
EUROGRAPHICS 2008 / G. Drettakis and R. Scopigno
(Guest Editors)

Volume 27 (2008), Number 3

CHC++: Coherent Hierarchical Culling Revisited

Oliver Mattausch1, Jiří Bittner2, Michael Wimmer1

1Vienna University of Technology, Austria
2Czech Technical University in Prague, Czech Republic

Abstract

We present a new algorithm for efficient occlusion culling using hardware occlusion queries. The algorithm sig-

nificantly improves on previous techniques by making better use of temporal and spatial coherence of visibility.

This is achieved by using adaptive visibility prediction and query batching. As a result of the new optimizations

the number of issued occlusion queries and the number of rendering state changes are significantly reduced. We

also propose a simple method for determining tighter bounding volumes for occlusion queries and a method which

further reduces the pipeline stalls. The proposed method provides up to an order of magnitude speedup over the

previous state of the art. The new technique is simple to implement, does not rely on hardware calibration and

integrates well with modern game engines.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling

1. Introduction

Occlusion culling is an important technique to reduce the
time for rendering complex scenes. The availability of so-
called hardware occlusion queries has made runtime deter-
mination of visibility attractive. Hardware occlusion queries
are a mechanism by which graphics hardware can quickly
report the visibility status of simple proxy geometry. How-
ever it was only by exploiting temporal coherence, e.g. in the
Coherent Hierarchical Culling (CHC) algorithm [BWPP04],
that using hardware occlusion queries became feasible, as
this avoids CPU stalls and GPU starvation.

The CHC algorithm works well in densely occluded
scenes, but the overhead of hardware occlusion queries
makes it fall behind even simple view-frustum culling
(VFC) in some situations. This was recognized by Guthe et
al. [GBK06], who provide an algorithm, called Near Optimal
Hierarchical Culling (NOHC), which reduces the number of
queries based on a clever statistical model of occlusion and
a hardware calibration step. However, it turns out that even
the optimum defined by Guthe et al. can still be improved by
exploiting further sources of simplification.

In this paper, we propose CHC++, a method that signifi-
cantly improves on previous online occlusion culling meth-

Frame

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

Time (ms)

CHC

CHC++

NOHC

VFC

 800 900 1000 1300 1200 1100
 1

Figure 1: Frame time comparison for a walkthrough of the

Powerplant model for View Frustum Culling (VFC), Coher-

ent Hierarchical Culling (CHC), Near Optimal Hierarchical

Culling (NOHC), and our new algorithm (CHC++).

ods (see Figure 1). The core of the algorithm remains sim-
ple, requires no calibration, and allows easy integration into
a game engine. The major contributions of the method are:

• Reduction of state changes. Despite its importance, the
reduction of state changes was not explicitly addressed by
previous occlusion culling methods. Our method provides
a powerful mechanism to minimize the number of state

c© The Eurographics Association and Blackwell Publishing 2008. Published by Blackwell
Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and 350 Main Street, Malden,
MA 02148, USA.

O. Mattausch & J. Bittner & M. Wimmer / CHC++: Coherent Hierarchical Culling Revisited

changes by using batching of queries. As a result the total
number of state changes is reduced by more than an order
of magnitude (see Figure 2).

• Reduction of number of queries. Reducing the number
of queries was a major goal of previous research on hard-
ware based occlusion culling. For example, the NOHC al-
gorithm proposed by Guthe et al. [GBK06] is very suc-
cessful at reducing the number of queries for views with
low occlusion. We propose two new methods for further
reduction of the number of queries. The first method re-
solves visibility of many nodes in the hierarchy by a sin-
gle query, the second method exploits tighter bounding
volumes for the queries without the need for any auxiliary
data structures like oriented bounding boxes or k-dops.
As a result we achieve a significantly lower number of
queries than the “optimal” algorithm defined by Guthe et
al. [GBK06] (see Figure 2).

• Reduction of CPU stalls. The CHC algorithm does a
good job at reducing CPU stalls, however in certain sce-
narios stalls still occur and cause a performance penalty.
We propose a simple modification which provides further
reduction of the wait time, which at the same time inte-
grates well with our method for reducing state changes.

• Reduction of rendered geometry. Tighter bounding vol-
umes will reduce the overestimation of visibility caused
by bounding volumes and therefore reduce the amount of
geometry classified as visible.

• Integration with game engines. Most game engines in-
corporate a highly optimized rendering loop in which sort-
ing by materials and shaders is performed in order to
minimize rendering state changes. Our method allows the
rendering engine to perform such a sort on a batch of
primitives stored in a render queue. Additionally the pro-
posed technique significantly reduces the number of en-
gine calls.

2. Related Work

Even in CPU-limited applications, which often occur with
today’s rapidly evolving graphics hardware, visibility culling
can significantly reduce the time spent in the graphics driver
and the rendering API, allowing better usage of the graphics
hardware. For a general overview of visibility culling please
refer to the thorough surveys of Cohen-Or et al. [COCSD02]
and Bittner and Wonka [BW03].

Visibility algorithms can be roughly categorized into
those that work as a preprocessing step and those that work
at runtime. While preprocessing algorithms have no runtime
overhead, they are often difficult to implement and work
for static scenes only. Online occlusion culling on the other
hand does not rely on a lengthy preprocessing step, is poten-
tially more accurate as it computes visibility from a point,
and allows for fully dynamic scenes. As most online culling
algorithms work in image space, they allow automatic oc-
cluder fusion using rasterization. Before dedicated hardware

Figure 2: Top left: A sample view point in a city scene. Top

right: State changes required by the CHC algorithm (number

of state changes = number of different colors of hierarchy

nodes). Bottom left: State changes required by the CHC++

algorithm. Bottom right: Multiqueries: all invisible nodes

are covered by only two occlusion queries (shown in differ-

ent colors).

support existed, online occlusion culling was mostly consid-
ered too costly for practical use, with some notable excep-
tions such as the Hierarchical Occlusion Maps from Zhang et
al. [ZMHH97] or the dPVS system from Aila et al. [AM04].

With the introduction of hardware accelerated occlusion
queries, online occlusion culling gained a lot of popular-
ity. Hardware occlusion queries are relatively lightweight
instructions that return the number of visible pixels of
proxy geometry without the need of reading back the
frame buffer. They opened the field for a variety of algo-
rithms [KS01, HSLM02, GSYM03, SBS04, KS05]. How-
ever, the queries still come with a cost, so a naive imple-
mentation can be very slow due to idle time of the GPU and
CPU that is caused by waiting for the query to return.

Coherent Hierarchical Culling [BWPP04], and later Near
Optimal Hierarchical Culling [GBK06] avoid idle time by
making use of temporal coherence. They will be discussed
in more detail in the following section.

3. Overview

In this section we briefly review the CHC and the NOHC al-
gorithms and discuss some of their issues. Then we describe
the major components of the new CHC++ algorithm.

3.1. CHC and its problems

The Coherent Hierarchical Culling algorithm [BWPP04]
makes use of temporal and spatial coherence to reduce the

c© The Eurographics Association and Blackwell Publishing 2008.

O. Mattausch & J. Bittner & M. Wimmer / CHC++: Coherent Hierarchical Culling Revisited

overhead and latency of hardware occlusion queries. It tra-
verses the hierarchy in a front-to-back order and issues
queries only for previously visible leaves and nodes of the
previously invisible boundary. Previously visible leaves are
assumed to stay visible in the current frame, and hence they
are rendered immediately. The result of the query for these
nodes only updates their classification for the next frame.
The invisible nodes are assumed to stay invisible, but the
algorithm retrieves the query result in the current frame in
order to discover visibility changes. Refer to Figure 6 for
the pseudocode of the original original CHC algorithm (un-
marked parts).

The reduction of the number of queries (queries are not
issued on previously visible interior nodes) and clever in-
terleaving reduced the overhead of occlusion queries to an
acceptable quantity. The algorithm works very well for sce-
narios that have a lot of occlusion. However, on newer hard-
ware where rendering geometry becomes cheap compared
to querying, or view points where much of the scene is vis-
ible, the method can become even slower than conventional
view-frustum culling. This is a result of wasted queries and
unnecessary state changes. This problem makes the CHC al-
gorithm less attractive for game developers, who call for an
algorithm which is reliably faster than view-frustum culling.
Another problem of CHC lies in the complicated integration
of the method into the rendering loop of highly optimized
game engines. CHC interleaves rendering and querying of
individual nodes of the spatial hierarchy which does not al-
low the engine to perform material sorting and leads to a
higher number of engine API calls.

3.2. NOHC and its problems

The Near Optimal Hierarchical Culling algorithm proposed
by Guthe et al. [GBK06] tackles the problem of wasted
queries. The method uses a calibrated model of graphics
hardware to estimate costs of the queries and costs of ren-
dering. It estimates occlusion of nodes by using a sim-
ple screen coverage model and further corrections assum-
ing temporal coherence. The occlusion estimation and hard-
ware model are used in a cost/benefit heuristics which de-
cides whether to apply an occlusion query on the currently
processed node. This heuristic uses a sophisticated reason-
ability test for queries with a couple of rules.

The algorithm saves a significant number of queries, es-
pecially queries which would be applied on visible nodes.
This can lead to a significant improvement over the CHC al-
gorithm if the assumed visibility optimization proposed for
CHC is not used.

The results for NOHC indicate that with a proper hard-
ware calibration the method always performs better than
view-frustum culling. In their paper, Guthe et al. [GBK06]
also defined an optimal culling algorithm based on occlusion
queries. The optimal algorithm is derived under the assump-
tion that the status of every culled node has to be verified

by an occlusion query. The NOHC method then closely ap-
proaches the optimal algorithm.

In our paper we show that the definition of optimality used
by Guthe et al. [GBK06] still leaves significant room for im-
provement. In fact, the CHC++ algorithm is always clearly
below the optimum defined by Guthe et al.

NOHC requires a hardware calibration step in which the
hardware parameters are measured in a preprocess using ar-
tificial rendering scenarios. Measuring accurate parameters
of the model requires very careful implementation. However,
it turns out that even if precisely implemented, these mea-
surements need not reflect the complex processes of state
changes, pipelining, and interleaving rendering and occlu-
sion queries during actual walkthroughs. Our new method
does not rely on hardware calibration and aims to minimize
its dependence on external parameters. In fact it leaves the
user with loosely setting a few parameters whose influence
is well predictable.

3.3. Building blocks of CHC++

The new CHC++ algorithm method addresses all previously
mentioned problems, and extends CHC by including the fol-
lowing new components:

Queues for batching of queries. Before a node is
queried, it is appended to a queue. Separate queues are used
for accumulating previously visible and previously invisible
nodes. We use the queues to issue batches of queries instead
of individual queries. This reduces state changes by one to
two orders of magnitude. The batching of queries will be
described in Section 4.

Multiqueries. We compile multiqueries (Section 5.1),
which are able to cover more nodes by a single occlusion
query. This reduces the number of queries for previously in-
visible nodes up to an order of magnitude.

Randomized sampling pattern for visible nodes. We
apply a temporally jittered sampling pattern (Section 5.2) for
scheduling queries for previously visible nodes. This reduces
the number of queries for visible nodes and while spreading
them evenly over the frames of the walkthrough.

Tight bounding volumes. We use tight bounding vol-
umes (Section 6) without the need for their explicit construc-
tion. This provides a reduction of the number of rendered
triangles as well as a reduction of the number of queries.

Note that for all tests presented in the paper we used an
axis-aligned bounding volume hierarchy (BVH) constructed
according to the surface area heuristics [MB90]. The pre-
sented methods are however compatible with other types of
spatial hierarchies [MBM∗01], except for the tight bounding
volumes optimization, which explicitly exploits the proper-
ties of BVH.

c© The Eurographics Association and Blackwell Publishing 2008.

O. Mattausch & J. Bittner & M. Wimmer / CHC++: Coherent Hierarchical Culling Revisited

4. Reducing state changes

Changes of rendering state constitute a significant cost in the
rendering pipeline. Previous occlusion culling methods fo-
cused mainly on scheduling the queries in a way that hides
latencies and keeps the GPU occupied, as well as reducing
the overall number of queries. However, even if the num-
ber of queries is reduced, every remaining query potentially
leads to a state change in which at least writing to color and
depth buffers is disabled and then re-enabled after the query.
If complex shaders are used then this state change also in-
volves switching the shader on and off.

It turns out that these changes of rendering state cause an
even larger overhead than the query itself. The overhead may
be on the hardware side (e.g., flushing caches), on the driver
side or even on the application side. Thus it is highly desir-
able to reduce the number of state changes to an acceptable
amount: game developers refer to about 200 state changes
per frame as an acceptable value on current hardware.

Query batching. Our solution to this problem is based on
batching occlusion queries instead of issuing queries imme-
diately when they are requested by the algorithm. The ren-
dering state is changed only once per batch and thus the re-
duction of state changes directly corresponds to the size of
the query batches we issue. The batching algorithm handles
visible and invisible nodes differently as described in the fol-
lowing sections.

4.1. Batching previously invisible queries

The invisible nodes to be queried are appended to a queue
which we call i-queue. When the number of nodes in the
i-queue reaches a user-defined batch size b, we change the
rendering state for querying and issue an occlusion query
for each node in the i-queue (in Section 5.1 we will see how
several nodes can be combined in one occlusion query in
order to reduce the number of queries).

The batch size b is tightly connected with the reduction of
render state changes, giving approximately b times less state
changes than the CHC algorithm. On the other hand, batch-
ing effectively delays the availability of query results for in-
visible nodes, which means that visibility changes could be
detected later and follow-up queries spawned by them would
introduce further latency if there is not enough alternative
work (e.g., rendering visible nodes) left.

An optimal value for b depends on the scene geometry,
material shaders, and the capabilities of the rendering engine
with respect to material sorting. For our scenes and render-
ing engine we observed that precise tuning of this parameter
is not necessary and that values between 20 and 80 give a
largely sufficient reduction of render state changes while not
introducing additional latency into the method.

4.2. Batching previously visible queries

Recall that the CHC algorithm issues a query for previously
visible node and renders the geometry of the node without
waiting for the result of the query. Similarly to CHC, our
proposed method renders the geometry of previously visible
nodes during the hierarchy traversal. However the queries
are not issued immediately. Instead the corresponding nodes
are stored in a queue which we call v-queue.

An important observation is that the queries for these
nodes are not critical for the current frame since their result
will only be used in the next frame. We exploit this observa-
tion by using nodes from the v-queue to fill up waiting time:
whenever the traversal queue is empty and no outstanding
query result is available, we process nodes from the v-queue.

As a result we perform adaptive batching of queries for
previously visible nodes driven by the latency of the out-
standing queries. At the end of the frame, when all queries
for previously invisible nodes have been processed, the
method just applies a single large batch for all unprocessed
nodes from the v-queue.

Note that before processing a node from the v-queue, we
also check whether a render state change is required. It turns
out that in the vast majority of cases there is no need to
change the render state at all as it was already changed by
a previously issued query batch for invisible nodes. There-
fore, we have basically eliminated state changes for previ-
ously visible nodes.

As a beneficial side effect, the v-queue reduces the effect
of violations of the front-to-back ordering made by the origi-
nal CHC algorithm. In particular if a previously hidden node
occludes a previously visible node in the current frame, this
effect would only be captured in the next frame, as the previ-
ously visible node would often be queried before the previ-
ously invisible node is rendered. This issue becomes appar-
ent in situations where many visibility changes happen at the
same time. Delaying the queries using the v-queue will make
it more likely for such visibility changes to be detected.

4.3. Game engine integration

For easy integration of the CHC++ method into existing
game engines we propose to use an additional queue in the
algorithm which we call render queue. This queue accu-
mulates all nodes scheduled for rendering and is processed
when a batch of queries is about to be issued. When pro-
cessing the render queue the engine can apply its internal
material shader sorting and then render the objects stored
in the queue in the new order. Another beneficial effect of
the render queue is the reduction of engine API calls. These
calls can be very costly and thus their reduction provides
significant speedup as we experienced for example with the
popular OGRE game engine.

The overview of the different queues used by the CHC++

c© The Eurographics Association and Blackwell Publishing 2008.

O. Mattausch & J. Bittner & M. Wimmer / CHC++: Coherent Hierarchical Culling Revisited

Figure 3: Different queues used by the CHC++ algorithm.

The queues which were not used by the CHC algorithm are

highlighted in blue.

algorithms is shown in Figure 3. Note that the overlaid nodes
in the query queue correspond to multiqueries which will be
discussed in Section 5.1.

5. Reducing the number of queries

Recent online occlusion culling methods focused on reduc-
ing the number of occlusion queries in order to reduce their
overhead. In particular the method of Guthe et al. [GBK06]
proposed a sophisticated approach for eliminating queries
based on a cost/benefit heuristics and a calibrated model of
the graphics hardware. In this section we propose two new
methods which are able to reduce the number of queries even
below the hypothetical algorithm previously defined as opti-
mal by Guthe et al.

5.1. Multiqueries for invisible nodes

All previous techniques use one occlusion query per previ-
ously invisible primitive to be tested (node in a hierarchy,
bounding volume, cell in a grid). The occlusion queries for
these nodes were considered irreducible.

However, the following observation allows us to reduce
the number of queries even for previously invisible nodes: If
some previously invisible part of a scene remains invisible
in the current frame, a single occlusion query for the whole
part is sufficient to verify its visibility status. Such a query
would render all bounding boxes of primitives in this scene
part, and return zero if all primitives remain occluded. For
example, in the extreme case of a static scene and a static
view point, a single occlusion query could be used for all
invisible parts of the scene.

Assuming a certain coherence of visibility, our new tech-
nique aims to identify such scene parts by forming groups
of previously invisible nodes that are equally likely to re-
main invisible. A single occlusion query is issued for each
such group, which we call a multiquery. If the multiquery re-
turns zero, all nodes in the group remain invisible and their
status has been updated by the single query. Otherwise the
coherence was broken for this group and we issue individual
queries for all nodes by reinserting them in the i-queue. Note
that in the first case the number of queries is reduced by the
number of primitives in the group. However, in the second
case the multiquery for the batch was wasted.

We use an adaptive mechanism based on a cost/benefit
heuristics to find suitable node groupings. The crucial part
of the evaluation is the estimation of coherence in the vis-
ibility classification of the nodes, which is described in the
next section. The actual heuristics will be described in Sec-
tion 5.1.2.

5.1.1. Estimating coherence of visibility

In the vast majority of cases there is a strong coherence in
visibility for most nodes in the hierarchy. Our aim is to quan-
tify this coherence. In particular, knowing the visibility clas-
sification of a given node, we aim to estimate the probability
that this node will keep its visibility classification in the next
frame. Our experiments indicate that there is a strong corre-
lation of this value with the “history” of the node, i.e., with
the number of frames the node already kept the same visi-
bility classification (we call this value visibility persistence).
Nodes that have been invisible for a very long time are likely
to stay invisible. Such nodes could be the engine block of a
car, for example, that will never be visible unless the cam-
era moves inside of the car engine. On the contrary, even in
slow moving scenarios, there are always some nodes on the
visible border which frequently change their classification.
Hence there is a quite high chance for nodes that recently
became invisible to become visible soon.

We define the desired probability as a function of the vis-
ibility persistence i, and approximate it based on the history
of previous nodes:

pkeep(i) ≈
n

keep
i

nall
i

(1)

where n
keep
i is the number of already tested nodes which

have been in the same state for i frames and keep their state
in the i + 1-th frame, and nall

i is the total number of already
tested nodes which have been in the same state for i frames.
Figure 4 shows a plot of the probability pkeep against the

visibility persistence i. The counters n
keep
i and nall

i are accu-
mulated over all previous frames of the walkthrough.

In the first few frames there are not enough measurements

c© The Eurographics Association and Blackwell Publishing 2008.

O. Mattausch & J. Bittner & M. Wimmer / CHC++: Coherent Hierarchical Culling Revisited

for accurate computation of pkeep(i), especially for larger
values of i. We solve this problem by piecewise constant
propagation of the already computed values to the higher
values of pkeep(i).

As a simpler alternative to evaluating pkeep(i) by mea-
surements, we propose an analytic formula which corre-
sponds reasonably well to the functions we measured for our
scenes and walkthroughs:

pkeep(i) ≈ 0.99−0.7e
−i (2)

Using this function does not provide as accurate estima-
tions of pkeep as the measured function, but can be used to
avoid implementing the evaluation of the measured function.
Figure 4 illustrates the analytic function and the measured
functions for two different scenes.

FRAMES COHERENT

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50

FITTED
VIENNA

POWERPLANT

PROBABILITY OF COHERENCE

 0.2

Figure 4: pkeep(i) in dependence on visibility persistence i.

Note that the analytic function from Eq. 2 closely matches

the functions measured for Powerplant and Vienna scenes.

5.1.2. Cost/benefit model for multiqueries

Determining the optimal size of a multiquery for previously
invisible nodes in a given batch (i.e., the i-queue) is a global
optimization problem that requires evaluation of all possible
partitions of the batch into multiqueries. Instead, we use a
greedy model which maximizes a benefit/cost ratio for each
multiquery.

The cost is the expected number of queries issued per one
multiquery, which is expressed as:

C(M) = 1+ p f ail(M)∗ |M|, (3)

where p f ail(M) is the probability that the multiquery fails
(returns visible, in which case all nodes have to be tested in-
dividually) and |M| is the number of nodes in the multiquery.
Note that the constant 1 represents the cost of the multiquery
itself, whereas p f ail(M) ∗ |M| expresses the expected num-
ber of additionally issued queries for individual nodes. The
probability p f ail is calculated from the visibility persistence
values iN of nodes in the multiquery as:

p f ail(M) = 1− ∏
∀N∈M

pkeep(iN), (4)

The benefit of the multiquery is simply the number of
nodes in the multiquery, i.e. B(M) = |M|.

Given the nodes in the i-queue, the greedy optimization
algorithm maximizes the benefit at the given cost. We first
sort the nodes in descending order based on their probability
of staying invisible, i.e. pkeep(iN). Then, starting with the
first node in the queue, we add the nodes to the multiquery
and at each step we evaluate the value V of the multiquery
as a benefit/cost ratio:

V (M j) =
B(M j)

C(M j)
(5)

It turns out that V reaches a maximum for a particular
M j and thus j corresponds to the optimal size of the multi-
query for the nodes in the front of the i-queue. Once we find
this maximum, we issue the multiquery for the correspond-
ing nodes and repeat the process until the i-queue is used up.
As a result we compile larger multiqueries for nodes with
high probability of staying invisible and small multiqueries
for nodes which are likely to turn visible.

5.2. Skipping tests of visible nodes

The original CHC algorithm introduced an important opti-
mization in order to reduce the number of queries on previ-
ously visible nodes. A visible node is assumed to stay visible
for nav frames and it will only be tested in the frame nav +1.
This optimization effectively reduces the average number of
queries for previously visible leaves by a factor of nav +1.

This simple method however has a problem that the
queries can be temporally aligned. This query alignment be-
comes problematic in situations when nodes tend to become
visible in the same frame. For example consider the case
when the view point moves from the ground level above the
roof level in a typical city scene, causing many nodes to be-
come visible in the same frame. Afterwards the queries of
those nodes will be scheduled for the nav + 1-th frame, and
thus most of the queries will be aligned again. The average
number of queries per frame will still be reduced, but the
alignment can cause observable frame rate drops.

We observed that a randomization of nav + 1 by a small
random value −rmax < r < rmax does not solve the problem
in a satisfying manner. The problem is that if the randomiza-
tion is small, the queries might still be very much aligned.
On the other hand, if the randomization is big, some of the
queries will be processed too late and thus the change from
visible to invisible state will be captured too late.

We found that the most satisfying solution is achieved by

c© The Eurographics Association and Blackwell Publishing 2008.

O. Mattausch & J. Bittner & M. Wimmer / CHC++: Coherent Hierarchical Culling Revisited

Figure 5: Tight bounding volumes for nodes of the BVH

which more closely represent the objects shown as spheres.

The tight bounding volume consists of bounding boxes of the

children (red) instead of the parent box (white).

randomizing the first invocation of the occlusion query. After
a node has turned visible, we use a random value 0 < r < nav

for determining the next frame when a query will be issued.
Subsequently, if the node was already visible in the previous
test, we use a regular sampling interval given by nav.

We experimented with various values of nav. The opti-
mal value depends on the scene itself, inspection coherence,
hardware parameters as well as the rendering engine param-
eters. Fortunately, our tests show that the dependence is not
very strong and a value of 5−10 has been a safe and robust
choice for all tests.

6. Tighter bounding volumes

Apart from the overhead introduced by occlusion queries,
the success of a culling algorithm depends strongly on how
tightly the bounding volumes in the spatial hierarchy approx-
imate the contained geometry. If the fit is not tight enough,
many nodes will be classified as visible even though the con-
tained geometry is not. There are several techniques for ob-
taining tight bounding volumes, mostly by replacing axis-
aligned bounding boxes by more complex shapes. While
these methods could directly be applied to most occlusion
culling algorithms, they also constitute an overhead of cal-
culating and maintaining these volumes. This can become
costly especially for dynamic scenes.

We propose a simple method for determining tighter
bounds for inner nodes in the context of hardware occlusion
queries applied to an arbitrary bounding volume hierarchy.
For a particular node we determine its tight bounding vol-

ume as a collection of bounding volumes of its children at a
particular depth (see Figure 5).

It turns out that when using up-to-date APIs for render-
ing the bounding volume geometry (e.g., OpenGL vertex
buffer objects), a slightly more complex geometry for the
occlusion query practically does not increase its overhead.
However, there might be a penalty for rasterizing the tight
bounding volumes when some of the smaller bounding prim-
itives overlap in screen space, thus increasing the fill rate
compared to projecting the original bounding volume of the
node. To avoid such a case, we use a simple test to ensure the
usefulness of the tighter bounds. When collecting the child
nodes for the tight bounding volume, we test if the sum of

surface areas of the bounding volumes of the children is not
larger than smax times the surface area of the parent node
(note that this does not depend on a particular view point).
If this is the case, we terminate traversal and do not further
refine the bounding representation. We terminate the search
for bounding volumes if the depth from the node is greater
than a specified maximal depth dmax. The following values
gave good results in our tests: dmax = 3, smax = 1.4.

Note that it is advantageous to determine the tight bound-
ing volumes also for leaves of the hierarchy. This can be
easily achieved by building a slightly deeper hierarchy and
then marking interior nodes of the hierarchy containing less
than a specified number of triangles as virtual leaves, i.e.,
interior nodes that are considered as leaves during traversal.

As a result, tight bounding volumes provide several ben-
efits at almost no cost: (1) earlier culling of interior nodes
of the hierarchy, (2) culling of leaves which would other-
wise be classified as visible, (3) increase of coherence of
visibility classification of interior nodes. The first property
leads to a reduction of the number of queries. The second
property provides a reduction of the number of rendered tri-
angles. Finally, the third benefit avoids changes in visibility
classification for interior nodes caused by repeated pull-up
and pull-down of visibility.

7. Putting it all together

The CHC++ algorithm aims to keep the simplicity of the
CHC algorithm, with several important add-ons. In this sec-
tion we summarize the complete CHC++ algorithm and em-
phasize its main differences from the CHC algorithm. The
pseudocode of the CHC++ algorithm is shown in Figure 6.

As in CHC, we use a priority queue for traversing the hier-
archy. This queue provides a front-to-back order of the pro-
cessed nodes. Unlike CHC, the new algorithm uses two new
queues for storing nodes which should be queried (v-queue
and i-queue). These two queues are the key for reduction of
rendering state changes and compiling multiqueries.

The previously visible nodes are rendered immediately
as for CHC. If they are scheduled for testing in the cur-
rent frame, they are placed in the v-queue. The algorithm
for scheduling the queries uses the discussed temporally jit-
tered sampling pattern to reduce the number of queries and
to distribute them evenly over frames. The queries for nodes
stored in the v-queue are used to fill up the wait time if it
should occur. At the end of the frame the remaining nodes in
the v-queue form a single batch of queries.

The i-queue accumulates processed nodes which have
been invisible in the previous frames. When there is a suf-
ficient number of nodes in the queue, we apply a batch of
occlusion queries for nodes in the i-queue while compiling
them into the multiqueries.

When integrating the method into a game engine the vis-

c© The Eurographics Association and Blackwell Publishing 2008.

O. Mattausch & J. Bittner & M. Wimmer / CHC++: Coherent Hierarchical Culling Revisited

CHC++ begin
DistanceQueue.push(Root);
while !DistanceQueue.Empty() || !QueryQueue.Empty() do

while !QueryQueue.Empty() do

if FirstQueryFinished then
N = QueryQueue.Dequeue();
HandleReturnedQuery(N);

++ else
++ // next prev. vis. node query;
++ IssueQuery(v-queue.pop());

if !DistanceQueue.Empty() then
N = DistanceQueue.DeQueue();
if InsideViewFrustum(N) then

if !WasVisible(N) then
QueryPreviouslyInvisibleNode(N);

else
if N.IsLeaf && QueryReasonable(N)

then
++ v-queue.push(N);

TraverseNode(N);

++ if DistanceQueue.Empty() then
++ // issue remaining query batch;
++ IssueMultiQueries();

++ while !v-queue.empty() do
++ // remaining prev. visible node queries;
++ IssueQuery(v-queue.pop());

end

TraverseNode(N) begin

if IsLeaf(N) then
Render(N);

else
DistanceQueue.PushChildren(N);
N.IsVisible = false;

end

PullUpVisibility(N) begin

while !N.IsVisible do
N.IsVisible = true; N = N.Parent;

end

HandleReturnedQuery(Q) begin

if Q.visiblePixels > threshold then

++ if Q.size() > 1 then
++ QueryInvididualNodes(Q); // failed multiquery

else

if !WasVisible(N) then
TraverseNode(N);

PullUpVisibility(N);

else
N.IsVisible = false;

end

++ QueryPreviouslyInvisibleNode(N) begin
++ i-queue.push(N) ;
++ if i-queue.size() ≥ maxPrevInvisNodesBatchSize then
++ IssueMultiQueries(); // issue the query batch
++

end

++ IssueMultiQueries() begin

++ while !i-queue.Empty() do
++ MQ = i-queue.GetNextMultiQuery();
++ IssueQuery(MQ); i-queue.PopNodes(MQ);
++
++

end

Figure 6: Pseudo-code of the CHC++ main traversal loop and selected important functions. The differences to the original

CHC are marked in blue.

ible nodes are first accumulated in a render queue. The ren-
der queue is then processed by the engine before a batch of
queries from i-queue is about to be issued.

8. Results

For all our results we used an Intel Quad Core 2.66 MHz
CPU and an NVidia 8800 GTX graphics card. We tested
our method on three different scenes: Vienna, a typical
city scene with detailed street objects and trees (2,583,674
triangles and 10,535 BVH nodes); Pompeii, a generated
city scene with detailed buildings (5,646,041 triangles and
22,468 BVH nodes), and the Powerplant model (12,748,510
triangles and 17,793 BVH nodes). In all plots we con-
sistently use the following abbreviations: VFC for View-
Frustum Culling, CHC for Coherent Hierarchical Culling,
NOHC for Near Optimal Hierarchical Culling, and CHC++
for our new method. For all our measurements of CHC++
we used the following parameters: assumed visible frames
nav = 10, batch size b = 50, maximal depth for tighter
bounds dmax = 3, and the maximal surface area increase for

tighter bounds smax = 1.4. Note that all walkthroughs shown
here are included in the accompanying videos.

Figure 1, shown in the beginning of the paper, presents
a frame time comparison for a walkthrough in the Power-
plant. It can be seen that the CHC algorithm performs worse
than view-frustum culling for some parts of the walkthrough.
While NOHC is at least not worse than view-frustum culling,
our algorithm performs up to two times better than NOHC.

Figure 7 shows the frame times in a walkthrough in Pom-
peii and studies the behavior with respect to NOHC and two
artificial reference algorithms (NOHC-OPT and OPT). The
NOHC-OPT method refers to the function defined as opti-
mum by Guthe et al. [GBK06], which issues queries for all
invisible nodes but only if they are feasible according to their
cost model. The OPT method refers to an hypothetical algo-
rithm that will only render the visible nodes of the hierarchy
without issuing any query. OPT therefore does not depend on
the cost or implementation of occlusion queries at all and is
the fastest solution that can be achieved with a given hierar-
chy. We implemented the OPT method by recording the vis-

c© The Eurographics Association and Blackwell Publishing 2008.

O. Mattausch & J. Bittner & M. Wimmer / CHC++: Coherent Hierarchical Culling Revisited

CHC++

 10

 20

 30

 40

 50

 60

 70

 100 200 300 400 500 600 700 800

Time (ms)

Frame

NOHC
NOHC−OPT

OPT

 0

Figure 7: Frame time comparison of NOHC, the optimal al-

gorithm as defined by Guthe et al. (OPT-NOHC), CHC++,

and an algorithm that renders only visible nodes without

querying (OPT) in the Pompeii scene.

ibility results using the exact stop-and-wait algorithm which
does not make use of temporal coherence.

As claimed by the authors, NOHC is very close to NOHC-
OPT algorithm, except for difficult view points with a lot
of visible geometry. More notably, CHC++ is clearly sig-
nificantly faster than NOHC-OPT practically everywhere.
Furthermore, CHC++ is approaching the OPT curve for the
moderately complex parts of the scene, which is remarkable
since OPT cannot be beaten by any algorithm using occlu-
sion queries on the given hierarchy.

There is still some noticeable overhead of CHC++ com-
pared to OPT in the high frame time parts of the walk-
through, which correspond to views from over the houses
where a lot of the scene becomes visible and we have to is-
sue many queries to capture the change in visibility. The rest
of the time difference is caused by an accumulation of minor
things, like the overhead for maintaining all the queues.

 50

 45

 40

 35

 30

 25

 20

 15

 10

CHC+B+R+TB
CHC+B+R

CHC+B
CHC

CHC+B+R+TB+MQ

 100
Frame

 200 300 400 500 600 700 800

Time (ms)

Figure 8: The benefit of different optimizations in a walk-

through of the Powerplant. We start with CHC and add one

optimization at a time. The bottom curve with all optimiza-

tions corresponds to CHC++. The abbreviations have the

following meaning: B = batching of previously visible and

invisible nodes, R = randomization, TB = tighter bounds,

MQ = multiqueries.

Figure 8 shows the benefit of each optimization in another
walkthrough in the Powerplant. It is clearly visible that the
batching brings the majority of the benefit. Query batching

already removes a lot of the query overhead, otherwise the
benefit of some of the other optimizations would be much
more prominent. The randomization is most important in sit-
uations when many nodes become visible at once, which is
well visible in the beginning of the walkthrough. The benefit
of multiqueries depends on the absolute number of previ-
ously invisible nodes, which in turn depends on the proper-
ties of the hierarchy (a deeper hierarchy would mean more
benefit from multiqueries). Note that the relative benefits of
the different optimizations can change for different hardware
architectures and rendering engines.

Time (ms)

 10

 20

 30

 40

 50

 60

 50 100 150 200 250 300 350
Frame

NOHC DP

NOHC SH
NOHC FIX

CHC++ FIX
CHC++ SH

CHC++ DP
 0

Figure 9: Dependence of the frame time on shader complex-

ity in a walkthrough in the Powerplant. DP refers to depth

only pass, FIX to fixed pipeline shading only, SH to a shader

of moderately high complexity.

In Figure 9 we study how CHC++ and NOHC behave on a
walkthrough in the Powerplant with respect to shader com-

plexity. We made three different tests: In the first test we used
a depth only pass (DP), in the second test we used the stan-
dard fixed pipeline material shading of the original Power-
plant model (FIX). In the third test we applied a moderately
complex shader to all renderable geometry (i.e., the shader
has 40 texture lookups).

Note that the used walkthrough is challenging for methods
that exploit coherence because it has many swift changes
in visibility. As can be seen, the dependence on the shader
complexity is very low for CHC++. NOHC shows a much
stronger dependence, performing visibly better for the depth
pass than for the shaded geometry. Still the depth pass is
much slower than for CHC++. Obviously the state changes
lower the performance for the depth-only pass as well, even
if it only involves a switch of the depth write flag.

Figure 10 analyzes the behavior of all methods in the
Vienna scene, particularly with respect to the number of
queries and state changes. This figure shows that CHC++
fulfills the claim that it significantly reduces both queries and
state changes, and that this also translates into a significant
performance advantage over the other algorithms.

9. Conclusions

We proposed several modifications to the CHC algo-
rithm [BWPP04]. These modifications provide a significant

c© The Eurographics Association and Blackwell Publishing 2008.

O. Mattausch & J. Bittner & M. Wimmer / CHC++: Coherent Hierarchical Culling Revisited

CHC

 500

 1000

 1500

 2000

 2500

 3000

 3500

 450 500 550 600 700 750 800

NOHC

Queries

 650

CHC++

Frame

 0

State changes

 500

 1000

 1500

 2000

 2500

 3000

 3500

 450 500 550 600 650 700 750 800
Frame

CHC++

CHC

NOHC

 0

Time (ms)

 10

 20

 30

 40

 50

 60

 450 500 550 600 650 700 750 800

VFC

Frame

CHC++

CHC

NOHC

 0

Figure 10: Comparison of issued queries (left), state changes (middle), and the resulting frame rates for a walkthrough in

Vienna. Note that VFC does not impose any additional state changes.

reduction of state changes, number of queries, rendered tri-
angles, and a further reduction of pipeline stalls. These ben-
efits are achieved by batching of occlusion queries, multi-
queries which cover more nodes with a single query, a ran-
domly jittered temporal sampling pattern for queries, and
tighter bounding volumes.

The results show that compared to previous methods, the
new method provides up to two orders of magnitude reduc-
tion in the number of state changes and up to one order of
magnitude reduction in the number of queries. These sav-
ings translate into a twofold speedup compared to CHC and
about 1.5x speedup compared to NOHC [GBK06]. The pro-
posed method is for most cases within a few percent of the
“ideal” method which would know visibility classification in
advance and render visible geometry only without using any
occlusion queries. We believe that the new algorithm will
become useful for game programmers as it is stable, easy to
implement, and it integrates well with game engines.

In the future we want to study the possibility of automatic
parameter adaptation during the walkthrough by exploiting
the dependence of the total frame time on the number of is-
sued queries and rendered triangles.

Acknowledgments

This work has been supported by the Ministry of Education,
Youth and Sports of the Czech Republic under the research
program LC-06008 (Center for Computer Graphics), the Ak-
tion Kontakt grant no. 48p11, and the EU under the FP6
project no. IST-014891-2 (Crossmod)

References

[AM04] AILA T., MIETTINEN V.: dpvs: An occlusion culling
system for massive dynamic environments. IEEE Comput.

Graph. Appl. 24, 2 (2004), 86–97.

[BW03] BITTNER J., WONKA P.: Visibility in computer graph-
ics. Environment and Planning B: Planning and Design 30, 5
(sep 2003), 729–756.

[BWPP04] BITTNER J., WIMMER M., PIRINGER H., PUR-
GATHOFER W.: Coherent hierarchical culling: Hardware occlu-

sion queries made useful. Computer Graphics Forum 23, 3 (Sept.
2004), 615–624. Proceedings EUROGRAPHICS 2004.

[COCSD02] COHEN-OR D., CHRYSANTHOU Y., SILVA C., DU-
RAND F.: A survey of visibility for walkthrough applications.
IEEE Transactions on Visualization and Computer Graphics.

(2002).

[GBK06] GUTHE M., BALÁZS A., KLEIN R.: Near optimal hi-
erarchical culling: Performance driven use of hardware occlusion
queries. In Eurographics Symposium on Rendering 2006 (June
2006), Akenine-Möller T., Heidrich W., (Eds.), The Eurographics
Association.

[GSYM03] GOVINDARAJU N. K., SUD A., YOON S.-E.,
MANOCHA D.: Interactive visibility culling in complex environ-
ments using occlusion-switches. In SI3D (2003), pp. 103–112.

[HSLM02] HILLESLAND K., SALOMON B., LASTRA A.,
MANOCHA D.: Fast and Simple Occlusion Culling Using

Hardware-Based Depth Queries. Tech. Rep. TR02-039, De-
partment of Computer Science, University of North Carolina -
Chapel Hill, Sept. 12 2002.

[KS01] KLOSOWSKI J. T., SILVA. C. T.: Efficient conservative
visibility culling using the prioritized-layered projection algo-
rithm. IEEE Transactions on Visualization and Computer Graph-

ics 7, 4 (Oct. 2001), 365–379.

[KS05] KOVALCIK V., SOCHOR J.: Occlusion culling with sta-
tistically optimized occlusion queries. In WSCG (Short Papers)

(2005), pp. 109–112.

[MB90] MACDONALD J. D., BOOTH K. S.: Heuristics for ray
tracing using space subdivision. Visual Computer 6, 6 (1990),
153–65. criteria for building octree (actually BSP) efficiency
structures.

[MBM∗01] MEISSNER M., BARTZ D., MUELLER G., HUET-
TNER T., EINIGHAMMER J.: Generation of decomposition hier-
archies for efficient occlusion culling of large polygonal models.
In Proceedings of the Vision Modeling and Visualization Confer-

ence 2001 (Nov. 21–23 2001), pp. 225–232.

[SBS04] STANEKER D., BARTZ D., STRASSER W.: Occlusion
culling in OpenSG PLUS. Computers and Graphics 28, 1 (Feb.
2004), 87–92.

[ZMHH97] ZHANG H., MANOCHA D., HUDSON T., HOFF III
K. E.: Visibility culling using hierarchical occlusion maps. In
SIGGRAPH 97 Conference Proceedings (Aug. 1997), Whitted
T., (Ed.), Annual Conference Series, ACM SIGGRAPH, Addison
Wesley, pp. 77–88. ISBN 0-89791-896-7.

c© The Eurographics Association and Blackwell Publishing 2008.

