cy)2 (8)

From this equation we can easily obtain the incremental
change of the circle parameters (in matrix notation):

∆c =−(∇Ct ·W ·∇C)−1(∇Ct ·W ·C) (9)

where∇C is a 3xN matrix of first order derivatives (7), W =
diag(‖∇I‖2) is a diagonal NxN weighting matrix, and C is
an 1xN column vector of point distances from circle c (5).

In practice the computation of (9) is very fast even for a
large number of pixels since only a closed form 3x3 ma-
trix inversion is computed and only one iteration is neces-
sary to reduce the misalignment to sub-pixel accuracy (see
Figure 2h). Moreover, in our experiments we observed that
following iterations can be harmful when background clutter
and outliers appear in the original image; therefore we sug-
gest using only one iteration even if CPU power is not that
expensive.
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Once the circle parameters cx, cy, and cr are known the
3D position of the ball center can be estimated using a full
perspective model (as in [GF03]):

x = cx
z
f
, y = cy

z
f
, z = r

√
1+ f 2/c2

r (10)

where r is the radius of a real ball, and f is the camera’s focal
length.

3.2.4. Ball to track assignment

To track ball instances consistently and to avoid short-term
detection failures caused by occlusions or sudden light con-
dition changes (e.g. due to fluorescent light flickering), we
take a temporal history of ball positions into account.

To do that a nearest neighbor track assignment with tem-
poral hysteresis is used. Each detected ball is assigned to the
nearest active track. When all active tracks are occupied and
still some detected balls remain, a new track instance is cre-
ated and switched to active mode when it remains occupied
for several frames. Conversely the track is deactivated when
it has not been occupied for a longer period of time. In com-
mon practice this mechanism allows to avoid flickering and
sudden interchange of the augmentation when different vir-
tual objects are assigned to balls with the same color index.

4. Results

The proposed algorithm has been implemented and tested in
several practical scenarios. In this section we discuss per-
formance, accuracy as well as limitations arising from per-
formed experiments and present several exemplary applica-
tions.

4.1. Performance & accuracy

The main advantage of the proposed ball tracking algorithm
compared to previous approaches is the overall processing
speed. In average it takes only 11 ms to analyze a 0.3 Mpix
image with 8 balls (see Figure 4) using one core of a In-
tel Pentium D 920 (2.8 GHz, 800 MHz FSB, 2 MB Cache).
In simpler scenarios even better processing speed can be
achieved; therefore another real-time tracking engine can
be incorporated into the processing pipeline (in our imple-
mentation we combine ball tracking with ARToolKitPlus and
reach 20 ms for 8 balls and 10 planar markers in a 0.3 Mpix
image).

However, still the processing speed decreases linearly
with the number of detected balls. The pixel classification
and the connected component analysis consume in average
6 ms per frame and can be considered as a constant load.
The estimation of the ball position has the most significant
influence on processing speed. It takes in average 0.5 ms per
ball for moderately large regions (about 300 boundary pix-
els) when the circle center accumulator threshold is set to 16.

In order to reach this value it is in average necessary to per-
form about 300 iterations of randomized circle center voting.

The accuracy of the algorithm depends mainly on camera
resolution, lighting conditions and extent of ball occlusion.
In our experiments we used low-cost Fire-i color cameras
running at resolution of 640x480 (YUV 4:1:1). Thanks to
sub-pixel accurate circle refinement (Section 3.2.3) the de-
viation of real and estimated ball position is typically below
1 mm. This value holds for not occluded daylight illumi-
nated ball with diameter of 7 cm positioned on the table at a
distance 1 m from the camera (diameter 60 pixels in the im-
age space). In the case of strong occlusion (more than 50%)
and/or bad light conditions, the deviation from the real posi-
tion can be much greater.

Figure 4: Performance analysis: The image used for per-
formance analysis of the proposed algorithm. It takes 11 ms
to estimate all 3D positions of these 8 color balls.

4.2. Limitations

The main limitation of the proposed algorithm is the assump-
tion on a constant color spectrum of incoming light. This
limitation is closely related to the number of distinct colors
that should be recognized. There is a trade off between num-
ber of active colors and size of color clusters. Larger clusters
bring more robustness to color shifts, but decrease number
of distinct colors and increase probability of collision with
background objects. According to our experiments 4 distinct
color clusters bring optimal trade off between number of col-
ors and robustness of the system. When daylight is used for
illumination and more colors are needed it is necessary to
run color calibration phase several times during the day.

Another important limitation is the accuracy of ball depth
estimation. When a ball is far from the camera or strongly
occluded, the estimation of the circle position and radius can
be biased and so the resulting depth can be notably differ-
ent from real depth. A similar situation occurs also when
bad lighting conditions and/or shifts in light spectrum cause
noisy color classification. This type of deviation is usually
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Figure 5: Applications— Chemical scenario: (a) manipulating atoms of H and Cl represented by two color balls, (b) computer
generated visualization of chemical reaction. Pointing device: (c) telescopic antenna equipped with color ball on the top, (b)
computer generated visualization of lungs appears when the ball touched the torso.

transient and so it can be suppressed by low-pass or Kalman
filtering [Kal60] at the expense of motion latency.

4.3. Applications

To show that our color ball tracking fits the needs of near-
field real-time AR applications as well as is suitable for do-
ing interactions, we integrated our software into an interac-
tive seated AR display called Spinnstube [WRB07]. While
attaching the system to a table a user sitting in there looks
through a half-silvered mirror in front of him/her. Interac-
tions with objects located on the desktop are observed by a
camera looking from atop.

Using this hardware platform we implemented an AR
learning tool for teaching basic principles of chemical re-
actions. To give a user a proper haptic feedback color balls
are used to represent atoms from a subset of a periodic ta-
ble whereas the augmentation shows electrons in the valence
layers of that specific atom. In combination with a printed
version of the periodic table equipped with planar ARToolK-
itPlus markers a user is able to select atoms and build up sim-
ple molecules (see Figure 5, top row). As compared to a re-
lated AR-based chemistry teaching system [FFE∗07] (based
only on ARToolKit) our approach brings great benefit since
balls themselves have a special semantic meaning and thus
they are not just markers additionally attached to the real ob-
ject where the system augments on.

Another application in the context of AR where a ball
can have a special semantic meaning is to use it as a point-
ing device. In this case a ball provides a compelling visual
metaphor as pointer and a direct haptic feedback important
for the pointing operation. Using an appropriate hardware
construction (e.g. a telescopic antenna) fixed to a suitable in-
put device (e.g. a wireless presenter with some buttons used
as triggers) an interaction device for point-and-click events
can be created easily. The pictures on the right in Figure 5
show such a device used to highlight virtual organs aug-
mented on a human torso model.

Furthermore, our color ball tracker can be also combined
with previous ball-based tracking techniques providing upon

the 3D position also an estimation of the orientation, i.e.
dipole [GF03] and 6-DOF sphere [BR05]. As compared to
ball detection algorithms used in these papers our approach
is easier to implement, increases robustness and brings lower
computational overhead.

5. Conclusion and Future work

In this paper we presented a novel color ball tracking tech-
nique suitable for cost effective AR systems. Using a stan-
dard color camera it allows to estimate 3D positions of sev-
eral visible color balls in real-time. As compared to planar
fiducial markers our approach is robust to partial occlusion
featuring a more comfortable manipulation, a natural visual
metaphor and a proper haptic feedback. Moreover, the pro-
posed technique is fast enough to be easily combined with
other real-time tracking engines such as ARToolKitPlus. So
we hope it has potential to become a complementary track-
ing alternative for low-cost AR systems.

As future work we plan to develop an on-the-fly color re-
calibration phase to increase the robustness to slight changes
in color constancy of incoming light. Another issue deserv-
ing attention is the accuracy of the ball radius estimation es-
pecially in case of considerable occlusion. In addition to that
we are also looking for other interesting applications where a
color ball will have a natural semantic meaning similar to the
proposed pointing device and the equalization with atoms.
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