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Main concept (global)

Real world problem
↓

Math model (model errors)
↓

Discretisation (discretisation errors, measuring errors, rouding errors)
↓

Computation (truncation errors, rounding errors)
↓

Result, result interpretation (errors estimation)
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Main concept (physicaly based rendering)

Motivation, main goal: to make real images of virtual world, to outwit
human senses

↓
(compromise: not all physical laws are taken into account)

↓
Math. model: the rendering equation, the volume rendering equation

↓
(compromise: the surface interpolation, discretisation, BRDF simplifi-
cation, inaccurate data)

↓
Numerical method: Monte Carlo (path tracing + modifications), finite
elements, . . .

↓
(compromise: inaccurate method, inaccurate result)

↓
Checking result: is the result still usable?
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The most important topics and problems

soft shadows

color bleeding

glossy and mirror reflections

caustics

participating media

subsurface scattering

narrow passages

surface singularities
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History

realistic image systhesis, first attemps: 1980 (ray tracing), 1984 (radiosity,
finite elements).

ray tracing: basic [T. Whitted, 1980], Monte Carlo [Cook & al., 1984,
1986], math model [J. T. Kajiya, 1986]

various enhancements in ray tracing: [G. J. Ward, 1988], [P. Shirley,
1990], [E. P. Lafortune, 1995], [E. Veach, 1995]

photon mapping: [H. W. Jensen, 1995]

bi-directional path tracing: [E. P. Lafortune, 1993], [E. Veach, 1994]

metropolis light transport: [E. Veach, 1997]
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Current development

Radiance and irradiance caching [J. Křivánek, 2006]

Matrix row-column sampling, many-light problem [M. Hašan, 2008]

Precomputed radiance transfer [Spherical Harmonic: P. P. Sloan, 2006]

. . .
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Rendering equation [J. T. Kajiya, 1986]

Local formulation:

Lout(x, ω) = Le(x, ω) +

∫

Ω′

fr(ω
′, x, ω)Lin(x, ω′) cos θ′ dω′

where Lout(x, ω) is an outgoing radiance from point x in direction ω,

Lin(x, ω′) is incomming radiance to point x from direction ω′

Le is an emitted radiance (light sources)

fr is the bidirectional reflection distribution function (BRDF)

θ′ is the angle between normal at point x and ω′

Ω′ is the unit hemisphere, cos θ′ > 0
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Rendering equation

Global formulation:

the substitution ω′ → y = ray(x, ω′), dω′ →
cos θ′′

‖x − y‖
2
ds gives from the

previous rendering equation the following one:

Lout(x, ω) = Le(x, ω)+

∫

y∈S

fr(ω
′, x, ω)Lout(y,−ω′)V (x, y)

cos θ′ cos θ′′

‖x − y‖
2
ds,

where ω′ =
y − x

‖x − y‖
, V (x, y) =

{

1 if x · · · y are visible
0 else

Usable for finite elements methods, for example.

8

Integral as a linear operator

If we set TL =

∫

S

fr(ω
′, ·, ·)L(y,−ω′)V (·, y)

cos θ′ cos θ′′

‖· − y‖
2
ds,

(where Lout = L) then we get simpler form of global rendering equation:

L = Le + TL, i.e. (I − T )L = Le

The inversion of (I − T ) can be written by inifinite sum:

(I − T )−1 =

∞
∑

k=0

T k, so L =

∞
∑

k=0

T kLe.

It means that the radiance is the sum of direct illumination + light from
one reflection + light from two reflections + .. .
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Volume rendering equation [J. T. Kajiya, 1986]

(ω · ∇)L(x, ω) = σa(x)Le(x, ω) − σt(x)L(x, ω) +

σs(x)

∫

Ω

p(ω′, x, ω)L(x, ω′) dω′

where ∇ is the gradient, it means that

(ω · ∇)L = ω1
∂L

∂x1
+ ω2

∂L

∂x2
+ ω3

∂L

∂x3

σa/s is absorption/scattering coefficient, σt = σa + σs,

p is the phase function,

∫

Ω

p(ω, x, ω′) dω′ = 1

Ω is the unit sphere.

This is the integral+differential equation.

10

Volume equation – a solution of differential part

Let x = x(t) = y + ωt, L(t) = L(x(t), ω) then the volume rendering
equation has the following form:

dL(t)

dt
+ σt(x(t))L(t) =

σa(x(t))Le(x(t), ω) + σs(x(t))

∫

Ω

p(ω′, x(t), ω)L(x(t), ω′) dω′

The L(t) makes only infinitesimal (measure 0) contribution to the in-
tegral, thus we can replace the whole right-hand side to the function
of t:

L′(t) + u(t)L(t) = f(t)

this is differential quation can be solved by classical methods, but the
solution has a bit impractical integral (of integral) form.
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Monte Carlo Ray Tracing

advantages:

Any type of BRDF can be handled including specular reflection

Low memory consumption

Geometry can be procedural and can be duplicated

No tesselation is necessary

but disadvantages:

View-dependent calculation

Time consuming

Noise

Four times more samples needed to reach half variance
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Bidirectional Path Tracing

advantages of both methods: rays from light / from the eye

two rays: x from the eye, y from light source

each vertex xi is shaded with each vertex yi:

Li,j(xi→xi−1) = fr(yj→xi→xi−1)V (xi, yj)
(yj→xi) · nxi

‖xi − yj‖2
I(yj→xi)

I(yj→xi) is the radiant intensity

Radiance estimate for the pixel: L =
∑

i

∑

j

wi,jLi,j .

The wi,j are weights with the property:
∑

i

wi,j = 1 for all j.
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Bidirectional path tracing – weights

Good choice of wi,j is substantial

[Veach] power heuristic: wi,j =
p2i,j

∑i+j
k=0 pβ

k,i+j−k

(most common: β = 2)

pi,j is probability density of existence the path x0, . . . , xi, yj , . . . , y0.

it is the product of probabilities of generating xi → xi+1 (or yj → yj+1).
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Photon mapping – basic idea

Two pass algorithm

First pass, photon tracing: storing “photons” (vertexes of light paths),

Data of the photon: power, position, incoming direction

Photon map: storage is independent of geometry of the scene (volume
oriented, kd-tree)

Second pass: rendering, paths from eye, radiance calculated using n pho-
tons around scatering point (shortest distance).
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Photon mapping – radiance calculation

Lout(x, ω) =

∫

Ω′

fr(ω
′, x, ω)Lin(x, ω′) cos θ′ dω′

Lin(x, ω′) =
d2Φin(x, ω′)

cos θ′ dω′ ds

Lout(x, ω) =

∫

Ω′

fr(ω
′, x, ω)

d2Φin(x, ω′)

ds

Lout(x, ω)
.
=

n
∑

p=1

fr(ωp, x, ω)
Φp

∆s
=

n
∑

p=1

fr(ωp, x, ω)
Φp

πr2
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Photon mapping – integral evaluation (1)

Lout = Le + Lref , fr = fS + fD, Lin = LinL + LinC + LinD, where:

Lref is reflected radiance,

fS is specular term and fD is diffuse term of BRDF,

LinL is direct illumination, LinC is caustics and LinD is other illumination

Lref =

∫

Ω′

fr Lin cos θ
′ dω′ =

∫

Ω′

fr LinL cos θ
′ dω′ +

∫

Ω′

fS(LinC + LinD) cos θ
′ dω′ +

∫

Ω′

fD LinC cos θ
′ dω′ +

∫

Ω′

fD LinD cos θ
′ dω′

Each of the integrals can be computed by different method.

17

Photon mapping – integral evaluation (2)
∫

Ω′

fr LinL cos θ
′ dω′ evaluated by basic ray tracing

∫

Ω′

fS(LinC + LinD) cos θ
′ dω′ evaluated by standard MC ray tracing

∫

Ω′

fD LinC cos θ
′ dω′ evaluated using special caustics photon map

∫

Ω′

fD LinD cos θ
′ dω′ evaluated using global photon map
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Photon tracing – participating media

Photon tracing in participating medium: around the ray from light.

Average length d of ray before next iteration: d = 1/σt

Photons are stored at each point of iteration in “volume photon map”.

If Rand(0,1) ≤ σs/σt then photon is scattered else it is absorbed.

Scattered photon: impotrance sampling by p (phase function).

Integral from volume rendering equation can be evaluated by:

σs(x)

∫

Ω

p(ω′, x, ω)L(x, ω′) dω′ .
=

n
∑

i=1

p(ωi, x, ω)
Φi
4

3
πr3

because L(x, ω′) =
d2Φ(x, ω′)

σs(x) dω′ dV
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Photon tracing – subsurface scattering

Similar to participating media.

Rendering step: ray marching (numerical solution of differential equation)
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