
Eurographics Symposium on Rendering (2005)
Kavita Bala, Philip Dutré (Editors)

Radiance Cache Splatting:
A GPU-Friendly Global Illumination Algorithm

Submission ID: paper1133

Abstract
Fast global illumination computation is a challenge in several fields such as lighting simulation and computer-
generated visual effects for movies. To this end, the irradiance caching algorithm is commonly used since it pro-
vides high-quality rendering in a reasonable time. However this algorithm relies on a spatial data structure in
which nearest-neighbors queries and data insertions are performed alternately within a single rendering step.
Due to this central and permanently modified data structure, irradiance caching algorithm cannot be easily im-
plemented on graphics hardware. This paper proposes a novel approach to global illumination using irradiance
and radiance cache: the radiance cache splatting. This method directly meets the processing constraints of graph-
ics hardware since it avoids the need of complex data structure and algorithms. Moreover, the rendering quality
remains identical to classical irradiance and radiance caching. Our renderer shows an implementation of our
algorithm which provides a significant speedup compared to classical irradiance caching.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism - Rendering, Global Illumination

1. Introduction

The aim of global illumination computation is to simulate
multiple interreflections of light in a scene.As computers
become more and more powerful, high-quality global illu-
mination computation gets employed in a growing number
of fields, such as architectural design, cinema and video
games. Generally, the computation is performed using ray
tracing and Monte Carlo sampling, and is very costly. A
number of methods have been proposed to reduce the com-
putational cost of global illumination. Several approaches
have been proposed to render globally illuminated scenes
in real-time, such as [WBS03, GWS04, TPWG02, WS99].
However, interactive methods based on ray tracing rely on
parallel processing using several computers to maintain a
reasonable frame rate. An efficient approach to global il-
lumination using ray tracing is the irradiance and radiance
caching [WRC88,KGPB05]. The irradiance caching method
is being employed for architectural design using the Radi-
ance software [War04, War94].

In this paper, we propose a new method for irradiance
and radiance caching which leverages graphics hardware
and computes global illumination at a time order of magni-
tude faster than currently available caching-based methods.
As shown in [TL04], first bounce global illumination takes

Figure 1: The Castle scene (58K triangles) illuminated by
an environment map. Our renderer computes first-bounce
glossy global illumination in 10.1 s at resolution 1000×
1000.

c© The Eurographics Association 2005.



paper1133 / Radiance Cache Splatting:A GPU-Friendly Global Illumination Algorithm

into account most of the light transfer in a scene, and pro-
vides realistic results in most cases. Moreover, Tabellion et
al. [TL04] show that a coarsely tesselated scene is sufficient
to compute an accurate indirect component of the global illu-
mination solution. Therefore, this paper focuses on the com-
putation of first bounce global illumination in moderately
complex scenes.

We reformulate the irradiance and radiance caching al-
gorithms by defining a fast image-space method based on
splatting. This method makes an extensive use of graphics
hardware and can be used for fast, high quality rendering or
interactive visualization of globally illuminated scenes. Un-
like [PBMH02, PDC∗03], we avoid the need of represent-
ing and traversing complex data structures on the Graphics
Processing Unit (GPU).

This paper is organized as follows: Section 2 presents
previous techniques used for fast global illumination using
graphics hardware. After an overview of the irradiance and
radiance caching algorithms in Section 3, Section 4 presents
our rendering algorithm. Section 5 details the implementa-
tion of our GPU-based renderer, and Section 6 discusses the
results obtained with our algorithm in both high-quality ren-
dering and interactive walkthroughs.

2. Related Work

Much research has been done in GPU-accelerated global il-
lumination computation during the past years. This section
describes related GPU-based global illumination algorithms.

Radiosity [GTGB84] is a classical method for global il-
lumination computation. This approach is based on the cal-
culation of energy transfer between all surface elements in a
scene. Therefore, many visibility tests are required to per-
form an accurate computation, making this method very
costly. Many attempts to hardware acceleration for radios-
ity have been developed in the last decades. Among them
the hemi-cube approach [CG85, SP89] uses graphics hard-
ware to identify the patches visible from a given patch in
the scene. More recently, [CHL04] and [CHH03] propose
methods for GPU-based radiosity. The former relies on tex-
turing and visibility testing, whereas the latter uses the GPU
to process the radiosity matrix.

The method described in [TPWG02] makes use of graph-
ics hardware to display the results of global illumination
computation at interactive rates. In this approach, the scene
is adaptively tesselated, and the incoming radiance is com-
puted for each vertex using parallel ray tracing. Unlike in our
method, the GPU is only used for interpolating the incoming
radiance across triangles using Gouraud shading. Unfortu-
nately, high quality rendering requires to tesselate each sur-
face into many triangles, yielding performance drop. More-
over, this method focuses only on interactive visualization:
the rendering time for high quality global illumination is not
improved by this approach.

In [NPG04, NPG03], Nijasure et al. propose a method for
non diffuse global illumination computation using graph-
ics hardware. The incoming radiance function at a num-
ber of locations a priori selected is sampled and projected
into the spherical harmonics basis. Then the incoming ra-
diance at any surface point is estimated by interpolating
the incoming radiance at nearby sample locations. Although
the authors demonstrate real-time performance, the main
drawback of this method is the choice of sample points.
In [NPG04,NPG03] these points are placed on a regular grid
inside the volume of the scene, therefore not adapting to the
lighting complexity.

In the Precomputed Radiance Transfer (PRT) approaches,
the radiance transfer between surfaces of an object is pre-
computed offline and represented using spherical harmon-
ics [SKS02,SHHS03] or wavelets [LSSS04,WTL04]. Using
this precomputed information, the global illumination solu-
tion can be computed and displayed at interactive rates us-
ing the GPU. Although the PRT approaches allow real-time,
high quality relighting, they rely on a costly precomputation
which prevents from using them easily in complex dynamic
scenes.

Wand and Stasser [WS03] describe a GPU-based method
for real-time caustics computation. This algorithm relies on
the selection of sample points on glossy surfaces. Each sam-
ple point is considered as a pinhole camera that projects
the incoming light on diffuse receiver surfaces. This method
handles several dynamic light sources and objects at interac-
tive rates, but speed drops quickly as quality improves.

Several attempts have been made to compute global illu-
mination using GPU-based ray tracing. These methods rely
on the versatility of programmable graphics hardware and
use fragment shaders to perform ray-primitive intersections
[CHH02, PBMH02]. The work described in [PBMH02] has
been extended to photon map [Jen01] rendering [PDC∗03].
In addition, another photon map rendering method is pre-
sented in [MM02]. Those approaches suffer from the same
drawback: the GPU architecture does not allow to han-
dle complex data structures such as trees, which are com-
monly used in ray tracing optimization and photon map stor-
age. Therefore, the photon map is stored in a regular grid
[PDC∗03], or in a costly hash table [MM02]. The related
nearest-neighbors queries have been simplified to meet the
data structure and GPU constraints, yielding quality or per-
formance drop.

Three other approaches for GPU-accelerated photon map
rendering have been proposed. Larsen et al. [LC04] use
graphics hardware to perform the costly final gathering: the
photon map is built on the Central Processing Unit (CPU)
using the classical method defined in [Jen01]. For each sur-
face, an “approximate illumination map” is built using the
data contained in the photon map. The GPU is used to per-
form final gathering and caustics filtering. In this paper, we
take advantage of this approach to accelerate global illu-

c© The Eurographics Association 2005.



paper1133 / Radiance Cache Splatting:A GPU-Friendly Global Illumination Algorithm

mination computation. The approaches presented in [SB97]
and [LP03] use the GPU for irradiance reconstruction: each
photon is rendered as a textured quadrilateral. The corre-
sponding texture represents the kernel function for the pho-
ton. Although those methods show encouraging results, they
are bounded by the large number of photons required to ren-
der a high quality image.

Besides hardware acceleration, many other methods have
been proposed to speed up global illumination computa-
tion. Among them, the approaches based on the storage
and the interpolation of incoming radiance provide fast and
accurate results. Such methods include the photon maps
[Jen01] and the shading cache [TPWG02]. The irradiance
caching [WRC88] provides a fast and accurate way of com-
puting indirect diffuse interreflexions. [KGPB05] proposes
the radiance caching, an extension of irradiance caching
for the computation of indirect glossy lighting. This latter
uses hemispherical harmonics [GKPB04] to represent the in-
coming radiance function and account for view-dependent
BRDFs.

The method proposed in this paper reformulates the irra-
diance and radiance caching algorithms to allow an easy and
efficient GPU implementation.

3. Irradiance and Radiance Caching Overview

Due to the similarity between irradiance and radiance
caching, we refer to these algorithms as (ir)radiance caching
in the remainder of this document. The (ir)radiance caching
algorithms are based on the following observation: "the in-
direct illuminance tends to change slowly over a surface"
[WRC88]. Therefore, these methods exploit spatial coher-
ence by sparsely sampling and interpolating indirect incom-
ing radiance. For each sample point, an (ir)radiance record
stores the sampled incoming radiance. The records are stored
in the (ir)radiance cache. If a point p in the scene is sur-
rounded with a set of (ir)radiance records Sr, the indirect
incoming lighting at point p, E(p), can be estimated by
Eq. (1) [WRC88].

E(p) =
∑k∈Sr

wk(p)Ek

∑k∈Sr
wk(p)

(1)

where Ek is the computed incoming lighting at p and wk(p)
is the weighting function of record k evaluated at p (see
the next section for the definition of wk). In the case of ir-
radiance cache, E(p) represents the irradiance at point p.
For radiance cache, E(p) stands for the incoming radiance
function. The record set Sr is computed by querying the
(ir)radiance cache. In order to optimize the rendering speed,
a spatial data structure such as an octree is used to rep-
resent the (ir)radiance cache. More details on (ir)radiance
caching and incoming radiance interpolation can be found
in [WH92, War94, KGPB05, KGBP05].

4. Our Algorithm

In this paper, our aim is to reformulate the (ir)radiance
caching algorithm to take advantage of the GPU computing
power for first-bounce global illumination. The GPUs are
SIMD (Single Instruction Multiple Data) processors. Such
processors cannot handle efficiently complex data structures
such as octrees. Therefore, we propose a fast rendering al-
gorithm which avoids the need for nearest-neighbors queries
and spatial data structures in the (ir)radiance caching. More-
over this approach aims at reducing the CPU workload by
performing most of the computation on the GPU. The core
of our approach is the radiance cache splatting, which de-
termines the contribution of each record to the indirect light-
ing of visible objects. The radiance cache splatting and the
whole rendering algorithm are described hereafter. For the
sake of clarity, our algorithm is first presented in the case
of irradiance caching. If necessary, specific details about the
extension to radiance caching are given at the end of each
subsection.

4.1. Radiance Cache Splatting

As described in Section 3, the irradiance caching algorithm
relies on the computation and the interpolation of irradiance
records. For a point visible through a pixel, the irradiance
caching determines which records contribute to the indirect
lighting of this point. The radiance cache splatting uses the
opposite approach: for a given record, our algorithm de-
termines which visible points it contributes to by splatting
the record on the image plane. The result of radiance cache
splatting is stored in the radiance splat buffer, which has the
same size as the frame buffer. Each pixel SPLAT BUFF(x,y)
of the radiance splat buffer is a pair (Lo,w), where Lo is the
sum of the weighted contribution of each record, and w is
the cumulated weight.

As described above, the radiance cache splatting (Algo-
rithm 1) is designed for the computation of the contribu-
tion of an irradiance record to the indirect lighting of vis-
ible points. Our approach is based on the equation used in
the irradiance caching interpolation scheme (Eq. (1)). The
weight allocated to record k at point p with normal n is de-
fined in [WRC88] as:

wk(p) =
1

‖p−pk‖
Rk

+
√

1−n ·nk

(2)

where pk, nk and Rk are respectively the location of record
k, its normal and the harmonic mean distance to the objects
visible from pk. The user-defined value a represents the ac-
curacy of the computation. This value is used to threshold
the weighting function: record k contributes to the estimate
of the outgoing radiance at point p if and only if

wk(p)≥ 1
a

(3)

Substituting Eq. (3) into Eq. (2) and assuming n = nk, one

c© The Eurographics Association 2005.



paper1133 / Radiance Cache Splatting:A GPU-Friendly Global Illumination Algorithm

can see that record k can contribute to the estimate of the
outgoing radiance at point p only if:

‖p−pk‖ ≤ aRk (4)

Therefore, Eq. (4) guarantees that a record k cannot con-
tribute to the outgoing radiance of a point outside a sphere Ik
centered at pk, with radius rk = aRk.

Algorithm 1 Radiance cache splatting
Let k = {pk,nk,Ek,Rk} be the considered record
Determine the bounding box of Ik on the image plane
for all pixel P(x,y) = {p,n,ρd} in the bounding box do

// Evaluate weighting function at p
w = 1

‖p−pk‖
Rk

+
√

(1−n·nk)

if w≥ 1
a then

//Compute the contribution of record k at point p
E′

k = Ek(1+nk×n ·∇r +(p−pk) · ∇t)
// Compute the outgoing radiance
Lo = ρdE′

k
// Accumulate into the radiance splat buffer
SPLAT BUFF(x,y).Lo+ = wLo
SPLAT BUFF(x,y).w+ = w

end if
end for

Given a camera, the radiance cache splatting splats the
sphere Ik onto the image plane (Figure 2). The weighting

Figure 2: The sphere Ik around the position pk of the record
k is splatted on the image plane. For each point within the
sphere splat, the contribution of record k is accumulated into
the radiance splat buffer

function (Eq. (2)) is evaluated for each point visible through
pixels covered by Ik. Then, the weight is tested against the
accuracy value (Eq. (3)). For each pixel passing this test,
our algorithm computes the contribution of record k to the
outgoing radiance estimate.

The outgoing radiance contribution Lo to a point p as seen

through a pixel is obtained by evaluating the following inte-
gral:

Lo(p,ωo) =
Z

H
Li(p,ωi) f (ωo,ωi)cos(θi)dωi (5)

where ωi and ωo are respectively the incoming and outgo-
ing directions. Li(p,ωi) is the radiance incoming at p from
direction ωi. f (ωo,ωi) is the surface BRDF evaluated for
the directions ωi and ωo. In the case of irradiance caching,
we only consider diffuse interreflections. Therefore, Eq. (5)
simplifies to:

Lo(p) = ρd

Z
H

Li(p,ωi)cos(θi)dωi = ρdE(p) (6)

where ρd is the diffuse surface reflectance, and E(p) is the
irradiance at point p. Therefore, the contribution of record k
to the outgoing radiance at point p is

Lo = ρdE′
k(p) (7)

where E′
k(p) is the irradiance estimate of record k at point p.

This estimate is obtained using irradiance gradients:

E′
k = Ek(1+nk×n ·∇r +(p−pk) · ∇t) (8)

where ∇r and ∇t are respectively the rotational and trans-
lational gradients. The computation of irradiance gradients
is detailed in [WH92, KGBP05].

Extension to Radiance Caching The BRDFs of glossy sur-
faces are view-dependent. Therefore, Eqs. (6) and (8) cannot
be used in this case. As described in [KGPB05], both the
incoming radiance contribution and cosine-weighted BRDF
are represented using hemispherical harmonics. Due to the
basis functions orthonormality [GKPB04], Eq. (5) reduces
to:

Lo(p,ωo) =
Z

H
Li(p,ωi) f (ωo,ωi)cos(θi)dωi

=
n−1

∑
l=0

l

∑
m=−l

cm
l (ωout)λm

l
′(p) (9)

where l is the order of the projection used for BRDF and in-
coming radiance representation. cm

l and λ
m
l
′(p) are respec-

tively the projection coefficients of the BRDF and the pro-
jection coefficients of the incoming radiance of record k in-
terpolated at point p. As described in [KGPB05, KGBP05]
this estimate is obtained by applying translational gradients
to the incoming radiance stored in record k. Then, since the
local coordinate frames at points pk and p might differ, we
use hemispherical harmonics rotation to align the incoming
radiance estimate with the local frame at p. See [GKPB04]
and [KGPB05, KGBP05] for details about hemispherical
harmonics rotation and incoming radiance estimation.

Using the radiance cache splatting, the contribution of
a record to the outgoing radiance estimate at points visi-
ble from the current camera is computed independently of
other records. The outgoing radiance contribution of each
cache record is accumulated in the radiance splat buffer. The

c© The Eurographics Association 2005.



paper1133 / Radiance Cache Splatting:A GPU-Friendly Global Illumination Algorithm

Figure 3: The radiance cache splatting requires per-pixel
information about geometry and materials: the hit point, lo-
cal coordinate frame, and BRDF.

Figure 4: The irradiance cache filling process. The numbers
show the steps defined in Algorithm 2. Step 2′ is performed
after Step 2, and represents the data readback from GPU
to CPU memory. During this process, the irradiance cache
stored on the CPU is updated whereas the copy on the GPU
remains untouched.

process of generating the final image uses the contents of
the radiance splat buffer to display the global illumination
solution.

4.2. Indirect Lighting Rendering

The final indirect lighting image is generated in four main
steps (Algorithm 2). Given a camera, the first step consists in
obtaining per-pixel information about viewed objects: their
position, local coordinate frame and BRDF (Figure 3).

In the second and third steps, the rendering process de-
termines where new (ir)radiance records are necessary to
achieve the user-defined accuracy of indirect illumination
computation. In Step 2, each existing record (possibly com-
puted for previous frames) is splatted onto the splat buffer

Algorithm 2 Indirect lighting rendering
// Step 1
Generate geometric and reflectance data of objects viewed
through pixels (GPU)
Clear the splat buffer
// Step 2
for all cache records do

// The radiance cache is empty for the first image,
// and non empty for subsequent images
Algorithm 1: splat the records onto the radiance splat
buffer (GPU)

end for
// Step 3
for all pixels (x,y) in the radiance splat buffer do

if SPLAT BUFF(x,y).w < a then
Compute a new incoming radiance record at corre-
sponding hit point (GPU/CPU): see Section 5.2 for
technical details
Apply Algorithm 1: splat the new record (CPU)

end if
end for
// Step 4
for all cache records do

Apply Algorithm 1: splat all the newly generated
records (GPU)

end for
//Normalize the radiance splat buffer (GPU)
for all pixels (x,y) in the radiance splat buffer do

SPLAT BUFF(x,y).E/ = SPLAT BUFF(x,y).w
end for
Combine the radiance splat buffer with direct lighting
(GPU)

using the procedure described in Section 4.1. In Step 3, the
algorithm traverses the radiance splat buffer to determine
where new irradiance records are required to achieve the
user-defined accuracy. For each pixel (x,y) in the radiance
splat buffer, the cumulated weight is tested against the accu-
racy value a:

SPLAT BUFF(x,y).w < a (10)

If a pixel (x,y) passes this test, the existing cache records
are insufficient to achieve the required accuracy. Therefore,
a new record is generated at the location visible from pixel
(x,y), and is splatted by the CPU onto the radiance splat
buffer (Figure 4).

Once SPLAT BUFF(x,y) ≥ a for every pixel, the data
stored in the cache can be used to display the indirect illumi-
nation according to the accuracy constraint. At that time in
the algorithm, the irradiance cache stored on the CPU mem-
ory differs from the cache stored on the GPU: the copy on the
GPU represents the cache before the addition of the records
described above, while the copy on the CPU is up-to-date.

c© The Eurographics Association 2005.



paper1133 / Radiance Cache Splatting:A GPU-Friendly Global Illumination Algorithm

Figure 5: The final rendering task. The numbers show the
processing order described in the Step 3 and 4 of Algorithm
2.

The last rendering step is the generation of the final im-
age using the cache contents (Figure 5). The (ir)radiance
cache on the GPU is updated, then the radiance cache splat-
ting algorithm is applied on each newly generated cache
record. Hence the radiance splat buffer contains the cumu-
lated record weight and outgoing radiance contribution of all
the (ir)radiance records. Then, as described in Eq. (1), the
cumulated contribution of each pixel of the radiance splat
buffer is normalized, i.e. divided by the cumulated weight.
This process yields an image of the indirect lighting in the
scene from the current point of view. Combined with direct
lighting, this method generates a fast, high quality global il-
lumination solution.

As described above, our algorithm no longer relies on
complex data structure for cache record storage. Moreover,
the nearest-neighbors queries are replaced by simple sphere
splatting and weighting function evaluation. These proper-
ties make the radiance cache splatting well-suited for GPU
implementation.

5. Implementation

Our algorithm has been implemented using OpenGL and
the OpenGL Shading Language (GLSL). This section
gives technical information about the implementation of
(ir)radiance cache splatting. After detailing the overall ren-
dering algorithm, we discuss the use of GPU for (ir)radiance
records computation.

5.1. Rendering Algorithm

As shown in Figures 4 and 5, our rendering algorithm makes
intensive use of the GPU computational power. In this im-
plementation, we have chosen to rely on the basic capability

provided by graphics hardware: fast geometric primitive ras-
terization along with vertex and fragment processing. Hence
the data required by our algorithm (Figure 3) is generated by
rasterizing the scene geometry on the GPU using dedicated
shaders.

The (ir)radiance cache splatting can be performed either
using the GPU or the CPU. As described in 4.2, our im-
plementation uses both depending on the current context.
The (ir)radiance cache splatting on the GPU is performed by
drawing a quadrilateral tightly bounding the splatted sphere
on the image plane. The position and size of the quadrilat-
eral are computed using a vertex shader. Then, each frag-
ment is processed so that its value represents the record’s
weighted contribution. The fragment is accumulated in the
radiance splat buffer using the floating-point blending capa-
bilities provided by graphics hardware. The final normaliza-
tion (i.e. the division by the cumulated weight) is performed
using a fragment shader in an additional pass, for the final
display. The GPU implementation is either used to splat the
whole (ir)radiance cache before adding new records, or to
display the final image.

The traversal of the radiance splat buffer is performed
on the CPU. Consequently, the GPU-based splatting cannot
be used efficiently during the record addition step, since it
would require to read back the radiance splat buffer from
GPU memory once per added record. Hence our program
needs a CPU implementation of (ir)radiance cache splatting.
While this implementation is designed the same way as for
the GPU, Figure 3 shows that the (ir)radiance cache splat-
ting requires information about the visible objects. This in-
formation is computed on the GPU, then read back to the
CPU’s memory once per frame. The overhead introduced by
the data transfer from GPU to CPU turns out to be very small
when using PCI-Express hardware.

Once all necessary records are computed and splatted on
the radiance splat buffer, the final picture containing both di-
rect and indirect lighting has to be generated. In our imple-
mentation, the direct lighting computation is carried out by
the GPU: a fragment shader evaluates the BRDFs per-pixel,
while shadow maps [Wil78,BP04] are used to simulate shad-
owing effects. The normalization of the radiance splat buffer
and the combination with direct lighting is finally done in a
fragment shader before displaying.

5.2. Record computation

The incoming (ir)radiance associated with a record is gen-
erated using both CPU and GPU. As in [SP89, LC04], our
program uses the rasterization engine to sample the hemi-
sphere above each record position in order to compute the
incoming radiance and gradients. Since only about 80% of
the hemisphere are taken into account by this method, bor-
der pixels are extended so that they fill the remaining solid
angle (Figure 6). Hence the incoming radiance is considered

c© The Eurographics Association 2005.



paper1133 / Radiance Cache Splatting:A GPU-Friendly Global Illumination Algorithm

constant outside the sampling area, but this approximation
did not introduce noticeable artifacts in our test scenes. As
shown in [LC04] the irradiance is defined by a weighted sum
of the pixels of the sampling plane. This sum can be calcu-
lated either using the GPU and automatic mipmap genera-
tion [LC04] or using frame buffer readback and CPU-based
summation (Figure 7). Due to the high transfer rates pro-
vided by PCI-Express, CPU-based computation turned out
to be faster on the computer we used.

The same approach is used to compute the incoming ra-
diance function for radiance cache records. Instead of com-
puting the irradiance, we project the pixel values onto the
hemispherical harmonics basis using the CPU.

Figure 6: The hemisphere sampling is replaced by rasteriz-
ing the scene geometry on a sampling plane. Since this plane
does not cover the whole hemisphere, we use a border com-
pensation method to account for the missing directions. Bor-
der pixels are extended to avoid zero lighting coming from
grazing angles, yielding more plausible results.

Figure 7: New record computation process. The numbers
show the order in which the tasks are processed.

6. Results

This section discusses the results obtained using our imple-
mentation of radiance cache splatting. The images and tim-
ings presented here have been generated using an NVIDIA
Quadro FX 3400 PCI-E and a 3.6 GHz Pentium 4 CPU with
1 GB RAM.

6.1. Fast High Quality Rendering

In this section, our aim is non-interactive, high quality ren-
dering of global illumination. First, we compare the re-
sults obtained with our GPU-based renderer with the well-
known Radiance [War04] software in the context of irra-
diance caching. Second, we discuss the results of radiance
caching in glossy environments using our renderer.

We have compared the rendering speed of the Radi-
ance software and our renderer in diffuse environments: the
Sibenik Cathedral and the Sponza Atrium (Figure 8). The
images are rendered at a resolution of 1000×1000 and use a
64× 64 resolution for hemisphere rasterization. The results
are discussed hereafter, and summarized in Table 1.

a) Sibenik Cathedral This scene contains 80K triangles, and
is lit by two light sources. The image is rendered with
an accuracy parameter of 0.15. At the end of the render-
ing process, the irradiance cache contains 4076 irradiance
records. The radiance cache splatting on the GPU is per-
formed in 188 ms. The Radiance software rendered this
scene in 7 min 5 s while our renderer took 14.3 s, yield-
ing a speedup of about 30×. The accompanying video
SibenikHQ.avi shows a high-quality walkthrough in this
scene.

b) Sponza Atrium This scene contains 66K triangles and two
light sources. Using an accuracy of 0.1, this image is gen-
erated in 13.71 s using 4123 irradiance records. These
records are splatted on the GPU in 242.5 ms. Using the
Radiance software with the same parameters, a compara-
ble image is obtained in 10 min 45 s. In this scene, our
renderer proves about 47× faster than the Radiance soft-
ware.

Sibenik Sponza

Triangles 80K 66K
Accuracy 0.15 0.1
Radiance time (s) 425 645
Our renderer time (s) 14.3 13.7
Speedup 29.7 47.1

Table 1: Rendering times obtained using Radiance and our
renderer for high quality rendering in diffuse environments.
Each image is rendered at resolution 1000×1000.

Our renderer also contains an implementation of radiance
caching, hence supporting the computation of global illumi-
nation in glossy environments. If the environment also con-
tains diffuse surfaces, our renderer uses either radiance or
irradiance caching depending on the considered surface.

The Cornell Box scene presented in Figure 8(c) contains
a glossy back wall (Phong BRDF, exponent 20), while the
other objects are diffuse. The glossy BRDF and incoming
radiance function are projected into the hemispherical basis

c© The Eurographics Association 2005.



paper1133 / Radiance Cache Splatting:A GPU-Friendly Global Illumination Algorithm

using order 10 representation. The accuracy parameters are
0.25 for both radiance and irradiance caching. Figure 8(c)
was rendered in 12.18 s using 3023 irradiance records and
869 radiance records. The GPU-based splatting for the irra-
diance cache is performed in 65.91 ms. The radiance cache
is splatted in 935.5 ms.

Figure 1 shows an example of radiance cache splatting in
a more complex glossy environment: the Castle scene con-
tains about 57K triangles. In this scene, the glossiness of
the roofs is obtained using a Phong BRDF with exponent
15. The BRDF and incoming radiance functions are repre-
sented by order 5 projection on the hemispherical harmonics
basis. The accuracy parameter we used is 0.25 for irradi-
ance caching and 0.2 for radiance caching. At the end of the
rendering process, the irradiance and radiance cache respec-
tively contain 3204 and 1233 records, computed in 10.1 s.
The splatting on the GPU is performed in 58.6 ms for the
irradiance cache. The radiance cache records are splatted in
493.7 ms.

The results presented above show that our algorithm is
able to render fast high-quality glossy global illumination.
The simplicity of our algorithm also allows its use for pro-
gressive rendering in interactive applications.

6.2. Interactive Visualization of Global Illumination

An important aspect of (ir)radiance caching is that the val-
ues of the records do not depend on the viewpoint. There-
fore, records computed for a given frame can be reused in
subsequent frames. Hence the radiance cache splatting ap-
proach can also be used in the context of interactive visu-
alization of global illumination, and progressive rendering.
Since the direct lighting is computed independently, the user
can walk through the environment while the irradiance and
radiance caches are filled on the fly. Figure 9 shows sequen-
tial images of Sam scene (63K triangles) obtained during an
interactive session with an accuracy parameter of 0.5 and
resolution 512× 512. The global illumination is computed
progressively, by adding at most 100 new records per frame.
Our renderer provides an interactive frame rate (between 5
and 32 fps) during this session, allowing the user to move
even if the global illumination computation is not completed.
The accompanying videos presents interactive walkthroughs
in diffuse and glossy environments: Sam, the Sibenik Cathe-
dral and the Castle.

7. Conclusion and Future Work

In this paper, we proposed a reformulation of the (ir)radiance
caching algorithm, by defining the radiance cache splatting.
This method takes advantage of the latest graphics hardware
to perform both the computation of irradiance and radiance
records and the final rendering of global illumination. Our
renderer shows a speedup of more than 29× compared to the
Radiance software for high quality rendering. Moreover, we

show interactive performance for global illumination visu-
alization in moderately complex scenes. To our knowledge,
the radiance cache splatting is the first implementation of
irradiance and radiance caching using programmable graph-
ics hardware. We believe that our method could be integrated
into film production renderers for fast and accurate compu-
tation of indirect illumination.

In the future, we plan to extend this method in several di-
rections. Among them, some challenging improvements are
the support of multiple light bounces and higher frequency
BRDFs. Even if our method shows significantly faster re-
sults than previous approaches, high quality global illumina-
tion is still not computed interactively. Therefore, we would
also like to accelerate the rendering process to reach real-
time performance.

References

[BP04] BUNNELL M., PELLACINI F.: Shadow Map Antialiasing,
1 ed. Addison Wesley, Boston, MA, 2004, pp. 185–192.

[CG85] COHEN M., GREENBERG D. P.: The hemi-cube: A ra-
diosity solution for complex environments. In Proceedings of
SIGGRAPH (1985), vol. 19, pp. 31–40.

[CHH02] CARR N. A., HALL J. D., HART J. C.: The ray engine.
In Proceedings of SIGGRAPH/EUROGRAPHICS Workshop on
Graphics Hardware (2002), pp. 37–46.

[CHH03] CARR N. A., HALL J. D., HART J. C.: GPU algo-
rithms for radiosity and subsurface scattering. In Proceedings of
SIGGRAPH/EUROGRAPHICS Workshop on Graphics hardware
(2003), pp. 51–59.

[CHL04] COOMBE G., HARRIS M. J., LASTRA A.: Radiosity on
graphics hardware. In Proceedings of the Conference on Graph-
ics Interface (2004), pp. 161–168.

[GKPB04] GAUTRON P., KŘIVÁNEK J., PATTANAIK S., BOUA-
TOUCH K.: A novel hemispherical basis for accurate and effi-
cient rendering. In Proceedings of Eurographics Symposium on
Rendering (2004), pp. 321–330.

[GTGB84] GORAL C. M., TORRANCE K. E., GREENBERG

D. P., BATTAILE B.: Modelling the interaction of light between
diffuse surfaces. In Proceedings of SIGGRAPH (1984), vol. 18,
pp. 212–222.

[GWS04] GUENTHER J., WALD I., SLUSALLEK P.: Realtime
caustics using distributed photon mapping. In Proceedings of
Eurographics Symposium on Rendering (2004), pp. 111–121.

[Jen01] JENSEN H. W.: Realistic Image Synthesis Using Photon
Mapping. AK Peters, July 2001.

[KGBP05] KŘIVÁNEK J., GAUTRON P., BOUATOUCH K., PAT-
TANAIK S.: Improved radiance gradients computation. Submitted
for publication (2005).

[KGPB05] KŘIVÁNEK J., GAUTRON P., PATTANAIK S., BOUA-
TOUCH K.: Radiance caching for efficient global illumination
computation. To appear in IEEE Transactions on Visualization
and Computer Graphics (2005).

[LC04] LARSEN B. D., CHRISTENSEN N.: Simulating photon
mapping for real-time applications. In Proceedings of Euro-
graphics Symposium on Rendering (2004).

[LP03] LAVIGNOTTE F., PAULIN M.: Scalable photon splatting
for global illumination. In Proceedings of GRAPHITE (2003).

[LSSS04] LIU X., SLOAN P.-P., SHUM H.-Y., SNYDER J.: All-

c© The Eurographics Association 2005.



paper1133 / Radiance Cache Splatting:A GPU-Friendly Global Illumination Algorithm

frequency precomputed radiance transfer for glossy objects. In
Proceedings of Eurographics Symposium on Rendering (2004),
pp. 337–344.

[MM02] MA V. C. H., MCCOOL M. D.: Low latency pho-
ton mapping using block hashing. In Proceedings of SIG-
GRAPH/Eurographics Workshop on Graphics Hardware (2002).

[NPG03] NIJASURE M., PATTANAIK S., GOEL V.: Interactive
global illumination in dynamic environments using commodity
graphics hardware. In Proceedings of Pacific Graphics (2003).

[NPG04] NIJASURE M., PATTANAIK S., GOEL V.: Real-time
global illumination on the GPU. To appear in Journal of Graph-
ics Tools (2004).

[PBMH02] PURCELL T. J., BUCK I., MARK W. R., HANRAHAN

P.: Ray tracing on programmable graphics hardware. Proceed-
ings of SIGGRAPH (2002), 703–712.

[PDC∗03] PURCELL T. J., DONNER C., CAMMARANO M.,
JENSEN H. W., HANRAHAN P.: Photon mapping on program-
mable graphics hardware. In Proceedings of Graphics Hardware
(2003), pp. 41–50.

[SB97] STURZLINGER W., BASTOS R.: Interactive rendering of
globally illuminated glossy scenes. In Proceedings of Eurograph-
ics Workshop on Rendering (1997), pp. 93–102.

[SHHS03] SLOAN P.-P., HALL J., HART J., SNYDER J.: Clus-
tered principal components analysis for precomputed radiance
transfer. In Proceedings of SIGGRAPH (2003).

[SKS02] SLOAN P.-P., KAUTZ J., SNYDER J.: Precomputed
radiance transfer for real-time rendering in dynamic, low-
frequency lighting environments. Proceedings of SIGGRAPH
(2002), 527–536.

[SP89] SILLION F., PUECH C.: A General Two-Pass Method
Integrating Specular and Diffuse Reflection. In Proceedings of
SIGGRAPH (1989), vol. 23, pp. 335–344.

[TL04] TABELLION E., LAMORLETTE A.: An approximate
global illumination system for computer generated films. In Pro-
ceedings of SIGGRAPH (2004), ACM Press, pp. 469–476.

[TPWG02] TOLE P., PELLACINI F., WALTER B., GREENBERG

D. P.: Interactive global illumination in dynamic scenes. In Pro-
ceedings of SIGGRAPH (2002), pp. 537–546.

[War94] WARD G. J.: The Radiance lighting simulation and ren-
dering system. In Proceedings of SIGGRAPH (1994), pp. 459–
472.

[War04] WARD G. J.: Radiance Synthetic Imaging System.
http://radsite.lbl.gov/radiance, 2004.

[WBS03] WALD I., BENTHIN C., SLUSALLEK P.: Interactive
global illumination in complex and highly occluded environ-
ments. In Proceedings of Eurographics Symposium on Rendering
(2003).

[WH92] WARD G. J., HECKBERT P. S.: Irradiance gradients. In
Proceedings of Eurographics Workshop on Rendering (1992).

[Wil78] WILLIAMS L.: Casting curved shadows on curved sur-
faces. In Proceedings of SIGGRAPH (1978), pp. 270–274.

[WRC88] WARD G. J., RUBINSTEIN F. M., CLEAR R. D.: A
ray tracing solution for diffuse interreflection. In Proceedings of
SIGGRAPH (1988), pp. 85–92.

[WS99] WARD G., SIMMONS M.: The holodeck ray cache: an
interactive rendering system for global illumination in nondiffuse
environments. ACM Trans. Graph. 18, 4 (1999), 361–368.

[WS03] WAND M., STASSER W.: Real-time caustics. Proceed-
ings of Eurographics (2003).

[WTL04] WANG R., TRAN J., LUEBKE D.: All-frequency re-
lighting of non-diffuse objects using separable brdf approxima-

tion. In Proceedings of Eurographics Symposium on Rendering
(2004).

c© The Eurographics Association 2005.



paper1133 / Radiance Cache Splatting:A GPU-Friendly Global Illumination Algorithm

(a) Sibenik Cathedral

(b) Sponza Atrium

(c) Cornell Box

Figure 8: Images obtained with our renderer. The Sibenik
Cathedral (80K triangles) and Sponza Atrium (66K trian-
gles) contain only diffuse surfaces. The Cornell Box (1K tri-
angles) contains a glossy back wall.

(a) Frame 0 (b) Frame 7

(c) Frame 11 (d) Frame 14

Figure 9: A progressive rendering session for interactive vi-
sualization of the Sam scene (63K triangles). Our renderer
computes at most 100 new records per frame, hence main-
taining an interactive frame rate (5 fps) during the global il-
lumination computation. When the (ir)radiance cache is full,
the global illumination solution is displayed at 32 fps.

c© The Eurographics Association 2005.


