
Skinning Arbitrary Deformations

Ladislav Kavan∗ 1,2 Rachel McDonnell1 Simon Dobbyn1 Jiřı́ Žára2 Carol O’Sullivan1

1Trinity College Dublin, 2Czech Technical University in Prague

(a) (b) (c) (d)

Figure 1: Overview of Skinning Arbitrary Deformations: as input we have the rest-pose model (a), and a deformed one (b). Our algorithm
first determines the proxy-joints and their influences (c) and then computes the joint transformations, whose application in matrix palette
skinning (d) gives a good approximation of the input deformation. Even though (b) and (d) appear to be almost identical, (d) needs about 17
times less memory than (b) and can be rendered efficiently using the popular skinning algorithms.

Abstract

Matrix palette skinning (also known as skeletal subspace deforma-
tion) is a very popular real-time animation technique. So far, it has
only been applied to the class of quasi-articulated objects, such as
moving human or animal figures. In this paper, we demonstrate how
to automatically construct skinning approximations of arbitrary pre-
computed animations, such as those of cloth or elastic materials.
In contrast to previous approaches, our method is particularly well
suited to input animations without rigid components. Our transfor-
mation fitting algorithm finds optimal skinning transformations (in
a least-squares sense) and therefore achieves considerably higher
accuracy for non-quasi-articulated objects than previous methods.
This allows the advantages of skinned animations (e.g., efficient
rendering, rest-pose editing and fast collision detection) to be ex-
ploited for arbitrary deformations.

I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Animation

Keywords: skinning, approximation, animation compression,
dual quaternions

1 Introduction

The main problem with processing and re-using pre-computed an-
imations is the amount of data to be handled. Current graphics
hardware is capable of rendering millions of triangles in real-time.
Therefore, pre-computed animations that are stored keyframe by
keyframe are likely to consume a lot of memory, so data reduction
becomes imperative. A number of animation compression algo-
rithms have been discussed in the literature, most of them naturally
focusing on maximal data reduction. However, as pointed out by
James and Twigg [2005], low bitrate is not the only criterion. In

∗e-mail: kavanl@cs.tcd.ie

practical applications, other factors become important as well: e.g.,
efficient rendering and additional operations possible directly with
the representation (as playback is not always sufficient – sometimes
we need to perform other tasks as well, such as collision detection).

An established way of representing the animation of quasi-
articulated objects, such as virtual characters, is known as skinning
(or matrix palette skinning). It is based on the observation that an
animation of a virtual character can be compactly described by its
skeleton. Typically, a skeleton has far fewer degrees of freedom
than a character’s skin, which therefore makes character animation
much easier. Nonetheless, this requires the skeleton to be designed,
and its relationship (binding) to the skin to be established.

James and Twigg’s Skinned Mesh Animations (SMAs) [2005] con-
struct a skinning approximation automatically from the input ani-
mation. Their algorithm works by identifying quasi-rigid compo-
nents (such as individual body parts of a virtual character) and com-
puting their transformations. Note that the resulting transforma-
tions do not have any hierarchical structure as in a skeleton. SMAs
produce excellent results for quasi-articulated animations: signifi-
cant data reduction coupled with a hardware-accelerated rendering
of unprecedented efficiency.

Unfortunately, SMAs do not perform as well for highly deformable
animations, such as those of cloth or elastic materials. This is un-
derstandable, because in such animations, no quasi-rigid compo-
nents can be found. Does it mean that no efficient skinning ap-
proximation exists in this case? In fact, experiences with animating
dressed virtual humans indicate the contrary: some videogames, as
well as the system presented by Oh et al. [2005], successfully use
matrix palette skinning to animate cloth.

This paper presents an algorithm to find skinning approximations
for arbitrary animations. Because we do not make any assumptions
about the input animation, we distribute the control transformations
(proxy-joints) uniformly over the animated 3D model. This has
proven to be sufficient for our testing animations, though it might
not be satisfactory for animations with highly non-uniformly dis-
tributed deformations. Subsequently, for each frame of the anima-
tion, our algorithm finds the set of transformations whose applica-
tion in matrix palette skinning approximates the current shape of
the model as closely as possible (see Figure 1). This way, we en-
sure that the overall deformation is approximated reasonably, with-
out relying on quasi-rigid components. As a result, we obtain good

visual fidelity even for highly deformable animations.

Of course, this does not come for free: our pre-computation times
are slower than those of SMAs and our algorithm does not find the
smallest reasonable number of proxy-joints automatically (as a re-
sult, we typically use more proxy-joints than necessary). On the
other hand, according to our experiments, our algorithm constructs
much more accurate skinning approximations of highly deformable
3D models than SMAs. This enables us to exploit the advantages
of skinned animations, such as efficient hardware-accelerated ren-
dering, rest-pose editing and fast collision detection, even outside
the realm of quasi-articulated models.

2 Background and Related Work

A lot of literature is devoted to matrix palette skinning and its varia-
tions. The most common matrix palette skinning algorithm is linear
blend skinning [Lindholm et al. 2001], even though it suffers from
artifacts, such as the candy-wrapper problem. Wang and Phillips
[2002] addressed this problem by assigning different weights to all
coefficients of the matrix, while Mohr and Gleicher [2003] added
auxiliary joints. Recently, we suggested implementing skinning
with blending of dual quaternions instead of matrices [Kavan et al.
2007].

However, all these methods assume that the model to be deformed
is already equipped with an animated skeleton, i.e., that the trans-
formations determining the shape of the deformed model are al-
ready given. In contrast, the technique proposed in this paper auto-
matically computes the skinning transformations. Another method
that extends matrix palette skinning is EigenSkin [Kry et al. 2002].
This technique is aimed at correcting small displacements for al-
ready computed skinning transformations. In effect, EigenSkin is
complementary to our approach, and both methods can be advanta-
geously used in conjunction (see Section 5).

Our research suggests that matrix palette skinning could be com-
pared to other general deformation methods, such as the popular
Free Form Deformation [Sederberg and Parry 1986]. In our ap-
proach, we also embed a control structure into the rest-pose (un-
deformed) model. However, our control structure is just a set of
points, instead of a lattice as in FFD. In our method, the deforma-
tion is given by rigid transformations in the control points, rather
than by displacement of the lattice vertices, as in FFD.

Various animation compression algorithms have been described
since the pioneering work of Lengyel [1999]. Alexa proposes ap-
plying Principal Components Analysis (PCA) [Alexa and Müller
2000]. PCA can also be advantageously augmented by another
common compression technique, Linear Prediction Coding, as
shown in [Karni and Gotsman 2004]. Decorrelation based on
wavelets also has been successfully applied to animation data
[Guskov and Khodakovsky 2004]. Sattler et al. [2005] show the ad-
vantages of clustered PCA and present fast GPU-based decompres-
sion. Another interesting method is to encode the mesh as geometry
images [Gu et al. 2002] and apply established 2D animation com-
pression methods [Briceno et al. 2003]. Alternatively, deformable
geometry can be stored using progressive multiresolution meshes
[Kircher and Garland 2005], which represent the animation at mul-
tiple levels of detail. This allows the correct level of detail to be
selected at runtime, either in a static or view-dependent way.

While our algorithm offers significant data reduction, animation
compression is not our only goal. Another major goal is to achieve
fast, hardware accelerated rendering using the simple and popu-
lar matrix palette skinning method. This is advantageous, because
matrix palette skinning is already implemented in most real-time
animation systems and enables further operations to be performed

directly. For example, skinned approximations can be exploited
to speed up collision detection and facilitate rest-pose editing (see
Section 6). Also, it should be noted that skinning is not a linear
representation (even though the term “linear blend skinning” might
suggest the opposite). In fact, skinning can easily outperform even
the best linear representation (PCA). This is because skinning al-
lows objects to rotate and/or bend. For example, PCA does not
work very well on a rotating rigid object (unless the rotation is small
and the trajectories can be approximated well by straight lines).
However, rotating a rigid object presents no problem for skinning,
which needs just one proxy-joint to represent such an animation
exactly.

Skinned Mesh Animations (SMAs) [James and Twigg 2005] is
not the only technique for approximating animations by skinning.
Collins and Hilton [2005] describe a method based on a rigid trans-
formation basis. Their algorithm delivers efficient data reduction,
but the reconstructed animation suffers from discontinuities be-
tween individual clusters. The authors suggest correcting this by
adding another post-processing step to smooth out the geometry.
Mamou et al. [2006] present a variation of SMAs with emphasis
on animation compression. However, all of the above-mentioned
papers focus only on quasi-articulated animations.

3 Preliminaries

As input we have a sequence of polygonal meshes with constant
connectivity. Furthermore, we assume that a rest-pose mesh is
given. This can be as simple as the first mesh of the animation. If
available, we can also use the rest-pose of the mesh used to produce
the animation, e.g., an unfolded piece of cloth. In order to sup-
port more accurate shading, vertex normals are usually stored for
each keyframe also. If the model is already rigged, i.e., equipped
with joints and their influences, we can skip the following steps and
proceed directly to transformation fitting (Section 4). However, in
general, we do not assume that those structures are present (as is the
case for our experimental data). Therefore, an algorithm for their
automatic generation is described below.

Proxy joints. The proxy-joints are distributed over the rest-pose
mesh so that each proxy-joint influences approximately the same
amount of geometry. Let us assume that we want to use p proxy-
joints (samples). We need to position the proxy joints in space so
that the maximal distance of a rest-pose vertex to the nearest proxy-
joint is minimized. This ensures that each proxy-joint controls ap-
proximately the same amount of geometry, even if the vertices of
the rest-pose mesh are non-uniformly distributed. This problem is
known in computational geometry as the p-center problem [Agar-
wal and Sharir 1998]. The simple greedy algorithm has been shown
to produce good results [Gonzales 1985]. This algorithm places the
centers (in our case, the proxy-joints) so that they coincide with the
mesh vertices. At each step of the algorithm, a new proxy-joint
is created at the vertex that has maximal distance from all proxy-
joints created so far. The resulting sampling is illustrated in Fig-
ure 2. Note that in our method, every proxy-joint is independent,
and there is no hierarchical structure as in a skeleton.

Vertex weights. The joint influences (vertex weights) are also eas-
ily computed. Let r be the maximal distance from a rest-pose mesh
vertex to the nearest joint (i.e., the value that the p-center solution
minimizes). The influence of each joint is limited to the ball cen-
tered in the joint with radius P · r, where P ≥ 1 is a user-defined
parameter controlling the area of the joint’s influence. We found
the value P = 1.5 to perform well in practice. The weight decays
linearly from 1 at the joint’s center to 0 on the ball’s boundary. If
more than one joint influences the vertex, as is usually the case,
we normalize the weights of all joints so that they sum to 1. Since

Figure 2: One hundred proxy-joints generated by the greedy algo-
rithm for the rest-pose skirt and camel model. Joint influences are
also depicted.

weights are obviously non-negative, this guarantees convex vertex
weights. We also experimented with a more sophisticated weight
assignment, such as one based on least-squares optimization [Mohr
and Gleicher 2003], but we found the improvement to be almost
negligible.

Linear blend skinning. Let us assume that the object’s proxy-
joints and vertex weights are already given. The model can then
be animated by matrix palette skinning, which requires specify-
ing the transformations for all proxy-joints. The simplest and most
widely used matrix palette skinning algorithm is linear blend skin-
ning, which works as follows: let m be the number of vertices in our
mesh, and p the total number of proxy-joints, whose transformation
matrices we denote as C1, . . . ,Cp. Now, if a rest-pose vertex vk, k ∈
{1, . . . ,m} is influenced by nk joints with indices jk,1, . . . , jk,nk

∈
{1, . . . , p} and convex weights wk,1, . . . ,wk,nk

∈ 〈0,1〉, then the po-
sition of the vertex in the deformed mesh is computed as

vde f
k =

(
nk

∑
i=1

wk,iCjk,i

)
vk (1)

Dual quaternion skinning. In advanced skinning methods, the lin-
ear blending of matrices (i.e., the term ∑nk

i=1 wk,iCjk,i) is replaced by
a more sophisticated method. For example, when transformations
C1, . . . ,Cp are rigid, we can apply dual quaternion linear blending
[Kavan et al. 2007]. We will now provide a brief overview of dual
quaternions. Please refer to [McCarthy 1990] or [Kavan et al. 2007]
for more details.

Dual quaternions are similar to Hamilton’s classical quaternions,
but besides the classical quaternion units 1, i, j,k, there is an ad-
ditional dual unit, usually denoted as ε . The dual unit ε satis-
fies ε2 = 0 and commutes with i, j,k (e.g., iε = εi), which de-
fines dual quaternion multiplication. In the text, we distinguish
dual quantities from non-dual ones by a caret. The overline de-
notes dual conjugation, i.e., replacement of ε by −ε , for example
1+2ε − εi+3k = 1−2ε +εi+3k. Dual quaternions are important
for computer graphics, because they represent general rigid trans-
formations, not just rotations as with regular quaternions.

Conversion from a regular quaternion r and translation vector
(tx,ty,tz) to a dual quaternion is simple: the corresponding dual
quaternion is (1 +(txi + ty j + tzk)ε/2)r. The opposite conversion,
from a dual quaternion q̂ to a regular quaternion and translation, is
equally easy: let us assume that q̂ has a non-dual part q0 and a dual
part qε . Then the rotation is just q0 and the translation vector is
given by 2qε q∗

0, where the star symbol denotes classical quaternion
conjugation.

Dual quaternion skinning then works as follows. First, the rigid
joint transformations C1, . . . ,Cp are converted to dual quaternions
q̂1, . . . , q̂p. Every vertex vk, with components vk = (vk,x,vk,y,vk,z),
is represented by a dual quaternion v̂k = 1+ε(vk,xi+vk,y j +vk,zk).
Using this convention, we compute

v̂de f
k =

(
nk

∑
i=1

wk,iq̂ jk,i

)
v̂k

(
nk

∑
i=1

wk,iq̂ jk,i

)−1

(2)

which has also the form v̂de f
k = 1 + ε(vde f

k,x i + vde f
k,y j + vde f

k,z k),

from which the coordinates of the deformed vertex vde f
k =

(vde f
k,x ,vde f

k,y ,vde f
k,x) can be immediately extracted. Note that For-

mula (2) is correct even if ∑nk
i=1 wk,iq̂ jk,i does not have unit length (it

just needs to be invertible). Dual quaternion skinning is a little bit
slower than linear blend skinning, but in turn has better properties –
there are no artifacts such as the candy-wrapper [Kavan et al. 2007].

From a practical point of view, dual quaternion skinning is just a
more sophisticated version of matrix palette skinning. Both linear
as well as dual quaternion blending can be easily implemented in a
vertex shader. Irrespective of the skinning method, the animation is
controlled only by the transformations C1, . . . ,Cp. Their automatic
computation is the main contribution of this paper and is described
in the next section. We will see that usage of the dual quaternion
representation of C1, . . . ,Cp offers some advantages for our pur-
poses. The number of joints p is typically a small number when
compared to the number of vertices of the input mesh. This is the
reason for the efficiency of matrix palette skinning: each keyframe
needs to store or send only p transformations to the graphics card.
This is a significant improvement over processing m vertices, be-
cause m can be greater than p by several orders of magnitude.

4 Joint Transformation Fitting

Let us assume that the (proxy-)joints are already given, either de-
signed by animators or generated automatically according to Sec-
tion 3. The problem now is to find the joint transformations for
each keyframe of our input animation. This is done independently
for every keyframe; in the following, we therefore describe trans-
formation fitting for one fixed frame. We cannot simply apply the
transformation fitting method from [James and Twigg 2005], be-
cause it derives the joint transformations from previously identified
quasi-rigid components (while we do not assume the existence of
any quasi-rigid components).

We denote the vertex positions in the current frame of the input an-
imation as v′k, k ∈ {1, . . . ,m} (the number of vertices m does not
change between frames). The task now is to find the transforma-
tions C1, . . . ,Cp, so that the skinning according to Formula (1) pro-

duces vertices vde f
k as close as possible to v′k. All other quantities,

i.e., the number of influencing joints nk , the influencing joint in-
dices jk,1, . . . , jk,nk

and the weights wk,1, . . . ,wk,nk
, are known and

fixed. The question is: how general should the class of transfor-
mations that we consider be? The simplest option is to consider
general affine transformations, because in this case, we can opti-
mize each element in every matrix Ci independently. Let us study
this method first.

4.1 Affine Transformation Fitting

The problem can be stated as minimization of

m

∑
k=1

∥∥∥v′k −vde f
k

∥∥∥2

over the joint transformation matrices C1, . . . ,Cp. This is equivalent
to the least-squares solution of the linear system

v′k =
nk

∑
i=1

wk,iCjk,i vk, k ∈ {1, . . . ,m} (3)

with 3m equations and 12p unknowns (the elements of 3× 4 ma-
trices C1, . . . ,Cp). The system from Formula (3) can be rewritten
as

Ax = b

where x is a 12p-dimensional unknown vector, A is a 3m × 12p
known matrix, and b is the 3m-dimensional right-hand side. The
matrix A is constructed from vertex weights, rest-pose vertex po-
sitions and influencing joints. The vector b is formed by stacking
vertices v′1, . . . ,v

′
m. Note that since each vertex is influenced only

by a small number of joints (typically no more than 4), the matrix A
will be quite sparse. We obtain the least-squares solution x with the
LSQR algorithm which exploits the sparsity of the matrix A [Paige
and Saunders 1982]. The transformation matrices C1, . . . ,Cp are
then extracted from vector x.

Fitting of affine transformations works very well for vertex posi-
tions. However, because of realistic shading, we also need to handle
vertex normals. For accurate normals, it is not sufficient to simply
transform them by the 3×3 submatrices of C1, . . . ,Cp, as observed
already in [Mohr and Gleicher 2003]. Instead, it is necessary to in-
corporate the normals into our fitting process, which can be done in
two ways. Either, we can combine the vertex and normal equations
together, and find transformations that would be useful for skin-
ning both vertex positions and normals. Alternatively, we can solve
two independent systems, one for vertex positions, one for normals,
thus computing two sets of transformations. Even though the lat-
ter method needs more memory, we found it more advantageous in
practice – it also avoids problems with different magnitudes of ver-
tex positions and normals. Henceforth, we will therefore consider
a separate set of transformations for normals, C′

1, . . . ,C
′
p.

Vertex normals are transformed in linear blend skinning according
to an equation similar to Formula (1):

nde f
k =

(
nk

∑
i=1

wk,iC
′
jk,i

)−T

nk (4)

where C′
1, . . . ,C

′
p are the normal transformation matrices. Besides

the inverse transposition, the problem is that this equation does not
produce unit normals nde f

k , even if the input normals have unit
length [Mohr and Gleicher 2003]. This means that we would ac-
tually have to minimize

m

∑
k=1

∥∥∥∥∥n′
k −

nde f
k

‖nde f
k ‖

∥∥∥∥∥
2

(5)

which leads to a system of non-linear equations. A non-linear opti-
mization would make our pre-processing times impractical – not to
mention the associated numerical issues. Luckily, by constraining
our transformations to rigid ones, we are able to obtain a linear least
squares problem.

4.2 Rigid Transformation Fitting

Rigid transformations are a subset of affine transformations, be-
cause they consist of rotation and translation only (i.e., no scale or
shear). If we restrict our transformations to rigid ones, and employ
a blending method which preserves rigidity, we obtain useful sim-
plifications. Namely, the inverse transposition from Formula (4) as

well as the normalization in Formula (5) disappear, thus linearizing
the problem. Moreover, rigid transformations have only 6 degrees
of freedom, which means that we need only half the memory re-
quired for affine transformations.

On the other hand, fitting rigid transformations is more complex
than fitting affine transformations because, in the former case, we
must constrain the transformations to be rigid. The straightforward
way to do this would be to require that the 3 × 3 submatrix of
each Ci is orthogonal. Unfortunately, the orthogonality condition
is quadratic, and therefore we would again obtain a non-linear opti-
mization problem. In addition to this, linear blend skinning cannot
be applied, because we need a blending method that preserves the
rigidity of the input transformations (otherwise the transformations
of normals would not preserve their unit length).

Fortunately, all of the above-mentioned problems can be elegantly
solved by switching to dual quaternion skinning. Dual quater-
nions are automatically restricted to rigid transformations, and their
blending also naturally preserves rigidity, so the lengths of normal
vectors naturally stay unit. Dual quaternion skinning is given by
Formula (2) in Section 3. One technical difficulty with this equa-

tion is that it is only valid if the dual quaternion
(

∑nk
i=1 wk,iq̂ jk,i

)
is

invertible. We must thus ensure that our fitting method will produce
invertible dual quaternions, i.e., those with a non-zero non-dual part
– at least one coefficient of 1, i, j or k must be non-zero. We can
enforce this easily by setting the first (real) component of each dual
quaternion q̂1, . . . , q̂p to one. This does not restrict our set of rigid
transformations, because any dual quaternion p̂ represents the same
rigid transformation as its real multiple αp̂, for any real number α
[McCarthy 1990].

Equation (2) can be further simplified: if we multiply both sides

by
(

∑nk
i=1 wk,iq̂ jk,i

)
from the right and replace v̂de f

k by the desired

vertex position v̂′k , we obtain:

v̂′k

(
nk

∑
i=1

wk,iq̂ jk,i

)
−
(

nk

∑
i=1

wk,iq̂ jk,i

)
v̂k = 0 (6)

for k = 1, . . . ,m. This is a linear system, because multiplication of
a dual quaternion by a constant dual quaternion is a linear transfor-
mation. Therefore, the above system of equations can be written
as

A′x′ = b′ (7)

where x′ is a 7p-dimensional unknown vector, A′ is a 3m × 7p
known matrix, and b′ is the 3m dimensional right-hand side (which
is non-zero due to the substitution of 1 for the real component of
dual quaternions q̂1, . . . , q̂p). Construction of the matrix A′ is just a
technical matter of rewriting Equation (6). The vector b′ is formed
from the rest-pose vertices vk and the target ones, v′k. The matrix
A′ is sparse and thus Formula (7) can be efficiently solved in the
least-squares sense using LSQR [Paige and Saunders 1982]. This is
even faster than affine transformation fitting, because here we have
only 7p unknowns instead of 12p. The dual quaternions q̂1, . . . , q̂p
leading to an optimal fit are then constructed easily: their first com-
ponent is 1, and the last 7 components are extracted from the vector
x′.

The fitting of normals can be done in essentially the same way.
The only difference is that, in the case of normals, we ignore the
translation component, i.e., set the dual parts of all dual quaternions
q̂1, . . . , q̂p to zero. This leads to a linear system with only 3p un-
knowns, which we obtain from Equation (7) by simply substituting
zeros for dual components.

4.3 Discussion

Is it more advantageous to use affine or rigid transformation fit-
ting? Intuitively, it would seem that for highly deformable anima-
tions, affine transformations should be more approprite: in particu-
lar, they cannot give a worse fit, because rigid transformations are
a subset of affine ones. However, our experiments (see Figure 5)
show that the fitting accuracy of both rigid and affine transforma-
tions is actually quite similar. We therefore argue in favor of using
rigid transformations, because they need only half as much mem-
ory as affine ones, simplify the treatment of normals and also offer
faster pre-processing. Theoretically, it would be possible to con-
sider a hybrid system that uses affine transformations for vertex
positions and quaternions for vertex normals. However, we find
it much more convenient to treat both vertex positions and nor-
mals in a unified way. Our final implementation therefore uses
dual quaternion-based rigid transformation fitting. Note that James
and Twigg [2005] arrived at the same conclusions, stating that rigid
transformations are more favorable for highly deformable anima-
tions than affine ones.

5 Adding Fine Details

In some cases, the transformation fitting process described in Sec-
tion 4 (either affine or rigid) has the side effect of smoothing out
deformations. This is understandable, because matrix palette skin-
ning simply has insufficient degrees of freedom to reproduce all
the fine details of the deformation field. We can increase the accu-
racy of fitting by adding more proxy-joints, i.e., choosing a higher
p. However, some subtle effects, such as delicate wrinkles on the
cloth, would require a very high p, thus defeating the purpose of
our approach. In order to support such effects, we propose an al-
ternative method, based on skinning corrections similar to Eigen-
Skin [Kry et al. 2002]. This method is most suitable for fine, low-
amplitude deformations, and thus presents a perfect complement
to our joint transformation fitting, which is most advantageous for
low-resolution global shape approximation.

rest-pose

skinnedexact

Tkvk

t t

()vk

t
'

ek

vk
t

t

Figure 3: Differences between the exact mesh position, (v′k)
t , and

its skinning approximation, T t
k vt

k, are mapped to the rest-pose, and
denoted as et

k.

In the rest of this section, we will need to work with the animation
as a whole, as opposed to the per-frame approach used in Section 4.
We denote the quantities in keyframe (time) t by a superscript t ,
specifically, vt

k,(v
′
k)

t and Ct
i or q̂t

i . Let us assume that we have al-
ready computed the joint transformations for each frame according
to Section 4 (irrespective of whether rigid or affine fitting was used).
We denote the final transformation of vertex vt

k as T t
k , e.g., in lin-

ear blend skinning, T t
k = ∑nk

i=1 wk,iCt
jk,i

. The trick of EigenSkin is to

transform the approximation error, i.e., the vector (v′k)
t −T t

k vt
k , to

the rest-pose by multiplying it by (T t
k)−1 from the left. We denote

the rest-pose error as et
k,

et
k = (T t

k)−1(v′k)
t −vt

k

The vector et
k is the displacement which, if added to vt

k before trans-
formation, corrects the skin to match the input exactly (see Fig-
ure 3).

We stack all vectors et
k in a 3m× n matrix E, where n is the total

number of keyframes. Then we apply Singular Value Decomposi-
tion to decompose the matrix E to E = DK, where D is a 3m×n ma-
trix whose columns are so-called eigen-displacement vectors and K
is an n× n matrix of eigen-displacement coefficients. The reason
for this decomposition is that only the first few eigen-displacements
are necessary for a good approximation of matrix E (this is a con-
sequence of the high correlation between the columns of matrix E).
This means that instead of storing the matrix E, which is as big as
the original animation, we store only the first f columns of matrix
D and the first f rows of matrix K. An approximation of matrix
E, which we denote as E ′, is then given as a matrix multiplication
E ′ = D′K′, where D′ and K′ have the same size as D and K, but the
last n− f columns of matrix D′ and last n− f rows of matrix K′ are
zero. In a practical implementation, the matrix E ′ is actually never
explicitly evaluated. Instead, the elements of E ′ are computed as
needed, which can be efficiently implemented in a vertex shader.
When computing the matrix palette skinning, the elements (e′k)

t of
matrix E ′ are used as corrections to rest-pose vertex positions, i.e.,
the corrected deformed vertex positions are now computed as

vde f corr
k = T t

k (vt
k +(e′k)

t)

Typically, even a value of f = 1 adds most of the fine details, see
Figure 4. When using rigid transformation fitting (Section 4.2),
the normals can be corrected in the same way as vertex positions,
giving other correction matrices D′

n,K
′
n for normals. If allowing

non-rigid transformations, we can also use the same scheme, but
we must take into account that the normals will be transformed by
the inverse transposition of matrix T t

k in this case.

6 Experiments and Comparison

In order to obtain comparable results, we use the same error metric
for measuring the fitting accuracy as in [James and Twigg 2005].
This metric is expressed as the percentage of distortion:

%Error = 100
‖Pexact −Papprox‖F

‖Pexact −Paverage‖F

where Pexact is the 3m × n matrix storing the original anima-
tion, Papprox is the animation reconstructed using our method and
Paverage is a matrix where every column is the same and is equal
to the average of Pexact over all columns (keyframes). The symbol
‖ · ‖F denotes the Frobenius norm of a matrix. Our testing ani-
mations (except the elastic hippopotamus and shark) were created
in 3D Studio Max using physically based cloth simulation. The
elastic hippopotamus and shark are animated in the same software
but as FFD soft bodies. For the visual results please see Figures
1, 7, 9 and the accompanying video. The results of approximat-
ing these animations using 100 proxy-joints are reported in Table 1.
This relatively high number of proxy-joints is a conservative es-
timate of how many transformations are really needed. However,
100 rigid transformations per frame are unlikely to present an issue
in terms of memory budget or a performance bottleneck (which is
much more likely to occur in the vertex or fragment shader, because
of the 3D models’ sizes).

An important issue is how our method compares to Skinned Mesh
Animations (SMAs) [James and Twigg 2005]. Unfortunately, we

no corrections 1 eigen-disp. 2 eigen-disp. 3 eigen-disp. original

Figure 4: EigenSkin corrections [Kry et al. 2002], adapted to our settings. Matrix palette skinning sometimes smoothes out the deformations,
because of lack of samples (transformations). However, fine details can be recovered by adding only few eigen-displacements.

Animation Vertices Triangles Keyframes Pre-processing % Error Compression
Falling Skirt 1 1468 2811 30 2.2 min 0.69 5.9
Falling Skirt 2 4969 9706 60 10.7 min 0.86 17.6
Skirt Walk 1 2963 5747 54 8.2 min 0.84 11.6
Skirt Walk 2 7526 14766 60 19.9 min 1.33 23.1
Curtain 6409 12528 200 48.7 min 0.16 27.6
Elastic Hippopotamus 6442 11542 100 151.8 min 0.11 24.4
Elastic Shark 10070 19301 100 205.7 min 0.04 33.5
Cloth Hippopotamus 6442 11542 100 33.5 min 0.86 24.4
Cloth Camel 20330 28332 100 79.5 min 0.8 50.4

Table 1: Results of Skinning Arbitrary Deformations for our testing animations. Conditions: rigid transformation fitting, separate handling
of vertex positions and normals, 100 proxy-joints, no corrections.

Animation Vertices Triangles Keyframes Joints SAD Pre-process SAD % Error SMA Pre-process SMA % Error
Cloth Horse 8431 16843 53 6 3.0 min 7.67 (0.17) 7.7 min 41.7 (0.88)
Flag(32 joints) 6906 13436 200 32 40.7 min 1.17 (0.44) 9.8 min 21.2 (5.93)
Flag(100 joints) 6906 13436 200 100 142.2 min 0.46 (0.17) 16.4 min 2.26 (1.25)
Elastic Cow 2904 5804 204 18 5.3 min 2.48 (1.2) 3.1 min 2.82 (1.54)

Table 2: Performance of our algorithm (SAD) executed on the highly deformable animations from the Skinning Mesh Animations (SMA)
paper [James and Twigg 2005]. In both algorithms, we use rigid transformations and the same number of proxy-joints. The numbers in
brackets denote the error after correction by 10 eigen-displacements. Compression ratio is not reported because is the same for both SAD and
SMA.

could not simply run SMAs on our testing animations, because their
implementation is not publicly available. However, we executed
our algorithm on the highly deformable animations from the SMA
paper. We compare the algorithms in the same setting (both use
rigid transformations and the same number of proxy-joints). Note
that in this case, the numbers of proxy-joints has not been set by the
user (as before), but selected by James and Twigg’s algorithm. The
results are summarized in Table 2. We see that, with the sole excep-
tion of the elastic cow animation, our algorithm fits with more than
five times higher accuracy. This is true for both uncorrected skinned
animations as well as for corrections with 10 eigendisplacements
(in brackets). In the case of the elastic cow, our algorithm achieves
only a slightly better fit than SMA. We presume this is because the
elastic cow is still quite similar to a quasi-articulated object, unlike
the remaining cloth models.

Experiments on SMAs with about 100 proxy-joints for extra an-
imations (e.g., the cloth horse animation) were carried out by
James [2006]. Unfortunately, issues arose with the mean shift im-
plementation (an algorithm used by SMAs), and it was found that
it is not robust enough to handle such cases (i.e., with a lot of little
clusters). We did not encounter any such robustness issues with our
algorithm.

However, it should be noted that while our algorithm is also ap-

plicable to quasi-articulated animations, SMAs are more advanta-
geous in this case. They automatically determine the lowest suit-
able number of proxy-joints, and also have shorter pre-processing
times than our algorithm. Our algorithm spends the vast majority
of pre-processing time in the optimization process (i.e., the LSQR
algorithm [Paige and Saunders 1982]). This is because in our algo-
rithm, each transformation in each keyframe undergoes optimiza-
tion. Note that the pre-processing times are highly influenced by
the related numerical issues, e.g., the condition number of the ma-
trix (compare the pre-processing times for the Elastic and Cloth
Hippopotamus).

An interesting question is how fast the error decreases for increas-
ing numbers of proxy-joints. We computed the error for 1 to 100
proxy-joints, using both rigid and affine transformation fitting (see
Figure 5). We observe two things: first, the rigid transformations
quickly become almost as accurate as the affine ones. Therefore,
rigid transformations (Section 4.2) are preferred, because they lead
to twice as good compression as the affine ones. Second, after about
60 proxy-joints, the approximation error decreases very slowly.
This suggests that the mesh corrections described in Section 5 are
more suitable for adding fine details than increasing the number of
proxy-joints.

The performance of skin corrections according to Section 5 is re-

50

100

40

30

20

10

80604020

proxy-joints

%
er

ro
r

rigid transformations

affine transformations

0
0

Figure 5: Falling Skirt 1 animation: error of fitting for increas-
ing number of proxy-joints. Even for low numbers of proxy-joints,
rigid fitting is almost as accurate as affine.

ported in Figure 6. We see that eigen-displacements are indeed a
good alternative to increasing the number of proxy-joints, as the
fitting error quickly drops to an unobservable level after applying
the few first eigen-displacements. This is in accordance with the
experiments of Kry et al. [2002].

1.0

0.8

0.6

0.4

0.2

30252015105

%
er

ro
r

eigen-displacements
0

0

Figure 6: The cloth hippopotamus animation (with 100 proxy-
joints and rigid transformations) is improved by adding eigen-
displacements (Section 5). Even one eigen-displacement adds most
fine details.

Three frames of the collapsing cloth hippopotamus animation are
shown in Figure 7. We see that even the rigid transformation fit-
ting without any corrections (top row) approximates the overall
shape very well. However, some fine details are smoothed out,
e.g., the crease under the hippopotamus’ eye – see Figures 4 and
7. This is improved by adding 5 corrective eigen-displacements
(Figure 7 middle row), which makes the reconstruction visually in-
distinguishable from the original animation (Figure 7 bottom). The
error of the uncorrected skinning is 0.86% and decreases to 0.07%
after correction with 5 eigen-displacements.

Matrix palette skinning approximations reduce the degrees of free-
dom of the animation, which is useful in a number of applications,
as discussed already by James and Twigg [2005]. Our algorithm
facilitates efficient hardware accelerated rendering, collision detec-
tion and rest-pose editing for non-quasi articulated models. Our
performance testing scenario involves one thousand unsimplified
elastic shark models (see Figure 8). The skinned approximations
avoid the bottleneck of sending large amounts of data down the
graphics pipeline, and therefore allows us to achieve 2.42 FPS in-
stead of 0.64 FPS as in the classic approach (i.e., sending all vertex
and normal data for each keyframe). Our implementation also ben-
efits from the rigid transformation fitting, by sending dual quater-
nions instead of matrices (which is more efficient because a dual
quaternion needs only 8 floats, instead of 12 for a rigid transforma-
tion matrix).

The deformable collision detection in [James and Twigg 2005] is
based on a Bounded Deformation Tree [James and Pai 2004], con-
structed for each rigid component. Obviously, this cannot work for
our method, because we do not assume the existence of any rigid
components. However, the skinned approximation computed by
our algorithm can be used for efficient collision detection as de-
scribed in [Kavan and Zara 2005]. This deformable collision detec-
tion algorithm builds a sphere-tree for the rest-pose of the model,
and refits the spheres on-demand, as required by each particular
collision detection query. This refitting is based on the joint trans-
formations, and thus is much faster than refitting for the original
animation, which has to work directly with the vertex positions.

Finally, we demonstrate that our skinning approximations are ro-
bust enough to propagate small changes of the rest-pose geometry
over the rest of the animation. This is a convenient tool for anima-
tion editing and/or simplification. Imagine, for example, that we
want to change an original plain skirt into a pleated one. Thanks
to our skinning approximation, this can be done simply by edit-
ing the rest-pose – see Figure 9. Note also that thanks to our simple
weighting scheme (Section 3), it is also possible to change the mesh
connectivity and, for example, perform mesh simplification.

7 Conclusions and Future Work

This paper presents a method to automatically generate skinned ap-
proximations of arbitrary deformations. To our knowledge, this
is the first attempt to extend the popular matrix palette skinning

Figure 7: The animation of a collapsing cloth hippopotamus.
Top: Uncorrected skinning with 100 proxy-joints and rigid trans-
formations. Middle: Skinning corrected by adding 5 eigen-
displacements. Bottom: The original animation.

Figure 8: One thousand unsimplified shark models, animated using
our method on a GeForce 6600 GT at 2.42 FPS.

(a) (b)

(c) (d)

Figure 9: Rest-pose editing: the original plain skirt in the rest-pose
(a), is changed to a pleated skirt (b). Our method then automati-
cally propagates the pleats over the whole animation. The image
(c) shows one frame of the original animation, and (d) the resulting
one.

method to a more general class of deformations, such as those of
cloth and elastic materials. Our algorithm can be easily incorpo-
rated into most existing real-time animation systems, yielding the
benefits of memory saving and efficient rendering. There is also an
interesting theoretical aspect to our approach: the description of a
deformation field by sampling at discrete points, analogous to 2D
digital image processing.

There are many possible avenues of future work. In our method,
we combat only spatial correlation, but not temporal. The co-
herency between frames could be exploited to achieve more effi-
cient data reduction. Other interesting future work would be to im-
prove proxy-joint positioning, e.g., using relaxation [Turk 1991],
or adaptive (and perhaps hierarchical) approaches. This would en-
able the algorithm to focus on the important parts of the animation
and assign them more proxy-joints (even though the transformation
fitting would probably be the same as described in this paper). Fi-
nally, the theoretical aspects of deformation field sampling could be
studied, along the lines of digital image processing. For example,
it might be possible to find an analogy in deformations fields to the
sampling theorem, Fourier transform and band filtering.

8 Acknowledgements

We are indebted to Doug L. James and Christopher D. Twigg for
their extensive support. We are grateful to Doug L. James also for
providing the flag animation and for performing further tests with
Skinned Mesh Animations. We also wish to thank Matthias Muller
for the cow dataset, Robert Sumner for the collapsing horse and the
anonymous reviewers for their helpful comments. We would like
to acknowledge the support of the Higher Education Authority of
Ireland. This work has been partly supported by the Ministry of
Education of the Czech Republic under the research programs LC-
06008 (Center for Computer Graphics) and MSM 6840770014.

References

AGARWAL, P. K., AND SHARIR, M. 1998. Efficient algorithms for geometric opti-
mization. ACM Comput. Surv. 30, 4, 412–458.

ALEXA, M., AND MÜLLER, W. 2000. Representing animations by principal compo-
nents. Comput. Graph. Forum 19, 3, 411–418.

BRICENO, H. M., SANDER, P. V., MCMILLAN, L., GORTLER, S., AND HOPPE, H.
2003. Geometry videos: a new representation for 3d animations. In SCA ’03: Pro-
ceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on Computer an-

imation, Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, 136–
146.

COLLINS, G., AND HILTON, A. 2005. A rigid transform basis for animation com-
pression and level of detail. In Vision, Video, and Graphics, 1–7.

GONZALES, T. 1985. Clustering to minimize the maximum intercluster distance.
Theor. Comput. Sci. 38, 22, 293–306.

GU, X., GORTLER, S. J., AND HOPPE, H. 2002. Geometry images. In SIGGRAPH
’02: Proceedings of the 29th annual conference on Computer graphics and inter-
active techniques, ACM Press, New York, NY, USA, 355–361.

GUSKOV, I., AND KHODAKOVSKY, A. 2004. Wavelet compression of parametri-
cally coherent mesh sequences. In SCA ’04: Proceedings of the 2004 ACM SIG-
GRAPH/Eurographics symposium on Computer animation, ACM Press, New York,
NY, USA, 183–192.

JAMES, D. L., AND PAI, D. K. 2004. BD-Tree: output-sensitive collision detection
for reduced deformable models. ACM Trans. Graph. 23, 3, 393–398.

JAMES, D. L., AND TWIGG, C. D. 2005. Skinning mesh animations. ACM Trans.
Graph. 24, 3, 399–407.

JAMES, D. L., 2006. Personal communication.

KARNI, Z., AND GOTSMAN, C. 2004. Compression of soft-body animation se-
quences. Computers & Graphics 28, 1, 25–34.

KAVAN, L., AND ZARA, J. 2005. Fast collision detection for skeletally deformable
models. Computer Graphics Forum 24, 3, 363–372.

KAVAN, L., COLLINS, S., O’SULLIVAN, C., AND ZARA, J. 2007. Skinning with
dual quaternions. In SI3D ’07: Proceedings of the 2007 symposium on Interactive
3D graphics and games, ACM Press, this issue.

KIRCHER, S., AND GARLAND, M. 2005. Progressive multiresolution meshes
for deforming surfaces. In SCA ’05: Proceedings of the 2005 ACM SIG-
GRAPH/Eurographics symposium on Computer animation, ACM Press, New York,
NY, USA, 191–200.

KRY, P. G., JAMES, D. L., AND PAI, D. K. 2002. Eigenskin: real time large de-
formation character skinning in hardware. In Proceedings of the 2002 ACM SIG-
GRAPH/Eurographics symposium on Computer animation, ACM Press, 153–159.

LENGYEL, J. E. 1999. Compression of time-dependent geometry. In SI3D ’99:
Proceedings of the 1999 symposium on Interactive 3D graphics, ACM Press, New
York, NY, USA, 89–95.

LINDHOLM, E., KLIGARD, M. J., AND MORETON, H. 2001. A user-programmable
vertex engine. In SIGGRAPH ’01: Proceedings of the 28th annual conference on
Computer graphics and interactive techniques, ACM Press, New York, NY, USA,
149–158.

MAMOU, K., ZAHARIA, T., AND PRETEUX, F. 2006. A skinning approach for
dynamic 3D mesh compression: Research articles. Comput. Animat. Virtual Worlds
17, 3-4, 337–346.

MCCARTHY, J. M. 1990. Introduction to theoretical kinematics. MIT Press, Cam-
bridge, MA, USA.

MOHR, A., AND GLEICHER, M. 2003. Building efficient, accurate character skins
from examples. ACM Trans. Graph. 22, 3, 562–568.

OH, S., KIM, H., MAGNENAT-THALMANN, N., AND WOHN, K. 2005. Generating
unified model for dressed virtual humans. The Visual Computer 21, 8-10, 522–531.

PAIGE, C. C., AND SAUNDERS, M. A. 1982. Algorithm 583: LSQR: Sparse linear
equations and least squares problems. ACM Trans. Math. Softw. 8, 2, 195–209.

SATTLER, M., SARLETTE, R., AND KLEIN, R. 2005. Simple and efficient com-
pression of animation sequences. In SCA ’05: Proceedings of the 2005 ACM SIG-
GRAPH/Eurographics symposium on Computer animation, ACM Press, New York,
NY, USA, 209–217.

SEDERBERG, T. W., AND PARRY, S. R. 1986. Free-form deformation of solid geo-
metric models. In SIGGRAPH ’86: Proceedings of the 13th annual conference on
Computer graphics and interactive techniques, ACM Press, New York, NY, USA,
151–160.

TURK, G. 1991. Generating textures on arbitrary surfaces using reaction-diffusion. In
SIGGRAPH ’91: Proceedings of the 18th annual conference on Computer graphics
and interactive techniques, ACM Press, New York, NY, USA, 289–298.

WANG, X. C., AND PHILLIPS, C. 2002. Multi-weight enveloping: least-squares
approximation techniques for skin animation. In Proceedings of the 2002 ACM
SIGGRAPH/Eurographics symposium on Computer animation, ACM Press, 129–
138.

