
FAST APPROXIMATION OF CONVEX HULL

Ladislav Kavan
FEE CTU in Prague

Karlovo nam. 13
Prague 2, Czech Republic

email: kavanl1@fel.cvut.cz

Ivana Kolingerova
University of West Bohemia

Univerzitni 8, Box 314
Plzen, Czech Republic

email: kolinger@kiv.zcu.cz

Jiri Zara
FEE CTU in Prague

Karlovo nam. 13
Prague 2, Czech Republic
email: zara@fel.cvut.cz

ABSTRACT
The construction of a planar convex hull is an essential op-
eration in computational geometry. It has been proven that
the time complexity of an exact solution is Ω(NlogN). In
this paper, we describe an algorithm with time complexity
O(N + k2), where k is parameter controlling the approxi-
mation quality. This is beneficial for applications process-
ing a large number of points without necessity of an exact
solution. A formula for upper bound of the approximation
error is presented.

KEY WORDS
convex hull, approximation, linear time

1 Introduction

We consider only the planar case, although the generaliza-
tion to higher dimension would be possible. It has been
shown by [6], that an algorithm performing only quadratic
tests needs at least cN log N operations, where c is a con-
stant and N is the number of input points. There exists a
variety of algorithms achieving this best possible time com-
plexity, showing that the problem itself has time complex-
ity Θ(N log N), see [5, 4]. Very popular algorithms are
described in [2, 1].

However, in certain applications we do not need an
exact convex hull, i.e. the smallest convex set enclosing
given set of points. Instead, small enough convex set en-
closing input points can be sufficient. We show that in this
case we can compute the approximate convex hull with lin-
ear time complexity. The inaccuracy of the algorithm can
be controlled by user specified parameter k. The total com-
plexity of the resulting algorithm is O(N + k2). We show
that the error of approximation approaches zero as k ap-
proaches infinity.

2 Simple Approximation Algorithm

Assume we are given a finite set A of 2D points. Let us
denote CH(A) as the (accurate) convex hull of A and sup-
pose that CH(A) contains the origin1. It is well known that

1This presumption can be easily satisfied by choosing point from
CH(A), for example one point from A, and shifting the other points ap-
propriately. Later we see that it is more advantageous to choose the center
of the minimal containing sphere, but this is not as easy to compute.

CH(A) is the intersection of all half-spaces containing A.
The first idea to approximate the convex hull, inspired by
k-DOP bounding volumes [3], is to restrict the set of inter-
sected half-spaces.

In particular, we confine ourselves to k half-spaces
defined as follows. Let angle α = 2π

k . We can partition the
plane to sectors centered in the origin and given as

Si = {x ∈ R2 : atan2(x) ∈ 〈αi, α(i + 1))}
si = Si ∩ A

where i = 0, . . . , k− 1. The half-spaces will be defined by
normal vectors ni in the centers of the sectors, i.e.

ni = (cos(αi + α/2), sin(αi + α/2))

More precisely, half-space

Hi = {x ∈ R2 : 〈ni, x〉 ≤ oi}
where oi, i = 0, . . . , k−1 are the offsets of the half-spaces.

The first, simple approximation algorithm is straight-
forward. We set the offsets oi so that each half-space tightly
bounds A in its direction ni. Formally,

oi = max
x∈A

〈ni, x〉

We denote this approximate convex hull given by k half-
spaces as

ACHk(A) =
⋂

i=0,...,k−1

Hi

Notice that ACHk(A) is really convex, since it is an inter-
section of closed half-spaces, and moreover it is an outer
convex hull, i.e.

CH(A) ⊆ ACHk(A)

If |A| = N , then the algorithm ACHk(A) runs in
O(Nk) time2. This may or may not be better than standard
O(N log N) accurate algorithm, depending on parameter
k. As will be discussed later, the variable k controls the
error. It is questionable whether this algorithm is better
than the accurate ones. However, we will use it for the
error analysis of the improved algorithm.

2One could treat k as a constant and thus remove it from the O-no-
tation, but we consider k to be one of the input parameters, because it is
tightly connected to the quality of approximation.

505-077 101

bryson

3 Improved Approximation Algorithm

The algorithms for convex hulls are inherently as complex
as the algorithms for sorting. To obtain truly linear algo-
rithm, we draw the inspiration from linear sorting algo-
rithms, such as radix-sort (bucket-sort)3.

According to this observation, we find all points x ∈
A lying in sector si. This preprocessing takes time O(N)
(truly independent of k) and memory O(N + k). Intu-
itively, the points in sector si will be those giving maximal
oi. However, if we set really

o∗i = max
x∈si

〈ni, x〉

we could get points of A outside the constructed hull. This
is not a problem in itself, because the approximation needs
not be an outer approximation, but the drawback is that the
distance of a point outside the hull is not bounded4.

To put the error within control, we must append one
more step. For each sector si, select the point ai ∈ si that
maximizes the dot product in direction ni, i.e.

〈ni, ai〉 = max
x∈si

〈ni, x〉

and account them to the maximum for all sectors

o′i = max(max
x∈si

〈ni, x〉, max
j=0,...,k−1

〈ni, aj〉)

The half-spaces

H ′
i = {x ∈ R2 : 〈ni, x〉 ≤ o′i}

form the second approximation of the convex hull,

BCHk(A) =
⋂

i=0,...,k−1

H ′
i

Note that BCHk(A) needs not be a superset of CH(A),
but the distance of a point outside BCHk(A) is bounded,
as will be shown in the next section. Notice also

BCHk(A) ⊆ ACHk(A)

because o′i ≤ oi. Intuitively, the ACHk(A) contains
CH(A) and usually is larger. The BCHk(A) reduces the
redundancy of ACHk(A), but it may be smaller even than
CH(A).

Review the steps of the algorithm and their time and
memory complexities:

1. distribute the points of A to k sectors – time O(N),
memory O(N + k)

3The linearity can not be achieved if the sorting algorithm is based
on comparison operations. The algorithms like radix-sort (bucket-sort) do
not use comparison, so their time complexity is measured by number of
other operations, such as array indexing.

4Consider a sector containing no points – its offset is zero and the half-
space cuts-off points of A in arbitrary distance.

2. for each sector compute a maximal dot product of con-
tained points. Because every point is multiplied only
once, this step takes time O(N +k) and memory O(k)
(to store the results and the indexes of extremal points)

3. for each sector, account the extremal points of all other
sectors into o′i, requiring time O(k2) and no memory

Note that in the first step we do not need to really store the
distribution of the points to sectors, because the dot product
with appropriate ni can be computed instantly. Thus the
total time complexity is O(N + k2) and the extra memory
(not counting the input points) is O(k).

4 Error Analysis

The error of an approximation of the convex hull can be
measured as a distance of the point-sets. Recall that the
distance of a point x to a set S is defined as

dist(x, S) = inf{‖x − y‖ : y ∈ S}

The distance of two point sets S, T can be defined as

dist(S, T) = max (sup{dist(x, T) : x ∈ S},
sup{dist(x, S) : x ∈ T })

which guarantees symmetry: dist(T, S) = dist(S, T). Be-
fore estimating the actual error, we must respect different
scales of the input set A. We cope with this requirement by
assuming that A fits in a circle of radius r centered in the
origin.

We begin with analysis of the ACH algorithm, be-
cause it will be useful for the subsequent error estimate of
the BCH algorithm. Because

CH(A) ⊆ ACHk(A)

the first term in dist(CH(A), ACHk(A))

sup{dist(x, ACHk(A)) : x ∈ CH(A)} = 0

it is sufficient to bound the second term

sup{dist(x, CH(A)) : x ∈ ACHk(A)}

We are looking for an upper bound, so we can consider only
CH(A′), where A′ are only those points of A that are lying
both on convex hull and approximate convex hull, i.e.

A′ = A ∩ ∂CH(A) ∩ ∂ACHk(A)

denoting the point-set boundary by ∂. This is correct be-
cause

dist(CH(A), ACHk(A)) ≤ dist(CH(A′), ACHk(A))

Consider any two points x, y ∈ A′ such that x is a
neighbor of y on the CH(A′). Because of the way we de-
fined A′, x lies on some line l of ACHk(A), and y lies

102

on some line m of ACHk(A). The lines l and m belong
to neighboring normals, so they contain the angle π − α.
Denote the intersection point l ∩ m as z. The distance of
line xy to ACHk(A) is actually the distance of the point
z ∈ ACHk(A) to line xy. It can be verified easily that the
maximal distance realizes when ‖x − z‖ = ‖y − z‖, see
Fig. 1.

Figure 1. The maximal distance d of ACHk(A) to
CH(A′), if the length of the line segment xy is c.

Let β = (π −α)/2, the angle contained by z, x, (x +
y)/2. We see that tan β = c/2d, therefore

d =
c

2 tanβ

Because the input point-set A is contained in a circle of
radius r, we have the inequality c ≤ 2r, leading to

d ≤ r

tanβ
=

r

tan π−α
2

= r tan
α

2

Recall that α = 2π
k and point out the dependence of d on

k,
d(k) ≤ r tan

π

k

The d(k) bounds the distance from ACHk(A) to
CH(A). If k goes to infinity, the ACHk(A) converges
to CH(A), because

lim
k→∞

d(k) ≤ lim
k→∞

r tan
π

k
= 0

and d(k) is non-negative.

4.1 Error of the Improved Algorithm

The resulting hull constructed by the BCH algorithm
needs not be an outer approximation of the actual convex
hull. Naturally we face the question about the maximal dis-
tance of a point from CH(A) − BCHk(A) to BCHk(A).

Let Sj be an arbitrary sector, j = 0, . . . , k − 1, and
aj the maximal point in the direction of this sector, i.e. sat-
isfying

〈nj , aj〉 = max
x∈sj

〈nj , x〉

By the last step of the BCH algorithm, we assured that aj

has been accounted into offsets of all half-spaces Hi, i =

0, . . . , k − 1. Therefore, the maximal distance of any point
from CH(A) ∩ Sj to any half-space Hi is bounded by the
length of the secant of sector Sj at distance r (the radius of
the containing circle), see Fig. 2.

Figure 2. The length e of the secant of sector Sj at distance
r from the origin bounds the distance of any point from Sj

to the half-spaces (denoted by dashed lines).

The length e of the secant conforms

sin
α

2
=

e

2r
, e = 2r sin

α

2

The total error of the BCH algorithm can be expressed as

dist(BCHk(A), CH(A))

To bound dist(BCHk(A), CH(A)), we have to bound
both

1) sup{dist(x, CH(A)) : x ∈ BCHk(A)}
2) sup{dist(x, BCHk(A)) : x ∈ CH(A)}

Intuitively, the first term measures the possible redundancy
of BCHk(A) over CH(A). The second term measures the
distance of outliers from CH(A) to BCHk(A). Because

BCHk(A) ⊆ ACHk(A)

the first term is bounded by

sup{dist(x, CH(A)) : x ∈ BCHk(A)} ≤
sup{dist(x, CH(A)) : x ∈ ACHk(A)} ≤ r tan

π

k

as shown in the ACH algorithm analysis. The second term
conforms

sup{dist(x, BCHk(A)) : x ∈ CH(A)} ≤ 2r sin
α

2

as shown in the beginning of this section. Using α = 2π
k

we get

2r sin
α

2
≤ 2r sin

π

k

103

To sum up, the resulting error upper bound is

max
(
r tan

π

k
, 2r sin

π

k

)

According to our expectation, the resulting error is propor-
tional to the radius r of the input set A. If k approaches
infinity, the BCHk(A) converges to CH(A), because

lim
k→∞

r tan
π

k
= 0

as well as
lim

k→∞
2r sin

π

k
= 0

5 Example Outputs

Two examples of an approximate convex hull constructed
by the BCH algorithm for the same input set are presented
in Fig. 3, 4. The resulting polygon is filled by gray. The
sectors are delimited by dashed lines, the other lines repre-
sent the half-spaces.

Figure 3. An example of BCH10 that does not contain all
points of the input set.

The BCH algorithm has one more nice feature: it is
an on-line algorithm, meaning that it can quickly recom-
pute BCHk(A) to BCHk(A ∪ {x}), where x is a new
point. The update can be performed as follows: first, locate
the sector Si such that x ∈ Si. If 〈ni, x〉 ≤ 〈ni, ai〉, we
are done, because the point x is not extremal in its sector.
If 〈ni, x〉 > 〈ni, ai〉, then set ai to x and account it into
maxima

o′j = max(o′j , 〈nj , ai〉)
for each j = 0, . . . , k − 1. Obviously, the update operation
takes time O(k).

Figure 4. Already BCH12 contains all points of the input
set. However there is a small redundancy over the accurate
convex hull.

A cknowl edg ements

This work has been partly supported by the Ministry of Ed-
ucation, Youth and Sports of the Czech Republic under re-
search program MSM 6840770014 (Research in the Area
of the Prospective Information and Navigation Technolo-
gies).

References

[1] C. Bradford Barber, David P. Dobkin, and Hannu Huhdanpaa.
The quickhull algorithm for convex hulls. ACM Transactions
on Mathematical Software, 22(4):469–483, 1996.

[2] Timothy M. Chan. Output-sensitive results on convex hulls,
extreme points, and related problems. In SCG ’95: Pro-
ceedings of the eleventh annual symposium on Computational
geometry, pages 10–19, New York, NY, USA, 1995. ACM
Press.

[3] J. T. Klosowski, M. Held, J. S. B. Mitchell, H. Sowizral, and
K. Zikan. Efficient collision detection using bounding vol-
ume hierarchies of k-DOPs. IEEE Transactions on Visual-
ization and Computer Graphics, 4(1):21–36, /1998.

[4] J. O’Rourke. J. Computational Geometry in C, 2nd ed. Cam-
bridge, England: Cambridge University Press, 1998.

[5] F. Preparata and M. Shamos. Computational Geometry: An
Introduction. New York: Springer-Verlag, 1985.

[6] Andrew C Yao. A lower bound to finding convex hulls. Tech-
nical report, Stanford, CA, USA, 1979.

104

