Jiri Zara

Czech Technical University in
Prague

Karlovo Nam. 13

121 35 Praha 2

Czech Republic

Presence, Vol. 15, No. 3, June 2006, 262-277
© 2006 by the Massachusetts Institute of Technology

Web-Based Historical City Walks:
Advances and Bottlienecks

Abstract

This paper deals with a set of useful methods for presenting large-scale models of
real cities in a web environment. While acquisition issues are outlined only briefly,
this study focuses on the optimal organization of city models and efficient rendering
techniques. We also address data optimization for real-time delivery. The methods
under discussion are illustrated by examples taken from several existing web pre-
sentations developed by our students, especially from the Virtual Old Prague
project. Although the principles are general, specific attention is paid to the use of
standards developed by the Web3D Consortium.

1 Introduction

Visualization of existing cities is a problem that bridges two different re-
search areas—Computer Vision and Computer Graphics. Due to the complex-
ity and diversity of cities around the world, especially historical cities, it is a
challenging task to develop efficient acquisition, storing, transfer, and presen-
tation algorithms. In this paper, we concentrate on a specific area—web-based
presentation. We focus on a smooth walk through a large-scale 3D urban envi-
ronment in real time, using standard technologies (Virtual Reality Modeling
Language). Limitations due to the web environment are discussed, and ways
to overcome them are shown in Section 2. Section 3 introduces specific fea-
tures of web-based 3D graphics applications. Data structures for large city
models are discussed in Section 4. Implementation issues on the client side are

presented in Section 5. Open problems are listed in Section 6.

2 Related Work

Currently, much attention is being paid to the automatic reconstruction
of city models. Since we have to model existing inhabited areas, various ap-
proaches utilize photographs. The general city layout is usually reconstructed
using aerial images, possibly combined with GIS (Geographic Information Sys-
tem) data (Collins et al., 1998; Kunii & Chikatsu, 2003). This typically results
in a model of a terrain covered by houses with a block geometry and roofs of
simple shape (Moons, Frere, Vandekerckhove, & Van Gool, 1998). Planar

*Correspondence to zara@fel.cvut.cz

262 PRESENCE: VOLUME 5, NUMBER 3

Zara 263

areas such as streets and simple roofs can be covered by
textures obtained directly from aerial images, while the
reconstruction of a 3D facade requires an additional and
generally a much greater effort in terms of acquisition
and processing time. Several technical approaches can
be identified, including a non-calibrated camera (Koch,
Pollefeys, & Van Gool, 2000), stereo photography, con-
tinuous video recording (Zheng & Tsuji, 1998; Zheng &
Shi, 2003), and a laser scanner in combination with
GPS (Global Positioning System) devices. A representa-
tive example is the MIT City Scanning Project (Coorg
& Teller, 1999), which enables automatic modeling of a
large urban environment.

Models obtained from images often belong to one of
two extremes. The buildings are either constructed from
simple planar (textured) facades only, or they consist of
a large number of unorganized triangular meshes. The
optimal model complexity for real-time presentations
lies somewhere between these extremes, that is, individ-
ual houses should contain from tens to hundreds of tex-
tured polygons, preferably structured into levels of de-
tail (LOD). The creation of such models requires
slower, interactive work to find geometrical architectural
elements (Taylor, Debevec, & Malik, 1996). The pio-
neering commercial software was Canoma by MetaCre-
ations, unfortunately no longer supported. A promising
approach for future studies seems to be knowledge-
based reconstruction from images, where typical ele-
ments such as windows, balconies or arcs can be effi-
ciently found and marked (Zlatanova & van den
Heuvel, 2002).

To conclude the overview of 3D reconstruction tech-
niques, a curious issue concerning visual obstacles
should be mentioned here. Obstacles such as trees,
street lamps, traffic lights, cars, and people represent a
fundamental complication for many reconstruction al-
gorithms. Such objects have to be removed (automati-
cally or manually) in the reconstruction phase, but fi-
nally they should be added back to the model to
improve the natural look of the city.

While 3D reconstruction of large urban sites is still a
subject of a research, real-time visualization of 3D
models is much more elaborated upon (Slater, Steed, &
Chrysanthou, 2002). The most useful principles include

the utilization of levels of details (both in the geometri-
cal and in the texturing meaning), culling, visibility pre-
processing (either general, see Durand, 2000, or specific
to the urban environment, see Bittner, Wonka, & Wim-
mer, 2001), and impostors (Sillion, Drettakis, & Bode-
let, 1997; Decoret, Schaufler, Sillion, & Dorsey, 1999)
replacing more distant objects and a complex back-
ground. Even for a distributed environment like the
web, many computer graphics algorithms have been
created /adopted, for example, mesh streaming (Hoppe,
1996). On the other hand, web-based graphics is still
considered as a tool for presentation of single objects
(e.g., in e-commerce), and thus real-time visualization
of large-scale city models has not yet been fully solved.
The traditional trade-off between speed and quality of
rendering is complicated by the fact that the model is
stored in a distant computer—a web server.

Two main approaches are currently used for city pre-
sentations on the web—image based and model based
rendering. Image based methods directly utilize photo-
graphs, thus achieving a high quality of rendering. A
typical example is QuickTime VR technology, where
cylindrical panoramic views represent the virtual envi-
ronment around a user. It is suitable for open areas like
town squares, hills, and so forth. Narrow and curved
streets, typical for medieval cities, do not fit well into
the cylindrical shape of a panorama, thus a sequence of
several neighboring panoramas with a small radius has
to be used. An interesting improvement suggested by
Zhyeang and Shi (2003) is called route panorama. It is
based on the creation of two linear panoramas, one for
the left view and one for the right view when walking
along a street. A special viewer merges these two pan-
oramas, using perspective projection, into a single im-
age. Background images at both ends of a street can
also be included. Regardless of the high speed and qual-
ity of panoramic images, dynamic and interactive behav-
ior is limited to hyperlinks associated to sensitive areas
only. It is difficult to include animated objects like trams
or people in panoramic views.

The second approach is the classical rendering of 3D
models. Virtual Reality Modeling Language (VRML) is a
representative technology designed especially for the
web. Although several competitive solutions exist, they

264 PRESENCE: VOLUME 5, NUMBER 3

(a) Computer Vision (b) Computational Geometry

Photos Geometry (3D)

Video = Meshes (3D)

GIS data Terrain (2,5D)
Textures (2D)

Web client

- Latii | L |

3D reconstruction Mesh simplification

(c) Databases (d) Networking (e) Computer Graphic

Data structures

]
-
L L L

Data transfer Visualization, GUI

Figure I. A general scheme of the processing of city data. Various areas of computer science participate in this complex but

challenging web application. While the data flow in the left part is unidirectional, interactive visualization requires two-way data transfer.

are either limited to a certain computing platform (e.g.,
SVR technology by Superscape) or they are designed for
presentation of an individual object (e.g., MetaStream
technology by Viewpoint) or specialized to an exces-
sively narrow geographical application area (e.g., DILAS
by GEONOVA). Due to the universality and complex
functionality of VRML (collision detection, terrain fol-
lowing, simulation based on event processing, scripting
with the use of external programming languages, etc.),
VRML browsers are generally considered to be very
slow in comparison with, for example, game engines.
This drawback will persist into the future, although the
Web3D Consortium has prepared a new version of a
language called X3D, which allows a layered design and
application specific profiles. Real-time navigation in a
well-modeled and richly-textured virtual city environ-
ment will always require many computing resources and
much data optimization.

The most difficult goal for a web city presentation is a
smooth walk through a large urban area. Most existing
web cities consist either of one big unstructured model
(which is hard to download quickly and render effi-
ciently), or of several independent smaller models con-
nected by hyperlinks only. When users move from one
such a part of a city to another part, newly downloaded
models usually fully replace the current 3D data like a
new HTML document replaces the previous one after a
hyperlink has been activated. This is more like teleporta-
tion of the user, rather than continuous movement in a
specific direction. While this behavior is naturally ac-
ceptable for text documents, it is undesirable for the
illusion of a walk through a 3D environment. A seam-

less visual presentation can be better achieved by contin-
uous processing of geometrical models rather than by a
panorama. The rest of the paper thus only concentrates
ways of rendering spatial geometrical models.

3 Web=-Based Visualization

The main parts for processing urban data are
shown in Figure 1. The difference between single com-
puter rendering and web-based visualization is depicted
using the filled areas in the figure. In a web environ-
ment, the following three components play specific
roles:

1. Web Server. The server is responsible for storing
data and transferring it to clients. Since it serves a
large number of web users, it does not provide
complex computations for individuals, but, in-
stead, simple tasks like selecting a piece of data
from a larger model, converting it to a specific
format (e.g., VRML), packing, and sending out.
A server typically does not hold any state informa-
tion about clients, thus all communication be-
tween a client and a server has to be designed as
stateless.

2. Web Client. The client deals with rendering and
interaction with a user. Due to the complexity of
city data, it does not render the whole model, but
only the neighboring area around the user’s ava-
tar. As the avatar moves in 3D space and interacts

Zara

265

Configure you on

FOTOH®RA

displayed as match the number of
sector geometries to be loaded.

- - e e e e e e . o
& @ \

u
11 Leads towards the Charles

1l Bridge; see photo on the right
11 {aken tooking from the bell

| 11 tower of the church of SLNicolas
11 in Mala Strana. The bridge was
11 actually known as the Prague
Bridge for most of its life until
late last century when it was
renamed the Charles Bridge
after King Charles IV,

Another view of the Charles
Bridge from up above. This time
the photo was taken from the
bridge tower on the Stare Mesto
side. You can see the Strahov

. Monastery on the lef, right on
top of the hill, and the Prague
Castle in the top right..

[Sinternet

Figure 2. A web page with a virtual city can contain several interactive components allowing synchronized multimedia

presentation. The example taken from the Virtual Old Prague project shows the three most important parts. (a) A 3D
scene window. (b) An HTML document. (c) A 2D navigation map.

with the model, the client generates requests for
new data from the server. Incoming (asynchro-
nous) data has to be recognized and seamlessly
added to the current presentation, thus creating
the illusion of a smooth walk through a whole city
in real time.

Network. Since the speed of data transfer varies
from tens of Kbits (phone lines) up to hundreds of
Mbits, it is difficult to tune the data size to a spe-
cific connection speed. Web-based city models
should be initially optimized for low speed con-
nection, with the possibility of enlarging the data
sizes (geometrical details, textures) for higher
speed connection. Here the LOD principle is very
useful, not only for optimizing the rendering, but

also for transferring the data. The web also enables
data transfer from a client to a server. This is typi-
cally used for sending simple data requests only,
and not for rich interactive work. Due to the time
delay that is characteristic of the network, interac-
tions between a user and a virtual city environ-
ment have to be performed primarily on the client
side.

Although our focus is on a 3D virtual environment
for city presentations, other ways to show a city on the
web should also be mentioned here. Since many users
are not familiar with 3D navigation, common web tech-
niques based on hyperlinks and/or sensitive 2D maps
are also useful. Figure 2 shows one such approach, cur-
rently available at http: //www.cgg.cvut.cz/vsp/, which

266 PRESENCE: VOLUME |5, NUMBER 3

uses a standard VRML technology for 3D data, com-
bined with a Java applet for synchronized movement of
a 2D avatar icon on a city map.

We should mention that only experts from the 3D
area and game players are able to navigate freely in 3D
space. We have been surprised to find that most users
do not expect to be able to walk through a city by drag-
ging a mouse in a particular direction. Instead, they
think of a 3D rendering window as an output only
screen where some animation can be seen. Such users
are able to control their virtual movement by pressing
buttons or moving sliders, rather than to directly navi-
gate through a 3D browser window. Although these
problems are beyond the scope of this paper, some sup-
port for old fashioned users should be taken into con-
sideration when designing a city web presentation. This
includes precalculated walks (guided tours), a sequence
of simply accessible viewpoints, sensitive areas for the
click-and-go navigation paradigm, or a search function
providing animated movement to a target place in a

city.

4 Data Structures for City Models

This section deals with data structures suitable for
describing a city and parts of a city. Due to the com-
plexity of a city environment, more than one data struc-
ture has to be used. On a macroscopic level, a city is
subdivided into smaller blocks with a view to efficient,
nonredundant data transfer through the web. Such city
subdivision techniques are described in Section 4.1. We
further concentrate on the most recognizable city ob-
jects—houses. They require special care in terms of geo-
metric description, texturing, and the level of detail uti-
lization. These issues are introduced in Section 4.2.

4.1 Subdividing City Spaces

Generally, cities have a hierarchical structure,
headed by districts (quarters) and continuing with
smaller elements like streets and then individual houses.
In addition to this logical tree arrangement, topological
information about street adjacency can be built in the

form of a planar graph. Other auxiliary data structures
coming from the area of Computer Graphics help to
increase the speed of rendering, utilizing k-d trees, oc-
trees, grids, bounding volume hierarchies, and so forth.
Individual visible parts of a city (geometry, textures) are
thus always extended by invisible additional structures
with a global character.

Web specific limitations influence the arrangement of
city data. When the city is to be large-scale, the initial
transfer of a global auxiliary data structure causes a big
delay before seeing any image on the client side. More-
over, users do not need to download the whole logical
structure of a city when enjoying a virtual walk around
one square only. The key issue is how to subdivide
both the 3D model and the corresponding auxiliary
speeding-up data structures into smaller data packages
suitable for transfer from server to client. Such data
packages should be of limited size, self-contained, and
have unique identification. A client should be able to
insert them easily into already downloaded parts and
connect them with other existing data structures.

A special requirement concerns visibility. In many
spatial applications, some kind of visibility is precom-
puted, thus minimizing the data to be transferred and
rendered for given users’ position(s). From-area visibil-
ity (called eye-to-cell visibility in Slater, Steed, & Chrys-
anthou, 2002) is very suitable for a city environment.
For every small region, a potentially visible set (PVS) is
computed and stored. The data packages should corre-
spond with the cells contained in the PVS sets.

From the programmer’s point of view, a grid seems
to be an appropriate structure for subdividing a city.
Since the city layout is planar, a two-dimensional grid is
sufficient for most cases. When large buildings require a
three-dimensional structure for processing interior parts,
a three-dimensional grid, a hierarchy of grids, or a com-
bination of a quadtree and an octree can be applied.
Each cell of a regular grid is easily identifiable and acces-
sible via indexing; connection between cells is straight-
forward. However, we recommend the use of a grid
only as an auxiliary structure, for example, for fast iden-
tification of a user’s position in a city but not as a pri-
mary subdivision technique. Few real cities are built on
strict geometrical rules (Lynch, 1960). The arrange-
ment of streets, squares, parks, rivers, and other parts

Zara 267

i

uq{mﬂiim;il!wummgmﬁﬁ

A & B

I
B

SECTOR
| s R

gate
facade

3D object

Figure 3. The sector is the basic data structure for a virtual city. House facades and

gates to other sectors enclose a polygonal ground with given elevation(s). Spatial objects

such as statues and street lamps are placed inside the sector area. The snapshot has
been taken from the MapEdit utility belonging to the Virtual Old Prague project.

does not fit into any orthogonal grid, especially in his-
torical cities. Moreover, the correlation between grid
cells and PVS sets is generally low. If a grid cell contains
several streets, nothing can be said about their mutual
visibility. A partially visible grid cell has to be transferred
as a whole. Using grid cells as basic data packages, too
much redundant (because invisible) data would be sent
through the net, thus delaying the transfer of other nec-
essary visible elements.

The city subdivision technique should follow the real
arrangement of the city elements. Since streets are natu-
ral and common objects when searching for city infor-
mation or walking in a city, we recommend that the
street be taken as the basic element for subdividing a
virtual city. However, long streets with several cross-
roads are not suitable for visibility preprocessing, thus
short street segments are used instead. We have de-
signed a data structure called a sector that has been suc-
cessfully employed in various virtual cities. The sector is
tightly related to street segments, but is not limited to
them. It can describe squares as well as interiors. A typi-
cal sector represents one street segment surrounded by
two opposite rows of houses and closed by crossroads at
both ends. While a simple crossroads will belong to one

of the adjacent street sectors, large crossroads and
squares are modeled by their own sectors. To keep the
data size per sector within limits, long street segments
or river banks are divided into a chain of sectors. A set
of sectors forms a city. The internal structure of a sector
is shown in Figure 3.

A sector holds the following information:

4.1.1 Unique ID. This serves to identify the us-
er’s position, and also for further connection with
neighboring sectors.

4.1.2 Ground. This is the surface on which the
avatar moves. It is represented by a polygonal area with
a given elevation, a height field, or a triangular mesh. It
can be further covered either by a simple texture or by a

real geometry, such as sidewalks, stairs, tram rails, etc.

4.1.3 Border Geometry. While the ground rep-
resents horizontal information, house facades placed on
the ground border constitute vertical parts of the sector.
All houses belonging to a given sector are considered as

a solid border geometry. A user cannot pass through

268 PRESENCE: VOLUME |5, NUMBER 3

them except in cases when a house door leads to an in-
terior, that is, to another sector.

4.1.4 Gates. An edge of the ground polygon
that is not occupied by a border geometry is called a
gate. It holds the ID of a neighboring sector, thus en-
abling it to be connected via its own corresponding
gate. A user can leave a given sector only through a
gate. A special case is the end of the whole city model,
where the gate is modeled as a solid face with a back-
ground image placed on it. Then the gate does not
serve as a passage but as an obstacle. Gates are impor-
tant not only for holding adjacency information among
sectors but also for visibility computations. The gate
represents a portal in the terminology of visibility pro-
cessing (Luebke & Georges, 1995), while the sector
represents a cell.

4.1.5 Standalone Objects. A sector area is usu-
ally enriched by additional spatial models. These include
a variety of static objects like trees, animated objects
(water fountains or moving trams), interactive objects
(street lamps to be switched on/off), sensitive objects
(signboards with hyperlinks leading to company web
sites), and so on.

4.1.6 Viewpoint List. Predefined camera posi-
tions are stored for real-time presentation.

4.1.7 List of Visible and Important Sectors
(Lvis). While gates are directly applicable for storing
adjacency information, precomputed visibility results are
stored in the Lwis list. This contains the IDs of sectors
potentially visible from a given sector. A more detailed
explanation follows below.

The Lyvis list is a special feature that holds important
information about visibility. This information is later
used both for speeding up the rendering and for loading
sectors in advance. To create the Lvis list, a visibility-
preprocessing algorithm based on cell-to-cell evaluation
has to be executed. Such algorithms mostly assume a
convex shape of a cell (sector area). To meet this re-
quirement for curved nonconvex streets, a convex hull
or even a simple bounding volume of the sector is a suf-

ficient alternative. If'a user walks on the ground, and
flying is not permitted, then the visibility problem can
be transformed from full 3D space into 2.5D or even
2D space only.

Originally, the Lvis list was designed as an equivalent
to PVS (potentially visible set). After testing practical
implementation in the Virtual Old Prague project, we
extended its functionality to make data reading/releas-
ing more efficient during rendering. We noticed that
users walking through a city tend to return repeatedly
to already visited squares and to other sectors character-
ized by valuable historical /architectural /artistic con-
tents. These special places were often removed from the
client memory as users left them and passed through a
narrow street. Soon, these sectors were again reloaded
when users returned via another street. Although the
cache of a web browser keeps the already downloaded
sectors and a full download from the server is not neces-
sary, the time for memory allocation and the insertion
of repeatedly read geometry into a scene graph is con-
siderable for real-time presentation. We decided to hold
such repeatedly visited sectors in memory as long as
possible. The solution was to add their IDs to the Lvis
lists of all sectors in a specific vicinity. It is for this rea-
son that Lvis stands for list of visible and important sec-
tors.

While visibility preprocessing is an automatic task, the
important sectors mentioned above have to be added to
Lvis manually. We consider this attention to important
sectors as a secondary activity for the fine-tuning of the
overall system performance. In most cases, the Lvis list
can be directly derived from the PVS resulting from a
visibility algorithm.

An interesting problem is the visual appearance of
gates. As they represent passages to neighboring sectors,
they are not solid but transparent. A user should see city
parts on a background through a gate. If such parts are
not yet loaded from the server, a predefined image can
be temporarily placed on a gate. This technique uses an
impostor and utilizes the idea of image-based rendering
in combination with classical rendering methods. To
make an impostor, we can utilize either photos taken
from a real city or images generated by the rendering of
the background geometry. The first method highlights

Zara 269

Figure 4. Impostors temporarily placed at sector gates improve the visual look. (a) An individual sector without any impostor. (b)

Impostor at a gate. (c) A neighboring sector was loaded and the original impostor removed. The house in the background has no

texture. This sequence of snapshots is a rather negative example, since the impostor was created using a photo taken from an

inappropriate position. Big differences and even quality degradation can be seen when snapshots (b) and (c) are compared.

Impostors should be made of images resulting from 3D models.

differences between a photo and a model (as seen in
Figure 4), but allows us to store the distant background
of the environment that is not stored in a city model,
for example, mountains, forests, and so forth. The sec-
ond method can be executed automatically for all gates.
A camera is usually placed at the most distant position
within a sector and oriented toward a gate. Since the
area of a sector is relatively small, visible errors like false
parallaxes are not significant when walking within a sec-
tor. Moreover, neighboring sectors soon replace the
nearest impostors. Newly loaded impostors belonging
to neighboring sectors are farther from the current us-
er’s position, so the illusion of depth emerges. Thanks
to the fine granularity of the subdivision of the city, and
the temporal character of gate impostors, one simple
planar face is sufficient for one impostor. This is differ-
ent from the method published by Sillion et al. (1997).
The authors replace the background geometry by sev-
eral faces with various depths. Since their city cells are
larger, the changes in the mutual positions of distant
buildings are more significant during a user’s walk. In
fact, they create a special geometrical level of detail re-
placing the background geometry.

Although impostors placed at gates solve many prob-
lems of missing, that is, not yet downloaded geometry,
they have certain limitations. A sector representing an

open area (a meadow in a park, a hilltop, etc.) should be
surrounded by gate impostors only. Due to the polygo-
nal shape of a sector ground, perspective errors and
cracks can arise on the vertical edges of gate impostors.
A panoramic background and image-based rendering
would be welcome. Unfortunately, we have not met a
system where a mixture of geometrical data and a pan-
oramic background would be seamlessly merged and
rendered. We would like to point out that parts of the
background have to be replaced by geometrical models
as the user walks in a specific direction.

Another problem arises when users want to fly over a
city. Although this is definitely not a usual way for tour-
ists do their sightseeing tours, the possibility of flying in
virtual space is highly attractive. Unfortunately, a flyover
requires almost all city data to be available, which is not
the case for web-based city presentations. Since very
large parts of a city are visible from the air, the visibility
preprocessing that is suitable for streets, that is, PVS
based on sectors, is not usable for this task. Instead, the
LOD principle plays a more important role.

A combination of simplified house models viewed
from the air and a terrain covered by multi-resolution
textures can be utilized. This approach is partially sup-
ported, for example by the GeoLOD node in the
GeoVRML /X3D standard specification, where the ter-

270 PRESENCE: VOLUME 5, NUMBER 3

rain is represented by a quadtree structure. In our opin-
ion, a fast and believable flight over a virtual city using
web browsers will remain a dream for many years. Cur-
rent standard technologies constrain virtual visitors to
be bound to the ground. On the other hand, the ever-
increasing performance of graphics cards and especially a
very high bandwidth allowing fast streaming of geomet-
rical and texture data are promising conditions to enable
web users to fly in a large-scale virtual environment.

In summary, we propose a city model consisting of an
unordered list of sectors. This linear arrangement is very
suitable for databases storing an arbitrary city descrip-
tion. Adjacency information can be directly obtained
from the sector data via unique sector IDs. If the city
model grows as time passes, new sectors can be naturally
added to an existing database. Furthermore, this model
is highly scaleable. The sector definition fulfills all the
criteria specified at the beginning of this section. The
sector is a self-contained data entity that can be individ-
ually transferred and rendered. Lvis lists allow further
sectors to be loaded. Dynamic sector management is
described in Section 5.1.

4.2 House Structures

Great efforts have been made in research on the
automatic reconstruction of buildings, but still no handy
solutions are available. Triangular meshes generated from
images are too large and unorganized, while web visualiza-
tion requires almost the opposite kind of data—small and
well structured. Most virtual cities currently available
on the web were not automatically reconstructed, but
were created manually or semi-automatically. Models
of houses are typically converted from CAD drawings
(if available) or created using programs for modeling. A
widely used commercial modeler is the 3D Studio Max,
from which the data can be exported to various formats.
To ensure a certain structure for a house, a specialized
program is better than a general modeler. The following
text explains the advantage of specialized tools, particu-
larly when a model has to be transferred through the
web in several levels of detail (LOD).

Most methods for generating LODs take one initial
mesh as an input and create simplified meshes upon

various decimation criteria. This works well for a sin-
gle complex object like a statue or a highly detailed
relief facade. On the other hand, it fails for the case
of a city consisting of hundreds of houses, that is,
hundreds of potential meshes. A common simplifica-
tion of several houses would cause visible errors due
to facades and roofs merging into nonexisting faces.
Simplification of individual buildings with a low com-
putational effort is required. Instead of progressive
LOD representations, several discrete models per
house suffice.

We have proposed a four-step LOD representation
called Urban LOD (Zara et al., 2001). It is based on
the idea of visual importance. Optimization of the data
flow also takes into account human perception. Two
most recognizable features of a house have been identi-
fied—an outline of the facade, and the windows/doors.
A combination of geometry and textures is then ar-
ranged into four discrete LODs. This principle has been
successfully used in the Virtual Old Prague project.
Based on our experience, we have slightly changed the
third LOD representation and redesigned the fourth
level. While the original proposal assumed an arbitrary
3D model for the fourth level, we prefer a model that is
semi automatically created from previous LODs. The
result is shown in Figure 5.

The simplest model consists of a few faces (facades
and roofs) filled by solid colors. This is similar to block
models automatically reconstructed from aerial images
or GIS systems. A house silhouette is the main feature
visible in this model. The second LOD representation
concentrates on visually important parts of a facade.
These are usually windows, doors, arcades, or frescos.
They can be directly added to the previous LOD in the
form of textured polygons placed in front of a facade.
As these architectural /artistic objects are often repeat-
edly arranged along a house, the same texture can be
duplicated (translated and even scaled), thus saving
both time for transfer and the size of the texture mem-
ory in a client computer. We want to stress that a tex-
ture size of 64 X 64 pixels is fully sufficient here, and
256 colors is usually enough. Such a compressed texture
file with a palette (PNG in our case) does not exceed 3
kB in size.

Zara 271

window & door
textures

roofs

facade
polygon

(a)

1A
0,5 kB

21 A
3,7kB

facade
texture

sunken windows
with an offset

additional
objects

91 A
16,2 kB

23 A
11,5kB

Figure 5. The LOD principle can utilize the architectural structure of a house. The upper row shows four discrete LOD

representations, while the lower row contains the corresponding wire-frame models and data sizes. Note that the window textures

already transferred from the server for level (b) are used again for level (d).

The third LOD was designed with the aim to further
increase the visual quality while holding the overall
number of polygons unchanged. A facade is covered by
one larger texture in this representation. Since the
smaller polygons added to the facade in the second
LOD have been removed, other geometrical objects
such as chimneys or balconies can be used instead. Fi-
nally, the last LOD is composed from the geometrical
information from the second and third LODs. Windows
(and possibly other visually important objects) are in-
serted into a facade using a given depth. The final fa-
cade gets a real 3D appearance.

Our approach requires interactive work when prepar-
ing house models, but automatic preprocessing based
on knowledge-based recognition seems to be possible.
The currently used utility program takes an orthophoto-
graph of the facade as an input and allows the user to
interactively define the polygonal outline, the shape and
slope of the roof, the solid fill colors for the facade and
roof, visually important textures and their repetitive po-
sitions, and insertion depths for windows,/doors. Then
four urban LODs are created.

Unlike mesh simplification and streaming algorithms,
urban LOD representations are not created incremen-

272 PRESENCE: VOLUME 5, NUMBER 3

tally. Information included in the second level is not
immediately used in the following level, but later in the
fourth level. This is due to the effort to efficiently trans-
fer a mixture of geometrical and texture information
from the server to the client and to present the most
visually important data as soon as possible. Sample data
sizes per individual LOD are shown in Figure 5. The
amount of transferred data increases evenly as the com-
plexity of the LOD increases. Pop-up effects that can
be seen when switching among discrete levels are ac-
ceptable to web users. This is similar to the situation
when a web page is progressively downloaded and the
images and larger tables are displayed step by step.
These effects can be minimized by blending between
LODs and also by increasing the distances over which
the LODs are switched. The use of discrete LODs
minimizes computations on the client side, since the
only continuously updated value is the avatar-to-ob-
ject distance.

From the practical point of view, even an incomplete
city model can be presented on the web in an early stage
of virtual city construction, for example, one planar fa-
cade with one texture per house only (third urban
LOD). Other LODs can be modeled later. Visitors to
virtual cities are impressed when they are fully sur-
rounded by many different house facades forming the
city, while the architectural decor plays only a secondary
role.

To conclude the discussion of house models, atten-
tion should be paid to the preparation of textures.
Again, the limited capacity of the web influences the
size of the textures used. The memory architecture of
graphics cards on the client side also plays an important
role. Texture memory is usually allocated in blocks of
constant size. The texture image resolution should be a
multiple of this block size, otherwise the texture mem-
ory is fragmented and not fully utilized. Images with
sizes corresponding to a power of 2 (e.g., 256 X 256,
128 X 512, etc.) are generally recommended. A reason-
able upper limit for one dimension is 512, exceptionally
1024. It is important to point out that one true color
image with resolution 1024 X 1024 requires 3 MB of

texture memory after decompression. When using mip-

mapping, an additional 1 MB is required. Ten such tex-
tures would easily overload a medium quality graphics
card with 32 MB texture memory. Image compression
(e.g., JPEG) is important for data transfer but not for
standard graphics cards.

To speed up the transfer of several small textures be-
longing to a single house (e.g., roof, window, and door
textures), all individual textures should be packed into
one image and sent as one file. A further simplification
leading to a smaller file size is the use of'a color palette
instead of the true color quality. Thanks to color inter-
polation performed during the final texture mapping,
many new colors emerge and the limited size of the

original color palette is not recognizable.

5 Interactive Presentation on the Client
Side

All data describing a virtual city can be stored in a
distant database in arbitrary format. The sectors and the
house data structures specified in previous sections were
defined independently. Conversion to a specific format
takes place when the data is sent from a server to a client
and finally rendered. We use VRML terminology in the
following text, although other technologies can also be
applied. The reason why we prefer VRML is that it is an
open, platform-independent, and well-known format.
We intentionally avoid issues of copyright, which is not
protected in the VRML specification, that is, data trans-
ferred to a client cache in the form of VRML files can
be easily decoded and reused by anybody. Use of the
VRML standard is welcomed by ordinary users, since
they can install a VRML browser once and then browse
many virtual worlds. The necessity to install special
copyright-protected browsers for each city on the web is
very inconvenient.

The following text assumes a standard VRML
browser installed in a client computer. The additional
“intelligence” needed for sector management and other
tasks has to be programmed in the VRML Script node,
using either ECMAScript (formerly JavaScript) or Java

language. The general idea is that the user first down-

Zara 273

loads one starting sector, and then the system loads
other necessary data on the fly depending on the user’s
movement in the virtual environment. Another way is to
request a server to send a sequence of sectors represent-
ing a path between two places of interest. This is useful
for virtual guided tours, or as a support for a “How to
get to . . . ?” function from the user interface.

The Script node performs two main tasks—it watches
the avatar’s activities, and manages the data contained in
the sectors. Newly downloaded sectors are included into
an existing scene graph, while unnecessary data is dis-
posed of. Typically, a sector is loaded through the Inline
node. If the sector has to be removed, we have to delete
the corresponding Inline node (in the case of VRML
97) or to set the load field in the Inline node to FALSE
(in the case of X3D). Actually, the memory manage-
ment is not fully controlled by a Script programmer but
internally by a VRML browser.

5.1 Dynamic Data Management

Since every sector contains a list of sectors (called

Lvis in the previous text) that are either directly visible
or somehow important, the strategy for generating re-
quests to a server seems to be straightforward. One re-
quest is sent per each sector from a given Lvis list. This
simple strategy fails for models with fine granularity of
the sectors. When a sector represents a street connecting
two squares, both squares are surely contained in the
Lvis, but most of the other streets leading from those
squares are not directly visible from the given sector.
Thus, entering a square would lead to an incomplete
view of the square area without the houses belonging to
the other street sectors. Neither visibility information
nor importance information from the Lvis list is able to
cope with this problem. The solution is based on the
topology, that is, the connectivity among the sectors. As
the whole topology graph is usually not present in
memory, necessary adjacency information can be indi-
rectly retrieved from the visibility information.

Let VIS(C) be a set of sectors contained in the Lvis

1. Note that any sector can be set as the starting sector. There is no
need to start a virtual walk always from the same point in the city.

list of sector C. Let L{ denote a set of sectors that have
to be loaded into a client computer memory for a given
level 7 and sector C. A simplified notation L; is used
when Cis unambiguously given. Then the sets L, L;,
L,, ..., L, can be iteratively constructed as follows:

L, ={C} A set containing only a given sector C

L,

UVIS(C) The Lvis list for a given sector C

CELy

L,=UVIS(C) The previous set extended by
€L
o neighboring, visible, and

other important sectors

L,= UVIS(C) All sectors of a city
oS (for sufticiently large #7)

A high number 7 indicates that more sectors are
loaded. Starting from the zero level representing the
current sector only, further and further neighboring
sectors are requested. This process of breadth searching
can in theory continue up to loading the whole city, but
in practice it can be stopped at level 2, which covers a
satisfactorily large combination of directly visible sectors
and neighbors of neighbors. The number 7 determining
the L, set can be dynamically changed according to the
performance of the client computer. It is a more robust
tool for controlling the rendering speed than the finer
LOD technique. These two methods—sets of sectors
(L;) and LOD—can be efficiently combined to achieve
smooth rendering. The cardinalities of L, sets grow rela-
tively slowly for historical towns with an irregular street
structure, and rapidly for well-arranged modern cities.
The upper limit (¢ = #) is less than or equal to the ec-
centricity of the current sector (node) in an adjacency
graph.

Breadth search processes utilizing L; sets can also be
successfully employed if no visibility algorithm has been
executed in the preprocessing phase. Lvis lists for all
sectors should then contain close neighbors, that is, sec-
tors whose IDs were assigned to gates.

274 PRESENCE: VOLUME 5, NUMBER 3

Figure 6. User-in-sector tests based on (a) the point in polygon test, (b) the point in box test, (c) the point in gate test. Ten

sample sectors have been taken from the map of Prague.

5.2 Observing the Movement of an
Avatar

Each time a user passes from sector G, cyioys to the
the L; associated with the

newly visited sector has to be evaluated. Differences be-

neighboring sector C,

newd

tween previous and current L; sets produce changes in
the scene graph. Sectors belonging to the set LI —
L{Previons have to be downloaded while sectors from the

set LiC'prcvmus _ Li(,ncw

are disposed of. Continuous obser-
vation of the position of the avatar in virtual space guar-
antees timely generated requests for new sectors and
hence smooth presentation of the city.

Since the avatar-in-sector test is performed repeatedly,
it should be optimized. Figure 6 shows three different

methods.

5.2.1 Point in Polygon. Point in polygon is a
test for a general polyhedron that has no support in
VRML. Evaluation via an external program is necessary,
thus making this test slow.

5.2.2 Point in Bounding Volume. The proxim-
ity sensor in VRML supports the test for point in
bounding volume. A bounding box with arbitrary orien-
tation can be used. The bounding boxes of neighboring
sectors often overlap. Fortunately this is a positive rather
than a negative feature, as will be explained below.

5.2.3 Point in Gate. Point in gate is actually a
variation of the point in bounding volume test. From
the mathematical point of view, the gate is a planar face,
but in practice it is modeled by a box. While each
bounding box used in the previous test belongs to ex-
actly one sector, a box defined by a gate belongs to two
sectors. For this reason, a simple point in box test is not
sufficient to determine the direction of an avatar and a
newly visited sector. Instead, we have to manage a se-
quence of box faces intersected by the avatar in order to
evaluate the sector containing the avatar. Although
there is no direct support in VRML for this special test,
a gate box can be modeled using two half-gates repre-
sented by a pair of proximity sensors and additional
script that evaluates the direction in which the avatar left
the gate.

Note that a grid could be used as an auxiliary data
structure for all tests. These tests can be further opti-
mized in such a way that only the current sector and its
neighbors are taken into consideration. Instead of %
tests performed for % sectors loaded in memory, the
number of tests drops to the number of gates of the
current sector, typically from 2 to 4. This kind of opti-
mization can be done under the condition that the ava-
tar walks continuously. When rapid jumps to viewpoints
in farther sectors are allowed, then all % tests have to be

executed. Moreover, point in gate tests fail for such

Zara 275

Figure 7. Moving from the exterior to the interior in e-Agora application. (a) Avatar in a street sector. (b) The impostor behind

the door is illuminated when the geometry of the next sector representing the entrance hall is being loaded. (c) A new geometry has

replaced the impostor behind the door.

jumps, since VRML browsers skip collision detection
when switching to another viewpoint.

When testing users’ behavior in a virtual environment
we have to consider the following unfavorable situation.
When a user enters a new sector, the system starts to
evaluate the L, set, updates the sectors in memory, and
generates requests to a server. Due to the number of
operations performed, the rendering speed drops signifi-
cantly. Some users get the feeling that something is
wrong in the direction that they are examining. They
tend to take a step back, but this movement causes a
return to the previous sector, and demanding computa-
tions start again. To overcome this particular problem,
we can either delay updates of the scene graph or we
can detect the avatar’s position in a new sector not im-
mediately on the border but somewhere inside. For sim-
plicity, we have used the second approach. Both kinds
of tests—(b) and (c) from Figure 6—can be easily mod-
ified. A straightforward solution is to slightly scale up
the bounding boxes or gate boxes, respectively. Then
the event that activates the dynamic loading of new data
is generated at the time when the avatar leaves the box,
either the current bounding box for test (b) or a gate
box for test (c). In all cases, the avatar’s position is rela-
tively deep in the next sector, and repeatedly performed
updates near borders are suppressed.

To conclude this section, let us demonstrate the use
of gates in another web application. In the multi-user
application called e-Agora (Adamec et al., 2001), users

visit both exterior and interior scenes. The sectors de-
scribe either rooms in a virtual cultural center or a street
segment around that building. Sectors are again con-
nected via gates, which are represented by 3D models of
doors in this case. Impostors are placed behind doors
and are partially visible through semitransparent glass
parts of the doors. When a user clicks on a door (via the
TouchSensor node) a request to load the sector behind
that door is generated. At the same time, the glass part
of the door becomes more transparent and the impostor
is illuminated by a light source. This is like switching on
a light in the neighboring room as positive feedback to
the user’s action. The door is then slowly animated and
is fully opened at the time when the neighboring sector
has been loaded. The geometry of the new sector re-
places the impostor and the avatar can pass through the
door. When the avatar moves deeper into the sector, an
event for closing the door is generated, all data of the
previously visited sector is released from memory, and
another impostor is placed on the opposite side of the
door.

The whole process is depicted in Figure 7. It should
be stressed that this particular web application utilizes a
framework of sectors and gates, but all the vast geomet-
rical and texture data has to be installed locally in ad-
vance. The web is primarily used for social interaction
(chatting, meetings with individual 3D avatars, etc.),

but not for transferring the 3D scene data.

276 PRESENCE: VOLUME |5, NUMBER 3

6 Open Problems

Almost every component used in the processing
pipeline depicted in Figure 1 contains areas that need to
be improved. The most demanding requirements are
still placed on research in Computer Vision and Com-
puter Graphics. In the 3D reconstruction area, we need
to solve the following issues:

1. Algorithms that generate meshes adapted to real
shapes of buildings. Such meshes should contain
large planar faces on walls and roofs, but dense
triangles for architectural details.

2. Reconstruction based on knowledge of the house
structure. Repeatedly used elements like windows
should be recognized and optimized for further
LOD creation. Fully automatic creation of LODs
for houses is a highly important task.

3. Since real cities do not consist of houses only, we
need to automatically recognize other objects such
as street lamps, trash cans, trees, park benches, and
so forth. Once recognized, these objects can be
removed from photos that are used for reconstruc-
tions of buildings, but they have to be added to a
3D model of the city and presented to visitors.
From a few 3D model prototypes we can effi-
ciently generate a number of duplicates in the
scene. On the other hand, many visual obstacles
such as cars, dogs, and people can be removed
forever.

In web 3D visualization, the following tasks are of
great interest:

1. Automatic determination of sectors based on a city
map (GIS database) would save a lot of time when
creating a virtual city database. Several constraints
influence the definition of sectors. A data package
containing all objects attached to the sector has to
be of limited size (web constraint). The next con-
straint concerns the shape of the sector and the
number of gates (visibility issues).

2. A seamless combination of impostors and 3D
models is required for open places like hills, obser-
vation towers, islands in rivers, and so forth. An

efficient mixture of image based and model based
rendering algorithms should be implemented in
the client browser/viewer.

3. Aflight over a city requires a special solution. Aer-
ial photos mapped on a terrain can be combined
with highly simplified house models. The use of
LOD is an obvious condition. The question is
how to transfer an extremely high number of
houses from a server in the shortest time. Instead
of many individual files (one per house), the mod-
els need to be grouped before they are sent through
the net.

7 Conclusion

Various issues concerning preparation and presen-
tation of 3D city models on the web have been dis-
cussed in this paper. Web specific limitations require the
adaptation of already existing algorithms and the use of
appropriate data structures. We have introduced a
framework for virtual city models taking into account
historical towns with an irregular street structure. The
framework is made of a set of city sectors holding mod-
cls of houses and other spatial objects. A special urban
LOD has been designed to achieve both fast download
of house models and real-time rendering on the client
side. Selected methods for dynamic management of sec-
tors and for observing the movement of a user were pre-
sented.

In this study we have presented our experience from
the design, implementation, and operation of the Vir-
tual Old Prague web application. This project prefers to
use standard, open technologies rather than proprietary
and perhaps more efficient solutions. These standard
technologies are VRML, HTML, JavaScript, and Java
on the client side; PHP and mySQL database on the
server side. The area of Prague that is modeled as a vir-
tual city consists of about 25 streets, 6 larger squares,
350 houses, and tens of additional 3D objects arranged
into 80 sectors. Although these numbers are not aston-
ishing, the framework is scaleable and can grow up to an
entire city. Currently, two European cities—Graz in
Austria, and Bratislava in Slovakia—are testing the Vir-

Zara 277

tual Old Prague project with the aim of using this tech-
nology for presenting the historical kernels of the cities

on the web.

Acknowledgments

This work has been partly supported by the Ministry of Edu-
cation, Youth, and Sports of the Czech Republic under re-
search program No. 6840770014 (Resecarch in the Area of the
Prospective Information and Navigation Technologies).

References

Adamec, J., Cizek, J., Masa, M., Silondi, P., Smetana, P., &
Zara, J. (2001). Virtual house of European culture: e-AG-
ORA. Virtual Storytelling. Berlin: Springer, 208-211.

Bittner, J., Wonka, P., & Wimmer, M. (2001). Visibility pre-
processing in urban scenes using line space subdivision. Pro-
ceedings of Pacific Graphics (PG’01), 276-284.

Collins, R. T, Jaynes, C. O., Cheng, Y. Q., Wang, X. G.,
Stolle, F. R., Riseman, E. M., et al. (1998). The ascender
system: Automated site modeling from multiple aerial im-
ages. CVIU, 72(2), 143-162.

Coorg, S., & Teller, S. (1999). Extracting textured vertical
facades from controlled close-range imagery. Proceedings of
CVPR, 625-632.

Decoret, X., Schaufler, G., Sillion, F., & Dorsey, J. (1999).
Multi-layered impostors for accelerated rendering. Come-
puter Graphics Forum, 18(3), 61-73.

Durand, F. (2000). A multidisciplinary survey of visibility. Vis-
ibility, problems, techniques, and applications. ACM SIG-
GRAPH Course notes.

Hoppe, H. (1996). Progressive meshes. Computer Graphics
(ACM SIGGRAPH) Annual Conference Series, 99-108.

Koch, R., Pollefeys, M., & Van Gool, L. (2000). Realistic sur-

face reconstruction of 3D scenes from uncalibrated image

sequences. Journal Visualization and Computer Animation,
11,115-127.

Kunii, Y., & Chikatsu, H. (2003). Building extraction and
modeling in urban area by image sequence analysis. Proceed-
ings of SPIE Electronic Imaging 2003—Videometrics VII,
5013,186-193.

Luebke, D., & Georges, C. (1995). Portals and mirrors: Sim-
ple, fast evaluation of potentially visible sets. Proceedings of
Symposinm on Interactive 3D Graphics 95, 105-106.

Lynch, K. (1960). The image of the city. Cambridge, MA: MIT
Press.

Moons, T., Frere, D., Vandekerckhove, J., & Van Gool, L.
(1998). Automatic modelling and 3D reconstruction of
urban house roofs from high resolution aerial imagery. Pro-
ceedings of ECCV 98, 410-425.

Sillion, F., Drettakis, G., & Bodelet, B. (1997). Efficient im-
postor manipulation for real-time visualization of urban
scenery. Computer Graphics Forum—Eurographics °97,
16(3),207-218.

Slater, M., Steed, A., & Chrysanthou, Y. (2002). Computer
graphics and vivtual environments: From realism to real-
time. Reading, MA: Addison Wesley.

Taylor, C. J., Debevec, P. E., & Malik, J. (1996). Recon-
structing polyhedral models of architectural scenes from
photographs. Proceedings of ECCV 96, 659—-668.

Zara, J., Chromy, P., Cizek, J., Ghais, K., Holub, M., Mikes,
S.,etal. (2001). A scaleable approach to visualization of
large virtual cities. Proceedings of the Fifth International
Conference on Information Visualisation (IV 2001), 639 —
644.

Zheng, J. Y., & Tsuji, S. (1998). Generating dynamic projection
images for scene representation and understanding. Computer
Vision and Image Understanding, 72(3), 237-256.

Zheng, J. Y., & Shi, M. (2003). Mapping cityscapes to cyber
space. Proceedings of the 2003 International Conference on
Cyberworlds, 166-173.

Zlatanova, S., & van den Heuvel, F. A. (2002). Knowledge-
based automatic 3D line extraction from close range im-
ages. International Archives of Photogrammetry and Remote
Sensing (ISPRS), 34(5), 233-238.

