Bi-directional Path Tracing
 and
 Photon Mapping

Petr Olšák

1

Main concept (physicaly based rendering)

Motivation, main goal: to make real images of virtual world, to outwit human senses
\downarrow
(compromise: not all physical laws are taken into account) \downarrow
Math. model: the rendering equation, the volume rendering equation \downarrow
(compromise: the surface interpolation, discretisation, BRDF simplification, inaccurate data)
\downarrow
Numerical method: Monte Carlo (path tracing + modifications), finite elements, ...
\downarrow
(compromise: inaccurate method, inaccurate result)
\downarrow
Checking result: is the result still usable?

Main concept (global)

Real world problem
\downarrow
Math model (model errors)
\downarrow
Discretisation (discretisation errors, measuring errors, rouding errors) \downarrow

Computation (truncation errors, rounding errors)
\downarrow
Result, result interpretation (errors estimation)

The most important topics and problems

soft shadows
color bleeding
glossy and mirror reflections
caustics
participating media
subsurface scattering
narrow passages
surface singularities

History

realistic image systhesis, first attemps: 1980 (ray tracing), 1984 (radiosity, finite elements).
ray tracing: basic [T. Whitted, 1980], Monte Carlo [Cook \& al., 1984, 1986], math model [J. T. Kajiya, 1986]
various enhancements in ray tracing: [G. J. Ward, 1988], [P. Shirley, 1990], [E. P. Lafortune, 1995], [E. Veach, 1995]
photon mapping: [H. W. Jensen, 1995]
bi-directional path tracing: [E. P. Lafortune, 1993], [E. Veach, 1994]
metropolis light transport: [E. Veach, 1997]

Current development

Radiance and irradiance caching [J. Křivánek, 2006]
Matrix row-column sampling, many-light problem [M. Hašan, 2008]
Precomputed radiance transfer [Spherical Harmonic: P. P. Sloan, 2006]

Rendering equation [J. T. Kajiya, 1986]

Local formulation:
$L_{\text {out }}(x, \omega)=L_{\mathrm{e}}(x, \omega)+\int_{\Omega^{\prime}} f_{r}\left(\omega^{\prime}, x, \omega\right) L_{\mathrm{in}}\left(x, \omega^{\prime}\right) \cos \theta^{\prime} \mathrm{d} \omega^{\prime}$
where $L_{\text {out }}(x, \omega)$ is an outgoing radiance from point x in direction ω, $L_{\mathrm{in}}\left(x, \omega^{\prime}\right)$ is incomming radiance to point x from direction ω^{\prime}
L_{e} is an emitted radiance (light sources)
f_{r} is the bidirectional reflection distribution function (BRDF)
θ^{\prime} is the angle between normal at point x and ω^{\prime}
Ω^{\prime} is the unit hemisphere, $\cos \theta^{\prime}>0$

7

Integral as a linear operator

If we set $T L=\int_{S} f_{r}\left(\omega^{\prime}, \cdot, \cdot\right) L\left(y,-\omega^{\prime}\right) V(\cdot, y) \frac{\cos \theta^{\prime} \cos \theta^{\prime \prime}}{\|\cdot-y\|^{2}} \mathrm{~d} s$,
(where $L_{\text {out }}=L$) then we get simpler form of global rendering equation:
$L=L_{\mathrm{e}}+T L, \quad$ i.e. $\quad(I-T) L=L_{\mathrm{e}}$
The inversion of $(I-T)$ can be written by inifinite sum:
$(I-T)^{-1}=\sum_{k=0}^{\infty} T^{k}, \quad$ so $\quad L=\sum_{k=0}^{\infty} T^{k} L_{\mathrm{e}}$.
It means that the radiance is the sum of direct illumination + light from one reflection + light from two reflections $+\ldots$

9

Volume equation - a solution of differential part

Let $x=x(t)=y+\omega t, L(t)=L(x(t), \omega)$ then the volume rendering equation has the following form:

$$
\begin{aligned}
& \frac{\mathrm{d} L(t)}{\mathrm{d} t}+\sigma_{t}(x(t)) L(t)= \\
& \quad \sigma_{a}(x(t)) L_{\mathrm{e}}(x(t), \omega)+\sigma_{s}(x(t)) \int_{\Omega} p\left(\omega^{\prime}, x(t), \omega\right) L\left(x(t), \omega^{\prime}\right) \mathrm{d} \omega^{\prime}
\end{aligned}
$$

The $L(t)$ makes only infinitesimal (measure 0) contribution to the integral, thus we can replace the whole right-hand side to the function of t :
$L^{\prime}(t)+u(t) L(t)=f(t)$
this is differential quation can be solved by classical methods, but the solution has a bit impractical integral (of integral) form.

Rendering equation

Global formulation:
the substitution $\omega^{\prime} \rightarrow y=\operatorname{ray}\left(x, \omega^{\prime}\right), \mathrm{d} \omega^{\prime} \rightarrow \frac{\cos \theta^{\prime \prime}}{\|x-y\|^{2}} \mathrm{~d} s$ gives from the previous rendering equation the following one:
$L_{\text {out }}(x, \omega)=L_{\mathrm{e}}(x, \omega)+\int_{y \in S} f_{r}\left(\omega^{\prime}, x, \omega\right) L_{\mathrm{out}}\left(y,-\omega^{\prime}\right) V(x, y) \frac{\cos \theta^{\prime} \cos \theta^{\prime \prime}}{\|x-y\|^{2}} \mathrm{~d} s$,
where $\omega^{\prime}=\frac{y-x}{\|x-y\|}, \quad V(x, y)= \begin{cases}1 & \text { if } x \cdots y \text { are visible } \\ 0 & \text { else }\end{cases}$
Usable for finite elements methods, for example.

8

Volume rendering equation [J. T. Kajiya, 1986]

$$
\begin{aligned}
(\omega \cdot \nabla) L(x, \omega)= & \sigma_{a}(x) L_{\mathrm{e}}(x, \omega)-\sigma_{t}(x) L(x, \omega)+ \\
& \sigma_{s}(x) \int_{\Omega} p\left(\omega^{\prime}, x, \omega\right) L\left(x, \omega^{\prime}\right) \mathrm{d} \omega^{\prime}
\end{aligned}
$$

where ∇ is the gradient, it means that
$(\omega \cdot \nabla) L=\omega_{1} \frac{\partial L}{\partial x_{1}}+\omega_{2} \frac{\partial L}{\partial x_{2}}+\omega_{3} \frac{\partial L}{\partial x_{3}}$
$\sigma_{a / s}$ is absorption/scattering coefficient, $\sigma_{t}=\sigma_{a}+\sigma_{s}$,
p is the phase function, $\int_{\Omega} p\left(\omega, x, \omega^{\prime}\right) \mathrm{d} \omega^{\prime}=1$
Ω is the unit sphere.
This is the integral+differential equation.

Monte Carlo Ray Tracing

advantages:
Any type of BRDF can be handled including specular reflection
Low memory consumption
Geometry can be procedural and can be duplicated
No tesselation is necessary
but disadvantages:
View-dependent calculation
Time consuming
Noise
Four times more samples needed to reach half variance

Bidirectional Path Tracing

advantages of both methods: rays from light / from the eye
two rays: x from the eye, y from light source
each vertex x_{i} is shaded with each vertex y_{i} :
$L_{i, j}\left(x_{i} \rightarrow x_{i-1}\right)=f_{r}\left(y_{j} \rightarrow x_{i} \rightarrow x_{i-1}\right) V\left(x_{i}, y_{j}\right) \frac{\left(y_{j} \rightarrow x_{i}\right) \cdot n_{x_{i}}}{\left\|x_{i}-y_{j}\right\|^{2}} I\left(y_{j} \rightarrow x_{i}\right)$
$I\left(y_{j} \rightarrow x_{i}\right)$ is the radiant intensity
Radiance estimate for the pixel: $L=\sum_{i} \sum_{j} w_{i, j} L_{i, j}$.
The $w_{i, j}$ are weights with the property: $\sum_{i} w_{i, j}=1$ for all j.

Photon mapping - basic idea

Two pass algorithm
First pass, photon tracing: storing "photons" (vertexes of light paths),
Data of the photon: power, position, incoming direction
Photon map: storage is independent of geometry of the scene (volume oriented, kd-tree)

Second pass: rendering, paths from eye, radiance calculated using n photons around scatering point (shortest distance).

Photon mapping - integral evaluation (1)
$L_{\mathrm{out}}=L_{\mathrm{e}}+L_{\mathrm{ref}}, \quad f_{r}=f_{S}+f_{D}, \quad L_{\mathrm{in}}=L_{\mathrm{inL}}+L_{\mathrm{inC}}+L_{\mathrm{inD}}$, where:
$L_{\text {ref }}$ is reflected radiance,
f_{S} is specular term and f_{D} is diffuse term of BRDF,
L_{inL} is direct illumination, L_{inC} is caustics and L_{inD} is other illumination

$$
\begin{aligned}
L_{\mathrm{ref}}= & \int_{\Omega^{\prime}} f_{r} L_{\mathrm{in}} \cos \theta^{\prime} \mathrm{d} \omega^{\prime}=\int_{\Omega^{\prime}} f_{r} L_{\mathrm{inL}} \cos \theta^{\prime} \mathrm{d} \omega^{\prime}+ \\
& \int_{\Omega^{\prime}} f_{S}\left(L_{\mathrm{inC}}+L_{\mathrm{inD}}\right) \cos \theta^{\prime} \mathrm{d} \omega^{\prime}+ \\
& \int_{\Omega^{\prime}} f_{D} L_{\mathrm{inC}} \cos \theta^{\prime} \mathrm{d} \omega^{\prime}+\int_{\Omega^{\prime}} f_{D} L_{\mathrm{inD}} \cos \theta^{\prime} \mathrm{d} \omega^{\prime}
\end{aligned}
$$

Each of the integrals can be computed by different method.

Bidirectional path tracing - weights

Good choice of $w_{i, j}$ is substantial
[Veach] power heuristic: $w_{i, j}=\frac{p_{i, j}^{2}}{\sum_{k=0}^{i+j} p_{k, i+j-k}^{\beta}}$ (most common: $\beta=2$) $p_{i, j}$ is probability density of existence the path $x_{0}, \ldots, x_{i}, y_{j}, \ldots, y_{0}$. it is the product of probabilities of generating $x_{i} \rightarrow x_{i+1}\left(\right.$ or $\left.y_{j} \rightarrow y_{j+1}\right)$.

Photon mapping - radiance calculation

$L_{\text {out }}(x, \omega)=\int_{\Omega^{\prime}} f_{r}\left(\omega^{\prime}, x, \omega\right) L_{\mathrm{in}}\left(x, \omega^{\prime}\right) \cos \theta^{\prime} \mathrm{d} \omega^{\prime}$
$L_{\text {in }}\left(x, \omega^{\prime}\right)=\frac{\mathrm{d}^{2} \Phi_{\text {in }}\left(x, \omega^{\prime}\right)}{\cos \theta^{\prime} \mathrm{d} \omega^{\prime} \mathrm{d} s}$
$L_{\text {out }}(x, \omega)=\int_{\Omega^{\prime}} f_{r}\left(\omega^{\prime}, x, \omega\right) \frac{\mathrm{d}^{2} \Phi_{\text {in }}\left(x, \omega^{\prime}\right)}{\mathrm{d} s}$
$L_{\mathrm{out}}(x, \omega) \doteq \sum_{p=1}^{n} f_{r}\left(\omega_{p}, x, \omega\right) \frac{\Phi_{p}}{\Delta s}=\sum_{p=1}^{n} f_{r}\left(\omega_{p}, x, \omega\right) \frac{\Phi_{p}}{\pi r^{2}}$

Photon mapping - integral evaluation (2)

$\int_{\Omega^{\prime}} f_{r} L_{\mathrm{inL}} \cos \theta^{\prime} \mathrm{d} \omega^{\prime}$ evaluated by basic ray tracing
$\int_{\Omega^{\prime}} f_{S}\left(L_{\mathrm{inC}}+L_{\mathrm{inD}}\right) \cos \theta^{\prime} \mathrm{d} \omega^{\prime}$ evaluated by standard MC ray tracing
$\int_{\Omega^{\prime}} f_{D} L_{\mathrm{inC}} \cos \theta^{\prime} \mathrm{d} \omega^{\prime}$ evaluated using special caustics photon map $\int_{\Omega^{\prime}} f_{D} L_{\mathrm{inD}} \cos \theta^{\prime} \mathrm{d} \omega^{\prime}$ evaluated using global photon map

Photon tracing - participating media

Photon tracing in participating medium: around the ray from light.
Average length d of ray before next iteration: $d=1 / \sigma_{t}$
Photons are stored at each point of iteration in "volume photon map".
If $\operatorname{Rand}(0,1) \leq \sigma_{s} / \sigma_{t}$ then photon is scattered else it is absorbed.
Scattered photon: impotrance sampling by p (phase function).
Integral from volume rendering equation can be evaluated by:
$\sigma_{s}(x) \int_{\Omega} p\left(\omega^{\prime}, x, \omega\right) L\left(x, \omega^{\prime}\right) \mathrm{d} \omega^{\prime} \doteq \sum_{i=1}^{n} p\left(\omega_{i}, x, \omega\right) \frac{\Phi_{i}}{\frac{4}{3} \pi r^{3}}$
because $L\left(x, \omega^{\prime}\right)=\frac{\mathrm{d}^{2} \Phi\left(x, \omega^{\prime}\right)}{\sigma_{s}(x) \mathrm{d} \omega^{\prime} \mathrm{d} V}$

Photon tracing - subsurface scattering

Similar to participating media.
Rendering step: ray marching (numerical solution of differential equation)

