Facial Animation

Ladislav Kunc Computer Graphics Group, CTU FEL, Prague

- Motivation
- History of facial animation
- Head anatomy
- Animation techniques (2D & 3D)
- Speech animation

Motivation Pictures

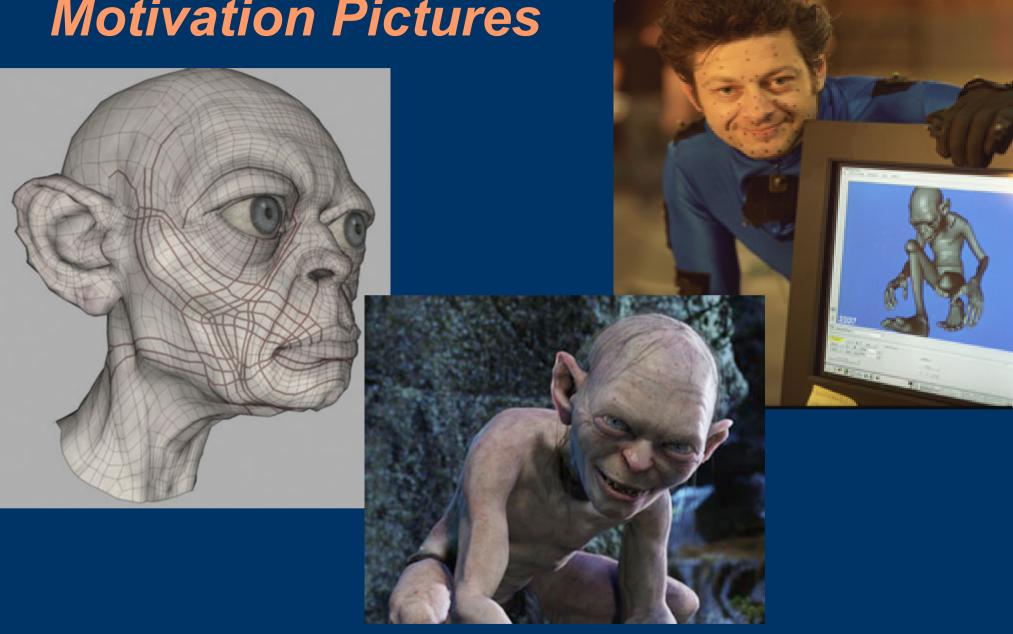


Photo courtesy New Line, http://www.newline.com

Motivation & Applications

- Entertainment and visual effects
- Interactive games

Photo courtesy Disney, www.disney.com

Teleconferencing

Photo courtesy SeeStorm, www.seestorm.com

Human computer interaction

How is the packet switching model of message transmission like the postal system?

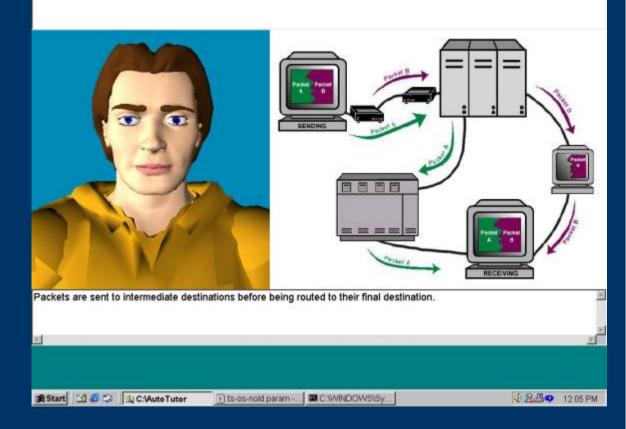
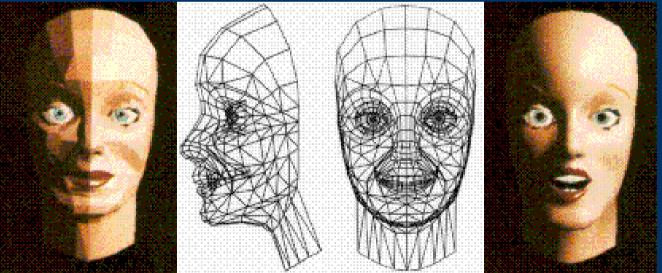


Photo courtesy Graesser C., Teaching Tactics and Dialog in AutoTutor

6/44

• Social agents, virtual reality

Photo courtesy SecondLife, www.secondlife.com


- Entertainment and visual effects
- Interactive games
- Teleconferencing
- Human computer interaction
- Social agents, virtual reality
- Perception research
 - McGurk effect (video)
 - Must be perceptually correct!

Challenges of Facial Animation

Creates realistic face animation
 Operates in real-time
 Animation is "fully" automated
 Easy adaptation to individual faces

Brief history

- 1971 Parke Initial 3D polygonal faces (< 100 polygons)
- 1974 Parke First parametrized model, speech synchronized animation

Photo courtesy Parke Frederic

Brief History (cont.)

11/44

 Chernoff's faces – representation of multidimensional data

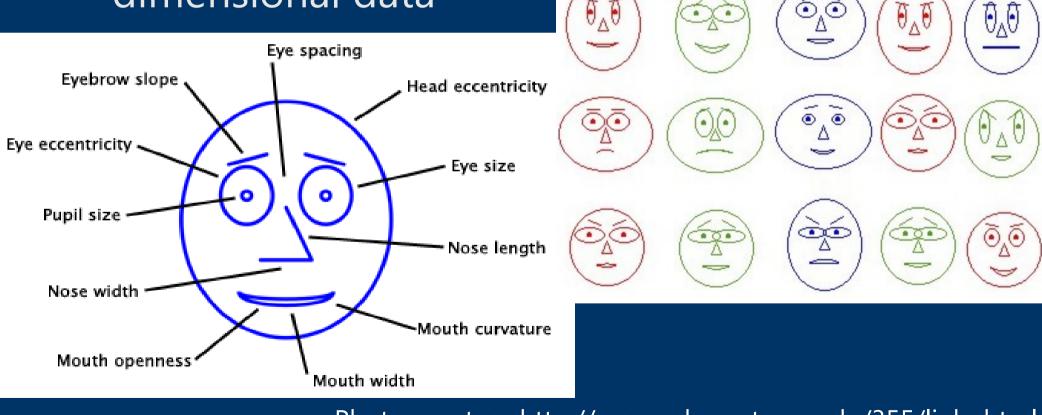
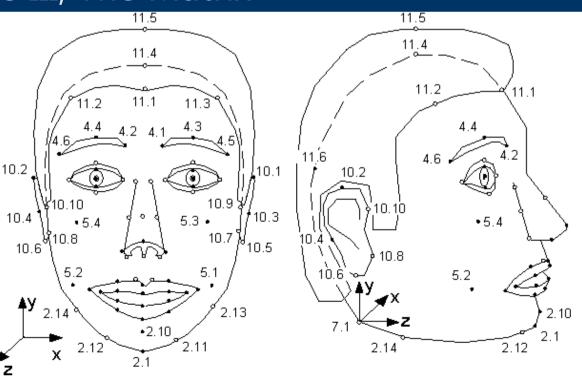


Photo courtesy http://mapmaker.rutgers.edu/355/links.html

Brief History (cont.)

- 1974 Parke First parametrized model, speech synchronized animation
- 1981 Platt First muscle simulation model
- 1980s
 - Lewis and Parke Automatic speech synchronization
 - Waters new muscle model
- 1990s Pelachaud Speech co-articulation



Brief History (cont.)

- 1990s MPEG-4 Facial coding
- 2000s Commercial successful
 - Computer games: Sims
 - Movies: Shrek, Final Fantasy, Lord of the Rings, StarWars Episode III, The Matrix Revolutions

Photo courtesy http://www.icp.inpg.fr/~elisei/

13/44

Head Anatomy

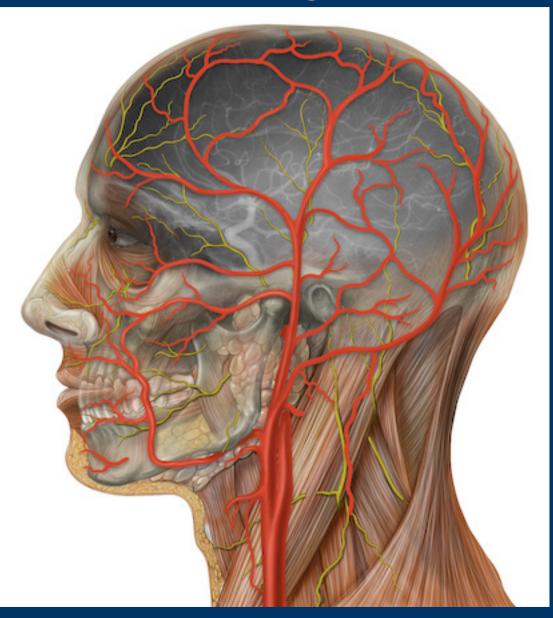
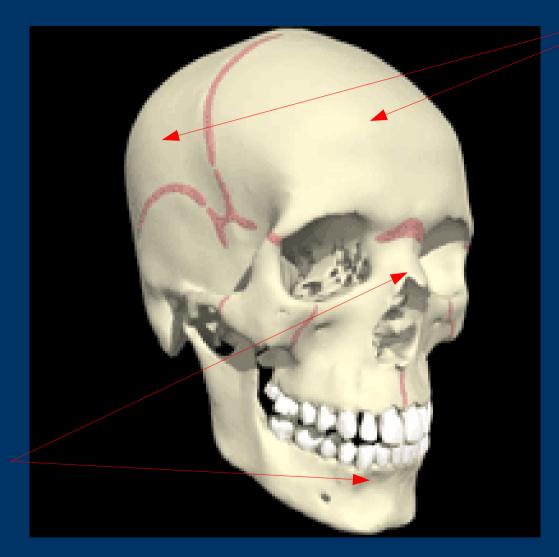


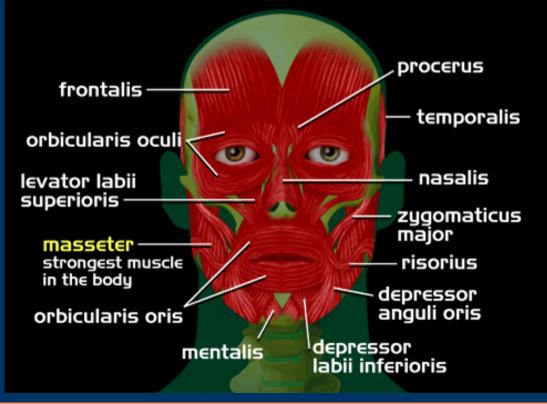
Photo courtesy, http://www.flickr.com/photo/ patrlynch/450142019/


Head Components (Topology)

- Skull
- Facial muscles
- Skin
- Eyes
- Teeth
- Tongue
- (Ears, Lips, Hair)

Facial skeleton

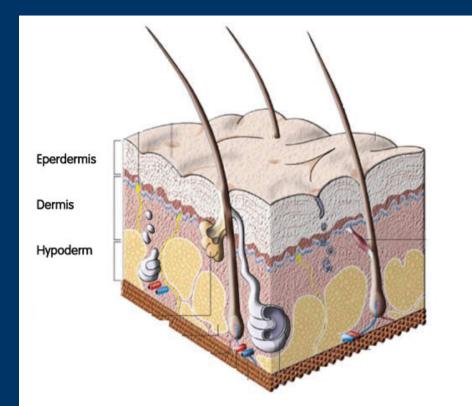
Picture courtesy AnatomyPix, www.anatomypix.com



Facial Muscles

- Expression muscles
- 3 types
- Sphincter
 - Orbicularis oculi
- Linear
 - Zygomaticus
- Sheet

17/44


- Frontalis

Pictures courtesy www.hbcprotocols.com

Skin

- 3 layers
- Elastic properties
- Non-linear strain curve

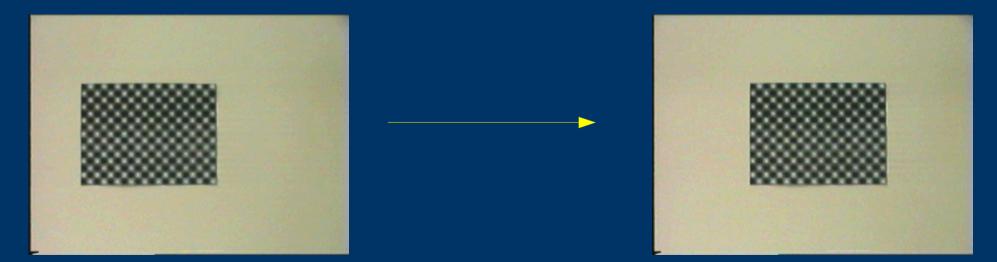
Head anatomy (cont.)

• Look in the medical anatomy atlas !

Knowledge of head anatomy → Facial animation

2D Facial Animation (video show)

- Source data and face representation = images or video
- Example: Ezzat MikeTalk system, 1999
- Based on morphing keyframe images
- Keyframe represents part of speech



Picture courtesy Ezzat MikeTalk system

Optical flow algorithm

- How to change one image to another?
- Computer vision algorithm
 - For all image combinations enumerate motion vectors (optical flow)

Picture courtesy http://www.codeproject.com/cs/media/Optical_Flow_Estimation.asp

Optical flow (motion vectors)

22/44

			-													-			-		-			-													
						-	-	-																		-											
							_	_	_														-	_	_	_	_										
					_	_				_		_	_		_			_			_			_		_	_	_	_		_	_				_	
			-	-						_	-	-	-	-			•	-			-			_			_		-	-	-			-		•	
		-	-		ч ш а		<u> </u>	-	· •	_		-	~	`		•			•		-	_	-	-					_			-	-	-			
1			-	-	-+	-						-	-	-	-	-	•						+									-		-		•	•
								-	-		-			-	-	-	•																	-	1	•	
			-	_	_	•—	-	-	-	-		****	_		•	4		•	ъ.				-									η.			1		
1		۹.	-	-	_	-									-	-	-	-	-	${\bf v}_{\rm eff}$				-	+	,	,	→	-	_	-				I.		
ı.																-	-	-	-		-	-		ş		3	<u>-</u>	s -→	-	-	-						
												سرم			·	-	-	$r_{\rm e}$	-	${}^{n}m_{\mathbf{n}}$		-			<u></u>	3-		5	<u> </u>	-	×.,		-	-			
			\sim				-	->-			-9-	مرجر	••	-	-	-	-	-	_	_	_	_		» +	÷-	- -	÷-	- ⊊→	_		-			-			
					· ·		_ - _	-		->	-	-	•	~	·	-	~		-	_		_	سر ۱	٤	å	<u>.</u>	+		-	·							
			~~				-					~											سره										-	_			
			مر	_											-7	~		-					•										_		1		
			ا می	_									+	_	_	_	_	_															_	_			
				_								ہے۔ ابر ا		_	-		-	-	-				_								- Te		-	-			
	•			-	-	_	• —	-	-	~			_	-	-	-	-	-	-				_								-	-					
1						_	_	-	_		_			-	-	10	-	-	-	-	-	-	-	_	-	_	_	_		-							
				-	_	_	_	_	_	_			-	-	-		-	-	-	-	-		_	_	_			_	-	-							
			-	-	-	-	-	-	-	-	100	-		-		-			-		-	-	-	-	-	-	-	-	-	-	-						
						-	-	-	-	-	*	•	-					1			-	-		-	-	-	-		-								
			-		-	-	-	-	-				-								-	-	-	-		-			•			-		-			
							•				-											-					•							-			
	-		-	-								-	-	-							-	-	-	-					•			-		-			

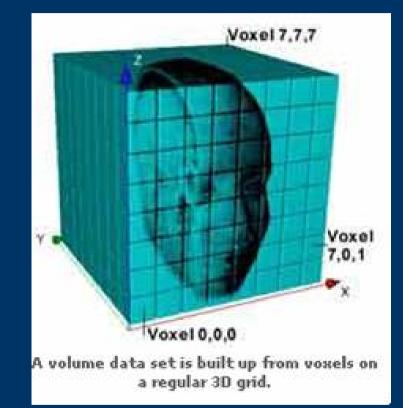
2D Facial Animation (cont.)

Advantages

- Videorealistic
- Fairly simple head appearance change

Disadvantages

- Constrained head manipulating
- Photo stability
- Image transition → pixels move → holes !

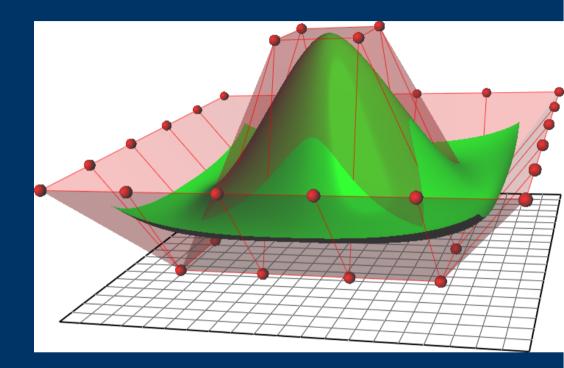


3D Head Representation

Volume representations
Voxel representation

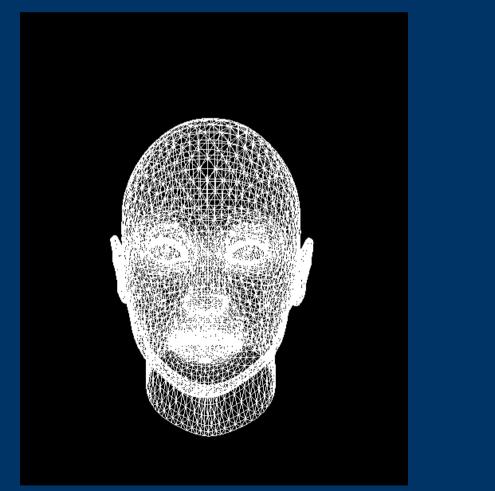
Surface representations

NURBS surfaces
Polygonal surfaces



Picture courtesy http://www.science.mcmaster.ca/biochem/faculty

NURBS Surfaces


- Non-Uniform Rational B-Spline
- Curves and surfaces
- Order
- Knot vector
- Set of weighted points

Picture courtesy www.wikipedia.org

Polygonal Head Representation

Animation Controlling

- Performance animation real actor
- Synthetic animation animation fully controlled by artist/programmer

Performance Driven Animation (video)

- Motion of real human head is detected
- Transferred to head model
- Motion capture marked feature points on real face
- Problem with data quality – vibrations

Picture courtesy http://graphics.stanford.edu/~echuang/face/

28/44

Morph Targets (animation)

- Each facial expression = one polygonal model (morph target, shape)
- Animation interpolation between morph targets
- Morph targets produced by artist
- Disadvantage: Manual labour !

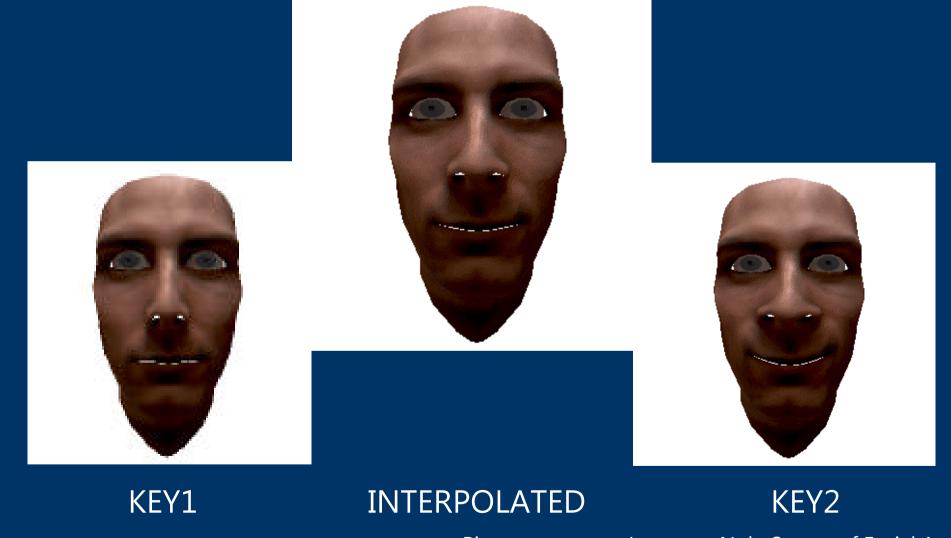
3D Key-frame Interpolation

Linear interpolation:

interpolated = (1-t)*key_1 + t*key_2

• 0 <= t <= 1

30/44

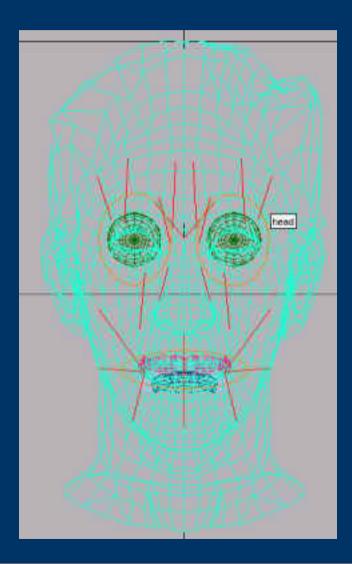

• Interpolated value – color, vertex position, ...

Non-linear interpolation

- Spline, cosinus, sinus
- Acceleration, slowdown Better!

Interpolation Example

31/44

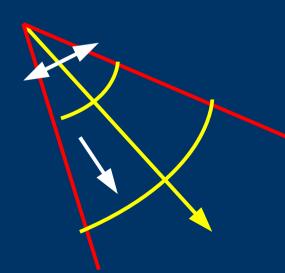

Pictures courtesy Jun-yong Noh, Survey of Facial A.

Parametric Models

- Face expression is defined by vector of parameters
- Control parameters deforms local regions
- First Parke parametrized model:
 - Expression parameters: view direction, shape of eyebrows, shape of mouth, ...
 - Conformation parameters: eyes position, nose length, skin colour
- Animation = Interpolation of parameters

Waters Parametrized Model

- Pseudo-muscle model
- Defined approximation of human facial muscles (orig. 10 muscles, ext. 20 muscles)
- Each expression = Combination of contraction muscle parameters

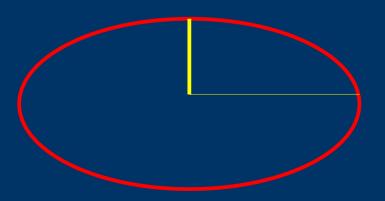



Picture courtesy http://expression.sf.net

33/44

Waters Pseudo-muscles

- Muscles = muscle vectors = muscle effect on head deformations
- Linear muscles Point of muscle origin and direction



Waters Pseudo-muscles (cont.)

- Sheet muscles line of muscle origin and direction
- Sphincters center point and two axes of ellipse

Physically Real Models

- Expressions = simulation of real model muscles and skin tissue
- Simulation is time consuming
- Complete model not possible in current hardware
- Used for local details in parametrized models
- Skin elasticity is simulated by spring networks
- Edges = springs

- MEDUSA system
- Pseudo-muscle based system with skin elasticity simulation
- Haber et. al., 2002

Speech Animation

- Simple keyframe morphing not useful for speech – dynamics
- Speech = set of various sounds
- Basic unit of speech = phonemes (sound domain)
- Basic unit of speech = visemes (visual domain)
- English 45 phonemes, 18 visemes
- No one-to-one mapping

Viseme Examples

Phonemes: D,S,T

Phonemes: F,V

Phonemes: EH

Co-articulation

- Another problem Influence of phonemes (context)
- Realistic speech: visemes not static keyframes
- Appearance of viseme = current phoneme + previous phoneme(s) + future phonemes
- Pelachaud, 1991

Text-to-speech System

- Input: Utterance text
- Output: Human voice + phonemes analysis
- Types
 - Formant synthesis
 - Concatenative synthesis
 - Expressive synthesis
- Sound examples

Thank you for your attention ...

Ladislav Kunc (kuncl1@fel.cvut.cz)

References

- Noh J. et. al., A Survey of Facial Modeling and Animation Techniques, 2000
- Haber J., Terzopoulos D., SIGGRAPH Course Notes on Facial Modeling and Animation, 2004
- Waters K., A Muscle Model for Animating Three-Dimensional Facial Expression, ACM Computer Graphics, 21(4), 1987, pp. 17-24

References (cont.)

- Wikipedia, Keywords: Facial animation, McGurk effect
- Ezzat T. and Poggio T., Visual Speech Synthesis by Morphing Visemes, International Journal of Computer Vision, 38(1), pp. 45-57, 2000
- Chuang E. et. al., Performance Driven Facial Animation using Blendshape Interpolation, Technical Report CS-TR-2002-02, 2002

