
Real Time Skin Deformation with Bones Blending 
 

Ladislav Kavan 
Charles University 

Faculty of Mathematics and Physics 
Malostranske nam. 25 

 118 00  Prague 1, Czech Republic 

lkav8604@ss1000.ms.mff.cuni.cz 

Jiří �ára 
Czech Technical University in Prague 

Faculty of Electrical Engineering 
Karlovo nam. 13 

121 35  Prague 2, Czech Republic 

zara@fel.cvut.cz
 

ABSTRACT 

Skeletal animation with vertex blending is a popular method to model believable 3D characters. Its main 
advantage is its speed that allows real-time deformation even on low-level hardware. However it has some 
drawbacks as well: for some movements it produces non-natural postures like twisting elbows. We present a new 
method called bones blending that can be used as an alternative to vertex blending. Bones blending has a power 
to overcome the artifacts of vertex blending. 

Keywords 

Skeletal animation, digital skin, character modeling. 

 

1. INTRODUCTION 
Skeletal animation is a technique of skin deformation 
using associated bones. It has been developed mainly 
for the purposes of the game industry because of its 
modest hardware demands. The drawback is its 
performance in visual quality: the basic scheme 
propagates the non-smooth skeleton posture to skin in 
a straightforward manner. This has been improved by 
vertex blending which smoothes the skin, although 
not satisfactory for all (and even natural) skeleton 
postures. 

For the purposes of this article we will define three 
steps of the skeletal animation evolution: 

1. Basic skeletal animation 
2. Vertex blending 
3. Improved vertex blending 

Articles dedicated to game programmers that explain 
the basic skeletal animation and vertex blending are 
[Lan98] and [Lan99]. An application presenting the 
basic skeletal animation method is based on public 

domain library [Por01]. [Web00] also noticed the 
artifacts of vertex blending and presented 
an improved vertex blending system. Our method 
called bones blending is an alternative to 
improvements of vertex blending. It does not use the 
concept of vertex blending - it builds only on the 
basic skeletal animation.  

A different approach to real-time human body 
modeling, which is based on special software called 
BodyBuilder, is presented in [Kal98]. 

The next section describes the basic skeletal 
animation principles and its improvement by vertex 
blending. Our alternative to vertex blending is 
presented in Section 3. Section 4 compares discussed 
approaches in terms of visual results and rendering 
times. 

2. SKELETAL ANIMATION 
Let us consider the character model is composed 
from several elements: 

• Joints – represented by homogenous matrix 
(usually only rotation and translation) 

• Bones – the segments connecting two joints. The 
bone is usually identified with the joint where it 
begins. 

• Skeleton – a tree. The nodes of the tree are joints 
and the edges are bones. The root of the tree is 
addressed as the root joint. 

• Skin – mesh of triangles. Every vertex of every 
triangle is attached to one and only one bone. 

Permission to make digital or hard copies of all or part of 
this work for personal or classroom use is granted without 
fee provided that copies are not made or distributed for 
profit or commercial advantage and that copies bear this 
notice and the full citation on the first page. To copy 
otherwise or republish, to post on servers or to redistribute 
to lists, requires prior specific permission and/or a fee.  
WSCG SHORT PAPERS proceedings 
WSCG’2003, February 3-7, 2003, Plzen, Czech Republic. 
Copyright UNION Agency – Science Press 



Both skeleton and skin are designed in some 
reference position (usually the “crucifixion” pose). 
The idea of skeletal animation is to move only the 
skeleton and automatically propagate this movement 
to the skin, which is displayed.  

To be more precise, assume that the parent of joint j 
is denoted p(j) and the root joint has index zero. 
Further assume that R(j) is the 4x4 homogenous 
matrix describing the transformation from joint p(j) 
to joint j in the reference skeleton position. Now the 
transformation from the world coordinate system to 
the local frame of joint j can be written as  

)())((...)0()( jjpj RRRA =  

The meaning of R is shown in Fig. 1. Here R(j) 
expresses the translation and rotation of coordinate 
systems from p(j) to j. To apply a movement to 
character we use transformation T(j) that expresses 
the rotation of the bone starting in joint j. 
Translations are not considered because they do not 
result in realistic skeleton deformation - the only 
exception can be the root joint. Its translation means 
translation of the whole skeleton. T(j) matrices can be 
computed for example by interpolation of keyframes 
or by inverse kinematics. Finally we define the final 
transformation of the joint with movement applied to 
it and all its ancestors: 

)0()0()0(
)()())(()(

TRF
TRFF

=
= jjjpj

 

From this formulation the computation of F(j) is 
straightforward with some kind of tree traversing 
algorithm. The hierarchical structure of a skeleton is 
advantageous for the automatic propagation of 
rotations T to all the children. Now we can write what 
happens to vertex v from reference posture when 
transformed to vertex v’ in the actual 
posture. Assume v is attached to a bone beginning at 
joint j: 

vAFv' 1)()( −= jj  

The interpretation of the above formula is that vertex 
v is first transformed from the reference position to 
normalized position (the joint centered at the origin). 
The reason for doing this is that we need the rotation 

T(j) to run upon the joint j. Following multiplication 
by F(j) means: first apply T(j) and then return the 
vertex from the normalized to the actual location. 
Note that when all T(j)’s are identities then the 
vertices are not translated at all. The multiplication 
A(j)-1v can be pre-computed when the model is 
loaded since it depends only on the reference posture. 
For nicely commented source code of this algorithm 
see [Por01]. 

Spherical Linear Interpolation 
The transformations T(j) can be determined for 
example by interpolation of keyframe 
transformations. However, the naive way of matrix 
interpolation (element by element) performs very 
badly – it lacks the intuitive idea of rotation 
interpolation.  

The Spherical Linear Interpolation, known as SLERP 
is usually explained with connection to quaternions, 
although it is possible to compute it just from 
matrices (using conversions to axis-angle 
representation). The SLERP between two orthogonal 
matrices K and L can be defined as 

>∈<− 1,0  ,)( 1 ttLKK  

Note that for t=0 it gives K and for t=1 we obtain L. 
For non-integer t we define the power of a matrix as 
follows: let M=K-1L. M is also an orthogonal matrix, 
i.e. a rotation. We can extract an axis a and angle φ of 
M, see for example [Ebe01] (this point is trivial when 
using quaternions). Now Mt can be defined as 
rotation around axis a by angle tφ. Opposite 
conversion from the axis-angle representation to 
matrix and multiplication by K yields the result. 

Vertex Blending 
The basic skeletal animation scheme does not 
produce a smooth shape nearby joints due to sudden 
change in attached bones as seen in Fig. 2. The color 
of vertices indicates assignment to bones. Note that 
the assignment is not clear for highlighted vertices. 

Our goal is to model smooth skin deformation using 
a non-smooth, segmented skeleton. Allowing 
attachment of one vertex to more than one bone and 
averaging the results can do this. More formally, if 
vertex v is attached to joints j1, …, jn then the formula 
for resulting vertex position is 

∑
=

−=
n

i
ii jjiw

1

1)()()(' vAFv  

where w(1), …, w(n) are weights of attachment to 
mentioned joints such that w(i) sum to 1. Then the 
resulting location of vertex v’ is just the convex 
combination of individually transformed vertices. 

 

x 

y 

y 

x

R(p(j))

R(j) 

Bone 

Figure 1. Reference skeleton joint transformation.



w(i) can be interpreted as influence of joint ji on the 
resulting vertex position. The ’n’ is usually a small 
number from 2 to 4. Skin deformation with vertex 
blending is shown in Fig. 3. 

In Fig. 3 the vertices with non-clear assignment (see 
Fig. 2) were assigned to both bones with equal 
weights 0.5 and 0.5. The white vertices represent the 
results of averaging which is demonstrated in the 
detail view. 

Although vertex blending produces smooth skin 
deformation, it can have problems when the rotation 
T(j) is very large. A typical example is a twist of the 
elbow about 180 degrees (see Fig. 4). Imagine the 
bones model an arm and the light bone represents the 
forearm. The weights of the highlighted vertices are 
0.5 and 0.5 as above. In Fig. 4b the elbow is twisted 
180°. When averaging the highlighted vertex 
locations after transformation they both end up in the 
same position: the joint itself. The overall result is not 
acceptable at all (see 3D example in Fig. 8a).  

One may object that the 180 degrees elbow twist is 
non-natural posture. However even for natural poses 
the artifacts were observed: especially in joints with a 
large range of motion such as shoulder (see natural 
posture in Fig. 11a). 

3. BONES BLENDING 
The problems of vertex blending arise from the fact 
that averaging is done on the vertices. If we could 
arrange the blending on a lower level, such as bones, 
it would give better results. As mentioned earlier the 
joints are essentially rotations. The main idea of 
bones blending technique is not to apply the whole 
rotation at once, but to perform a blend of previous 
rotation and the current one. Blending of two 
rotations is easily accomplished by SLERP. The only 
tricky part is where to take the interpolation 
parameter. We shall denote it by t. 

Intuitively, it should be connected to the distance 
along the bone in the reference posture. To specify 
the distance along the bone we use the normalization 
matrix A(j)-1 that transforms the vertices from the 
reference position to the position with joint j centered 
at the origin. If the following joint is k then the bone 
segment is determined by R(k), more exactly by the 
translation component of R(k) – we shall denote this 
vector n. Then the distance of the normalized vertex 
along the bone can be defined as distance from the 
plane with normal n containing origin. It can be 
computed by the dot product: 

vAvnv 1
00 )(,,' −=><= jt   

where v0 is the normalized version of the given vertex 
v. The t’ is positive for points in the n direction, zero 
for points incident to the plane and negative for 
points behind the plane (in the –n direction). Let us 
assume we have two values: 

• tmin – the value of t’ where only the parent joint’s 
rotation is applied 

• tmax – the value of t’ where only the child joint’s 
rotation is applied 

Figure 3. Vertex Blending. 

Figure 2. Basic skeletal animation: 
a) reference position, b) after rotation 

skin

vertexa) 

b) 

a)

b)

Figure 4. Twisting Elbow Problem:
a) reference position, b) elbow after 180°°°° twist



Now it is straightforward to derive the interpolation 
parameter:  

minmax

min

tt
tt't
−

−=  

clamping values to interval <0,1>. Note that t’ and 
therefore t depend only on the reference posture, so 
they could be pre-computed. For good results this 
method assumes the limbs for bones blending are 
outspread in the reference posture (which is often the 
case). 

Parameter tuning 
The parameters tmin and tmax are objects of editing and 
tuning, as well as vertex-bones assignment we have 
not mentioned yet. The vertices are usually attached 
to bones manually – using an editor, although some 
heuristic algorithms also exist [Web00]. The general 
rule is to assign the vertices to the nearest bones. If 
there is more than one near bone (as in Fig. 2a for 
highlighted vertices) they are weighted according to 
the respective distance and vertex blending is 
applied. 

For bones blending the situation is somewhat 
different. The vertex assignment in this case is 
connected with tmin and tmax parameters. The general 
rule can be now: assign all the vertices that should be 
modified when joint j rotates to the bone beginning in 
joint j. It means that all the vertices around the joint j 
should be connected to bone beginning in j instead of 
the bone that ends in j. Those newly assigned vertices 
will be those that give negative t’. The vertices with 
non-negative t’ are still assigned to joint j, unless they 
are subject of blending with the following bone – it 
depends on parameter tmax (see Fig. 5a). 

If tmax - tmin is large then the bend is broad, spread 
over all attached vertices. On the other hand when it 
is too small the result is similar to basic skeletal 

animation. The optimal values should be tuned in an 
editor. An example of correct parameter settings for 
bones blending is in Fig. 6. 

Triangle Subdivision 
Bones blending brings little improvement if the 
model mesh is too coarse - the triangles are large and 
the effect of smooth bone deformation vanishes (the 
smooth curves drawn in Fig. 5b can be thought as 
a limit case for an infinite number of vertices). It is 
no problem if there are the original surfaces (Bezier, 
B-spline) the model was built of.  

However, we often know only the triangular mesh 
location (and even worse optimized/decimated to the 
reference position). In this case it is necessary to 
subdivide large triangles in the most strained regions 
– around the joints with wide range of motion. The 
triangle connected to joint j will be a triangle with all 
vertices attached to j. The triangles for subdivision 
due to joint j can be defined as the triangles 
connected to joint j. There are two basic methods for 
triangle subdivision: 1:3 and 1:4 triangles (see 
Fig. 7). 

Each of them has its pros and cons: 1:4 produces 
T-vertex discontinuities, which should be corrected 
by induced division of neighboring triangles. On the 
other hand 1:3 subdivision tends to produce “long” 
triangles (i.e. with high ratio of circumscribed and 
inscribed circle radius). To conclude: 1:4 offers 
higher quality and 1:3 gives faster animation. 

Another question is which joints should be selected 
for bones blending and then possibly for subdivision. 
Apparently not all the joints deserve the special 
treatment by bones blending: [Web00] states that for 

 

a) 

b) 

tmin tmax 

SLERP

t’ < 0 t’ = 0 t’ > 0 

Figure 5. Bones Blending: a) vertex assignment 
and parameters, b) after rotation 

 

tmin

tmax

Figure 6. Our choice of tmin and tmax parameters in 
the reference posture 

 

a) b) 

Figure 7. 1:3 (a) and 1:4 (b) triangle subdivision.



rotations1 less than 60° the vertex blending produces 
good results. This problem as well as the problem of 
tmin and tmax parameters tunning is of rather artistic 
nature and could be solved during the virtual 
humanoid design in an interactive editor. 

4. IMPLEMENTATION 
Fig. 8 compares the visual quality of discussed 
methods. The cost increase of bones blending against 
skeletal animation is only one SLERP, dot product 
and linear scaling per one vertex. The SLERP on 
matrices clearly dominates with its 58 additions, 
77 multiplications and 1 division [Ebe01]. However 
it is not necessary to compute the full SLERP for 
every vertex; it is possible to determine the axis a and 
the angle φ of rotation only once for each joint and 
cache the results for every vertex attached to this 
joint. Then in every vertex it is sufficient to perform 
only multiplication tφ and conversion from axis-angle 
to matrix representation: 13 additions and 
15 multiplications [Ebe01]. In our application these 
optimizations need not to be implemented. 
Performance was measured on an original triangle 
mesh and on a model with right arm subdivided 1:4. 
Both models were rendered with vertex blending 
(No BB) and with bones blending applied on the right 
arm (BB). The results are in Table 1 and Table 2. 

In our implementation the parameters tmin and tmax do 
not influence the simulation time. However, it would 
                                                           
1 We can more precisely say “both swing and twist 

component of a rotation” 

be possible to cancel the SLERP when the 
interpolation parameter t is either 0 or 1. Then the 
number of vertices between tmin and tmax (with t 
satisfying 0 < t < 1) would affect the rendering time. 

 Original 1:4 subdiv 
No BB 16.57 23.31 

BB 19.04 32.7 

Table 1. Rendering time in milliseconds 

 Original 1:4 subdiv 
Vertices 1507 2065 

Triangles 1372 1930 

Table 2. Size of input data 

The rendering time increment for the original model 
is acceptable when compared to improvement seen in 
Fig. 8a, b. The comparison is slightly worse for the 
subdivided models but it still retains nice real-time 
properties. It means that the subdivision is useful only 
if visual quality is a priority. 

To measure the improvements of the triangle 
subdivision we define the curvature of a triangle T 
that has three neighboring2 triangles T1, T2 and T3 as 
the maximum of angles inclined by normals of 
(T, T1), (T, T2) and (T, T3). Then the total curvature 
of a triangle mesh relative to joint j can be defined as 
the maximum of curvature of all the triangles 
connected to joint j. Lower curvature number means 
smoother mesh. As the model approaches to the 
mathematically smooth surface, the curvature 
(relative to any joint) approaches to zero. 

A graph of our model’s curvature relative to the 
elbow joint is in Fig. 9. The curvature values were 
measured in the animation of the elbow bend: in the 
beginning the arm is completely stretched – in fact it 
is the reference posture. In the end the elbow is 
rotated about 135°. We see that the subdivided model 

                                                           
2 With a common edge 

 

b) 

a) 

c) 

Figure 8. Elbow twisted 180°°°°: a) vertex blending,
b) bones blending applied to original mesh, c) 

bones blending applied to 1:4. subdivided mesh

 Figure 9. Curvature measurement 



indeed leads to better curvature than the non-
subdivided one. 

Application 
The bones blending technique was successfully used 
in our project of virtual reality training of fencing 
(see snapshot in Fig. 10). In this application the 
armed (right) arm is controlled by inverse kinematics 
and it is necessary to model a broad range of joint 
motions for the realistic fencing simulation.  

The results of pure vertex blending were not 
acceptable: in the reference posture the right hand’s 
palm is facing down. Therefore when forced to 
posture as in Fig. 11a, a 90° twist in the shoulder 
joint was necessary, producing artifacts when 
rendered with vertex blending. Our technique’s result 
is in Fig. 11b. 

5. CONCLUSION 
The bones blending algorithm is useful when one 
needs to model real-time virtual humanoids with 
a wide range of joint movement, typically for a sport 
simulation. The troubles of collapsed digital skin, like 
in the twisting elbow problem, do not occur in bones 
blending because the original bone to vertex 
distances remain the same during the animation. 
The proposed bones blending method could not 
compete with high-level animation systems that use 
layered humanoid model composed of bones, muscles 
and fat tissues. On the other hand it can be easily 
included in the existing skeletal animation system 
when artifacts of vertex blending become a problem. 
This upgrade is modest in development time and it 
does not lead to serious drawbacks in performance. 
Another advantage is the method’s scalability: finer 

mesh provides automatically finer results. Bones 
blending is a method of choice for complex real-time 
character modeling. Future work can be oriented on 
considering other methods of bones blending than 
SLERP (e.g. a higher order spherical interpolation) as 
well as non-linear derivation of the interpolation 
parameter t. The subdivision step could be performed 
automatically depending on the level of detail.  

6. ACKNOWLEDGEMENTS 
The 1st author was supported by the Czech Ministry 
of Education under project MSM 212300014, the 2nd 
author was supported by the European Union under 
project IST-2001-32184 and by the Czech Ministry 
of Education under project LN00B096. We would 
also like to thank to the CharacterFX development 
team for providing a character model and animation 
software. 

7. REFERENCES 
[Ebe01] Eberly, D. 3D Game Engine Design. 2001 
[Kal98] Kalra, P., Magnenat Thalmann, N., 

Moccozet, L., Sannier, G., Aubel, A., Thalmann, 
D. Real-time Animation of Realistic Virtual 
Humans. IEEE Computer Graphics and 
Applications,Vol.18, No.5, pp.42-55, 1998 

[Lan98] Lander, J. Skin Them Bones: Game 
Programming for the Web Generation. Game 
Developer Magazine, pp. 11-16, May 1998 

[Lan99] Lander, J. Over My Dead, Polygonal Body. 
Game Developer Magazine, pp. 17-22, Oct 1999 

[Por01] Porter, B. Skeletal Animation Tutorial. 
PortaLib3D, http://rsn.gamedev.net, Feb 2001 

[Web00] Weber, J. Run-Time Skin Deformation. 
Intel Architecture Labs, 2000

 

Figure 11.  Real-life posture: a) vertex blending, 
b) bones deformation with 1:4 subdivision 

a)

b)

 

Figure 10. Application: Virtual Fencing 


