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a b s t r a c t

We propose a novel method for computing labeling of 3D illustrations in real-time. We solve a multiple

criteria optimization problem in which we consider the desired layout already in the stage of searching

for salient points of the labeled areas. In the solution we employ fuzzy logic combined with greedy

optimization. The method runs on the GPU and achieves interactive rates on medium sized models. The

results indicate that the method compares favorably to the state-of-the-art interactive labeling

techniques.
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1. Introduction

Illustrations are an important visual component of commu-
nication. They are used to visually expound various objects and
support their textual description. In the latter case the reader
needs to link the terms contained in the text with the illustration.
The relation between textual and visual representations of
information is mediated through labeling, i.e. assigning textual
labels to various parts of the illustration. Digital media offer new
possibilities for illustrations, such as 3D models, which the reader
can manipulate interactively.

In this paper we present a novel labeling method which is
targeted at interactive illustration of 3D models. The three main
contributions of the paper are: (1) We formulate the labeling as
multiple criteria optimization problem which considers the desired
layout already in the stage of searching for salient points of labeled
areas. This improves the resulting labeling compared to previous
methods especially in the areas with many labels (see Fig. 1).
(2) We use fuzzy logic and greedy optimization to solve the
multiple criteria optimization problem. (3) We describe a GPU
implementation of the method, which achieves interactive rates on
medium sized models. Since the labeling is recomputed every
frame, our method supports arbitrary manipulations of the model
as well as interactive modifications of the model and of the labels.

The paper is organized as follows: Section 2 introduces terms
used in the area of labeling. Section 3 summarizes state-of-the-art
in the area of labeling. Section 4 formally describes the problem of
external labeling. Section 5 presents our solution to the problem,
which is summarized once more in Section 6. Section 7 presents
results and comparisons and finally Section 8 concludes the paper.
ll rights reserved.
2. The labeling problem

In this section we describe the labeling problem and define
terminology used later in the paper.
2.1. Basic terminology

We assume that the model consists of n objects Oi,1r irn and
each object Oi is assigned a unique label. After projection of the
model to the screen, object Oi becomes visible in the screen area
Ai. Note that if Oi is invisible then Ai ¼ |.

The interior area AI is a superset of the union of Ai over all
objects. In our case we deal with a convex AI, which is constructed
to include a small boundary area around the model. The exterior
area AE is the complement of AI with respect to the total screen
area AS (AE ¼ AS �AI). If the labels are placed in the interior area
we call the labeling internal. If the labels are placed in the exterior
area we call the labeling external. Our method deals with external
labeling and thus we describe it in more detail in the next section.
2.2. External labeling

In external labeling a label is associated with the anchor, the
leader line, and the label box. The anchor ai is a point inside the
area Ai. The label box Li is a rectangle containing the label typically
in the form of a short text string. Leader line li is a line segment
connecting the anchor ai and the label box. The endpoint of the
leader line is denoted ei (see Fig. 3).

The label boxes in external labeling can be either floating or
fixed. A floating label box can be placed at any position in the
external area while a fixed label box can be placed only at several
fixed positions (the number of these positions is typically the
same as the number of label boxes).
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Similarly, the anchors and endpoints of leader lines can be
floating or fixed. A floating anchor can be placed at any position
inside the corresponding area while the fixed anchor has a one or
several fixed positions. A floating endpoint can be placed at any
position on the boundary of the label box while a fixed endpoint
has only one or a few fixed positions. We call a labeling method
automatic if it deals with both floating anchors and floating
endpoints.

With floating label boxes, a set of principal directions D can be
used to specify the desired layout of the leader lines. Then each
leader line li should be parallel to some principal direction dAD.
However, this is not always possible for all leader lines without
introducing overlaps of the leader lines or the label boxes. If this
happens there are two commonly used solutions:
�
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(d)
The leader lines remain straight lines, but some of them are no
longer parallel to any principal direction.

�
 Some of the leader lines are split into two orthogonal lines

with one bend, where the segment from the anchor to the
bend is orthogonal to dAD and the segment from the bend to
the endpoint is parallel with d.
Examples of layouts with different sets of principal directions
and type of leader lines are shown in Fig. 2.
3. Related work

The labeling problem has first received attention in the
cartographic domain for assigning labels to static features.
. 1. A comparison of our method with the method of Ali et al. [1] on an engine

del using top–bottom layout. (left) Ali et al. [1], (right) the proposed technique.

e that in our method the leader lines are distributed more evenly over the

del, which according to our opinion increases their saliency and leads to more

thetic labeling.

. 2. Examples of different label layouts: (a) left layout with orthogonal lines, (b) l

silhouette based layout with straight lines.
A comprehensive bibliography of these labeling techniques can
was presented by Wolff and Strijk [19].

Although we deal with external labeling we identified several
methods for internal labeling that are related to our work: The
method of Götzelmann et al. [8] determines the positions of
internal labels using a multiple criteria optimization. In the
method of Ropinski et al. [15] the labels indicate the shape of the
overlaid part of the 3D object. The method of Maass and Döllner
[13] integrates the labels into a virtual reality environment.

In the case of external labeling we split the discussion of the
related work into four parts according to the flexibility of anchors
and label boxes (fixed vs. floating).

Fixed anchors and fixed label boxes: Bekos et al. [3] defined the
boundary labeling problem where the label boxes are arranged
on the rectangle enclosing a set of anchors. They study various
types of leader lines, arrangements of label boxes and sizes of
label boxes. Their primary focus is on efficient labeling
algorithms that calculate leader lines whose combined length
is minimal. Later, Benkert et al. [5] formulated the boundary
labeling problem as a multiple criteria optimization problem
where the length of leader lines, the number of bends, and the
distance of anchors to leader lines are used to find an optimal
solution of one-sided labeling (all label boxes are on one side
of the enclosing rectangle).
Floating anchors and fixed label boxes: Bekos et al. [2] extended
the boundary labeling problem. Each anchor can float within a
polygonal area. They propose efficient labeling algorithms for
various types of leader lines under some restrictions on the
polygonal area with the aim of minimizing the combined
length of leader lines.
Fixed anchors and floating label boxes: Stein and Décoret [17]
presented a greedy algorithm for the labeling of fixed anchors
attached to 3D objects. The occlusion of the 3D objects is
minimized by placing label boxes in empty areas. Shadow
regions and a summed area table [11] are used to prevent the
crossing of leader lines and overlaps of label boxes.
eft–right layout with orthogonal lines, (c) top–bottom layout with straight lines,

Fig. 3. Illustration of the basic terms used in external labeling.
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Floating anchors and floating label boxes: Hartmann et al. [9]
introduced a method to determine the labeling of 2D and 3D
objects based on dynamic potential fields. The problem is split
into finding anchors for the objects and labeling those anchors.
The labeling is obtained as an equilibrium between attractive
and compulsive forces established for the label boxes and the
objects. Ali et al. [1] presented a real-time labeling pipeline,
allowing to produce various labeling styles of 3D objects. The
problem is again split into finding anchors of 3D objects and
labeling those anchors. This method is able to calculate the
labeling of 3D models with frame-to-frame coherence at
interactive frame rates. Götzelmann et al. [6] presented an
agent-based labeling system, allowing the integration of
internal and external labels. Also here the problem is split
into finding anchors for 3D objects and labeling those anchors.
Agents are assigned to initial labels and they compete and/or
cooperate to meet metrics for functional and aesthetic label
layouts [10], extracted from handmade illustrations.

There are also methods that do not fit into the classification
according to anchor and label box properties, such as the method
of Götzelmann et al. [7] for labeling animated objects or the
method of Vollick et al. [18], which is able to learn a specific
labeling style from given examples and to apply the style to new
illustrations.
4. External labeling as optimization problem

In this section we review the criteria for finding a good
external labeling.

4.1. Criteria for external labeling

A labeling of an illustration should exhibit four general
properties: readability, unambiguity, aesthetics, and compactness.
In order to allow an automatic computation of the labeling these
properties are usually transformed into a number of criteria,
which deal with the positions of the leader lines, label boxes, and
anchors [9,10]:
(I)
 Leader line crossing: Leader lines do not cross.

(II)
 Leader line distance: Leader lines are not too near to each

other.

(III)
 Leader line alignment: Leader lines are aligned with principal

directions.

(IV)
 Leader line length: Leader lines are as short as possible.

(V)
 Label box distance: Label boxes are near to the correspond-

ing objects.

(VI)
 Label box overlap: Label boxes do not overlap.
(VII)
 Anchor salience: Anchors are salient points of the corre-
sponding areas.
(VIII)
 Anchor distance: Anchors ai are not too near to each other.

(IX)
 Endpoint distance: Endpoints ei are not too near to each

other.

(X)
 Label box coherence: Label boxes in frame t are close to their

positions in frame t � 1.

(XI)
 Anchor coherence: Anchors in frame t are close to their

positions in frame t � 1.
Note that the last two criteria are important for interactive
applications, where the labeling of the model should exhibit
temporal coherence, i.e., the leader lines and the labels should not
jump from one frame to the next. Note that in static applications
these two criteria can be neglected. Some of the criteria contradict
each other (e.g., criterion (IV) and criterion (VII)) and thus we
have to find a balance between the contradicting criteria. Finding
the importance of the contradicting criteria is an issue dealing
with human perception and in general there is no unique optimal
solution to the external labeling problem.
5. Computing optimized external labeling

If we analyze the methods suitable for automatic interactive
external labeling of 3D objects [1,6], we observe that these
methods proceed in three steps: (1) calculate the anchors,
(2) calculate the initial layout for the anchors, (3) correct the
initial layout. This approach, however, has one drawback: As the
calculation of anchor points in the first step is not using any
information about the layout, the distribution of these points may
lead to situations in which the labeling computed in the second
step contains clusters of overlapping labels. In the third step these
clusters can be resolved by repositioning the labels, but in general
this leads to undesired bends or rotations of the leader lines. In
our approach, we improve these approaches by combining the
optimization of anchor determination with optimizing the layout
of the labels.

5.1. Overview of our approach

We use a greedy optimization to determine the positions of the
anchors, the leader lines, and the label boxes. As a leader line
connects the anchor with a label box, we only deal with finding a
good set of leader lines. Leader lines are calculated and placed
over the illustration by repeating the following two steps:
1.
 Select an unlabeled area.

2.
 Calculate the leader line of the area.
In the first step we select an area which has not been labeled so
far. We process first the areas where there is less freedom for
placing the labels (i.e., small areas in dense regions of the model).
The area selection is described in detail in Section 5.4. The second
step forms the core of the method. We search for a good leader
line considering all feasible anchor points and principal direc-
tions. The leader line computation is described in Section 5.3. In
the next section we discuss the criteria which we later use for
both the area selection and the leader line computation.

5.2. Simplifying the criteria for optimization

Our method performs the determination of the anchors and
the calculation of the label layout together, which allows to
improve the results in some difficult situations with a high
density of labels. However, optimizing both the positions of the
anchors and the label boxes is more complicated than optimizing
the position of just one of these features as done by previous
interactive methods.

In particular when placing a single floating leader line over the
illustration we have four degrees of freedom (two for the anchor
point and two for the end point) and so we deal with a 4D
problem. However, we can reduce the dimensionality of the
problem by making use of the labeling criteria dealing with
principal directions by defining a unique leader line with respect
to each anchor point as follows: According to the above listed
criteria (III) and (IV) this line is determined as the shortest line
with respect to the silhouette of AI which follows a principal
direction. More precisely, for a leader line li ¼ (ai, ei), ei is
the point on the silhouette of AI closest to ai (criterion (IV)) such
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that ai �ei is parallel to a principal direction (criterion (III)). In
this way we reduce the number of possible directions that
the leader line can follow to a single line (see Fig. 4(a)). In turn
we reduce the dimensionality of the problem from 4D to 2D
which allows to us to represent the measures associated with the
quality of every leader line candidate directly in the labeled
image.

Following this mapping we can simplify the criteria for
labeling as follows: The leader lines defined using the described
mapping will never cross (assuming AI is convex), therefore the
criterion (I) (leader line crossing) can be omitted.

Criterion (II) (leader line distance) can be replaced by
considering the distance between the anchors and between the
endpoints of the leader lines.

We can also replace the criteria for the label boxes by criteria for
the endpoints and anchors. If leader lines are short (criterion (IV))
then each label box is near to its corresponding object. Therefore
the criterion (V) can be omitted. The criterion (IV) is replaced as
follows: The leader lines do not cross and they are not even near
each other if the distance between each pair of endpoints ei,ej,ia j,
is greater than a threshold t40. If the threshold t is greater than the
height of the label box and the internal area AI is convex, then the
label boxes can be stacked around silhouette of AI without overlap.
See Fig. 4(b) for details.

In summary, by using the above described mapping and a
convex shape for describing the internal area AI we can simplify
the labeling criteria to the following seven criteria (we use Arabic
numbers in order to distinguish between the original and the
simplified criteria):
1.
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Leader line alignment: Leader lines are aligned with principal
directions.
. 4. (a) Voronoi diagram of points on the silhouette of AI. Note that as we add

re points on the silhouette the cells become thinner. When we use all points on

silhouette the cells will collapse into lines and thus we get a leader line

didate for each point in AI. (b) Stacking of label boxes proposed by Ali et al. [1].

el boxes can be stacked around the silhouette of a convex AI if there is space

und each leader line endpoint equal or bigger than the height of the label box.

e that in the upper and lower parts some leader lines have to be extruded (e.g.,

leader line of the lowest label box). If we demand a larger distance between

anchors we have to choose only one leader line from the two overlapping ones

rked by a red circle around the anchor). (For interpretation of the references to

ur in this figure legend, the reader is referred to the web version of this

cle.)
2.
 Leader line length: Leader lines are as short as possible.

3.
 Anchor salience: Anchors are salient points of the correspond-

ing areas.

4.
 Anchor distance: Anchors ai are not too near to each other.

5.
 Endpoint distance: Endpoints ei are not too near to each other.

6.
 Label box coherence: Label boxes in frame t are close to their

positions in frame t � 1.

7.
 Anchor coherence: Anchors in frame t are close to their

positions in frame t � 1.
These seven criteria are used in the optimization framework for
finding the most suitable labeling as described in the following
sections.
5.3. Leader line calculation

Given an area Ai we need to find a leader line which follows the
criteria listed in the previous section. For every point in Ai we have
a unique leader line candidate. From these candidates the
algorithm selects the leader line which provides the best match
for the labeling criteria.

In order to do so we use fuzzy optimization [21] based on
fuzzy decision making by Bellman and Zadeh [4]. A process where
simultaneous satisfaction of several criteria is sought.

We see the following benefits in using the fuzzy optimization.
It can handle conflicting criteria due to the simultaneous
satisfaction of all criteria. It can handle uncertainty in the criteria
due to its basis in the fuzzy set theory and fuzzy logic.

Fuzzy set theory is an extension of set theory. In fuzzy set
theory we can express a partial membership of an element to the
set. A fuzzy set is commonly described by its membership
function that maps each element to values in the range [0,1]
which indicates the membership of the element to the set, 0
means that the element is not in the set and 1 means that the
element is entirely in the set. Fuzzy logic defines operations on
the fuzzy sets that are equivalents of Boolean logic operations
(e.g., negation, conjunction, and disjunction).

In the fuzzy optimization we consider a solution space X. Each
criterion Ci is modeled as a fuzzy set on X and its membership
function fi describes the satisfaction of the criterion by the
solutions xAX. The membership functions are aggregated
together using an intersection operator (e.g., fuzzy conjunction),
thus we obtain the aggregated membership function f for the
criteria:

f ðxÞ ¼
\

1r ir7

fiðxÞ: ð1Þ

We denote the value returned by f(x) as feasibility of solution x.
Note that the intersection operator guaranties the simultaneous
satisfaction of the criteria. In other words, satisfaction of one
criterion cannot compensate dissatisfaction of another criterion.
The last step is to find the most feasible solution, that is the global
maximum of the aggregated membership function f(x).

In the following, we model the satisfaction of our labeling
criteria as fuzzy sets and define their membership functions. In
our case the solution space are the leader line candidates of area
Ai for which we search the leader line, which provides best match
for all criteria. The criterion 1 is satisfied implicitly since we
consider only leader line candidates which are aligned with
principal directions. The fuzzy membership functions for a leader
line candidate l ¼ (a, e) of area Ai for criteria 2–7 are evaluated as
follows:

Leader line length: To express the leader line length we
calculate the distance of the anchor from the endpoint and
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normalize it using the length of the longest leader line candidate:

f2ðlÞ ¼ 1�
ja�ej

dmax
, ð2Þ

where ja�ej is the distance of points a and e and dmax is the length
of the longest leader line candidate (see Fig. 5(b)).

Anchor salience: To express the anchor salience we compute
the distance of the anchor from the silhouette of Ai and normalize
it using the length of the longest leader line candidate:

f3ðlÞ ¼
distsilðaÞ

dmax
, ð3Þ

where distsil is a distance of the anchor to the silhouette of area
Ai and dmax is length of the longest leader line candidate
(see Fig. 5(c)).

Anchor distance: To express the distance from other anchors we
use the minimal distance of the anchor to already placed leader
lines pAP. The distance is normalized using the threshold da,
which reflects the desired minimal distance between the anchors.
For a given leader line candidate and an already placed leader line
p we get

distaðl,pÞ ¼min
ja�apj

da
,1

� �
, ð4Þ

where ja�apj is the distance of the anchors. To compute
membership function f4 with respect to all already placed leader
lines P we use a conjunction of dista:

f4ðlÞ ¼
^

pAP

distaðl,pÞ: ð5Þ

Fig. 5(d) shows a visualization of this membership function.
Endpoint distance: To express the distance from the endpoints

we use the minimal distance of the endpoint of the leader line to
endpoints of already placed leader lines pAP. The distance is
normalized using the threshold de, which reflects the desired
minimal distance between the anchors. For a given leader line
Fig. 5. (a) Colour coded areas Ai. (b–e) Visualizations of membership functions: (b) f2—

distance. A darker pixel corresponds to a less feasible leader line candidate. We show the

convex hull in left and right direction are considered in figure (b). Figures (d) and (e) sh

over the illustration (depicted in green colour). (For interpretation of the references to c
candidate and an already placed leader line p we get

disteðl,pÞ ¼min
je�epj

de
,1

� �
: ð6Þ

To compute membership function f5 with respect to all already
placed leader lines P we use a conjunction of diste:

f5ðlÞ ¼
^

pAP

disteðl,pÞ: ð7Þ

Fig. 5(e) shows a visualization of this membership function.
Anchor coherence: The anchor coherence is expressed by

calculating the distance of the corresponding anchors in two
consecutive frames and normalizing it using the diagonal of the
bounding sphere dS:

f6ðlÞ ¼ 1�
jat�at�1j

dS
, ð8Þ

where jat�at�1j is the distance of the corresponding anchor points
in frames t and t�1.

Endpoint coherence: To express the endpoint coherence we
calculate the distance of the corresponding endpoints in two
consecutive frames and normalize it using the diagonal of the
bounding sphere dS:

f7ðlÞ ¼ 1�
jet�et�1j

dS
, ð9Þ

where jet�et�1j is the distance of the corresponding endpoints in
frames t and t�1.

To obtain the aggregated membership function of all criteria
we use the natural fuzzy conjunction [21] as the intersection
operator in Eq. (1). Thus, we get

f ðlÞ ¼
^

2r ir7

fiðlÞ: ð10Þ

Natural fuzzy conjunction corresponds to a simple multi-
plication. Note that the use of multiplication is robust with
respect to scaling one, several, or all membership functions, i.e.,
the most feasible solution does not change.

If we want to tune the behavior of the labeling we can define a
weight for each criterion. Here we use the weighted modification
leader line length, (c) f3—anchor salience, (d) f4—anchor distance, (e) f5—endpoint

membership functions for left–right layout and therefore only the distances to the

ow the corresponding membership functions after one leader line has been placed

olour in this figure legend, the reader is referred to the web version of this article.)
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of fuzzy optimization introduced by Yager [20], who proposed to
modify the membership function of each criterion prior to the
aggregation. The modified function Fi is expressed as

Fiðl,wiÞ ¼ fiðlÞ
wi , ð11Þ

where fi is the membership function and wi is the weight in range
[0, 1]. Eq. (1) is modified to

FðlÞ ¼
^

2r ir7

Fiðl,wiÞ: ð12Þ

Note that if f 0i ðlÞ ¼ c � fiðlÞ where c is a constant, then
F 0i ðl,wiÞ ¼ f 0i ðlÞ

wi ¼ cwi � fiðlÞ
wi ¼ cwi � Fiðl,wiÞ where cwi is also a con-

stant. Therefore the weighted fuzzy optimization is resistant to
scaling.

Note that all described functions are evaluated on a discrete
grid corresponding to the image pixels (see Fig. 5). In the
evaluation we make heavy use of the jump flooding algorithm
for computing distance fields. We provide more details about the
implementation in Section 6.2.
Table 1
Look up directions used in the jump flooding algorithm for different layout types.

Layout type Principal directions Jump flooding look up

directions

Left West West

Right East East

Left-right West, East West, East

Top North North

Bottom South South

Top–bottom North, South North, South

Silhouette-based All directions West, East, North, South,

Northwest, Northeast,

Southwest, Southeast
5.4. Processing order of labeled areas

We use a greedy optimization technique without backtracking
and therefore the quality of the final labeling depends on the
order in which the leader lines are placed over the illustration.
Each leader line placed over the illustration potentially reduces
the possibilities for placing leader lines for other areas.

We use the following strategy for determining the processing
order of the labeled areas: we first process the areas that could be
heavily influenced by leader lines of other areas. The presumption
is that the area with a low number of feasible leader line
candidates can get influenced much more than an area with high
number of feasible candidates and therefore it should be
processed first.

Thus for each area we sum the feasibility of all corresponding
leader lines obtained with Eq. (12) and define the priority pi of the
area Ai as

pi ¼
X
lAAi

ð1�f ðlÞÞ: ð13Þ

For the weighted conjunction we get

Pi ¼
X
lAAi

ð1�FðlÞÞ: ð14Þ

Initially we evaluate priorities for all areas and select the area
with the highest priority as the next area for placing a label. After
the leader line is calculated we reevaluate the priorities of all
unlabeled areas and proceed again by selecting the area with the
highest priority.
Fig. 6. Label layouts obtained by using: (a) a circle enclosing the 3D model, (b) a

rectangle enclosing the 3D model instead of convex hull of the 3D model.
5.5. Corrections of label layout

Note that in some cases not all labeling criteria can be satisfied
at the same time. Especially the satisfaction of the criterion 5
(endpoint distance) is crucial, which, if violated, would result in
overlapping label boxes. Fortunately, this can happen only if there
is no space left to place new leader lines and the violation can be
easily detected and corrected by repositioning the label boxes to
avoid overlaps and relieving the criterion 1, i.e., splitting or
rotating the leader lines [1]. This in turn may cause intersections
of leader lines (the criterion 1 is waived). If this happens, the
intersections have to be detected and resolved by swapping label
box positions [1,2].
5.6. Defining the layout types

The layout of the label boxes is determined by two factors: the
shape of the internal area AI, and the set of principal directions D.
A feasible leader line is the shortest line from an anchor to the
silhouette of internal area AI that is parallel with one of principal
directions dAD. The shape of the internal area AI then determines
the length of leader line in the possible directions and the shortest
one is chosen. In case that the set of principal directions is not
restricted the leader line is simply the shortest line from the
anchor to the silhouette of AI.

If all directions are used as principal directions then both the
directions of leader lines and the positions of the label boxes are
only given by the shape of the internal area AI. If only certain
directions are used as principal directions then the directions of
leader lines are given by the principal directions and the positions
of label boxes are given by the shape of the internal area AI.
6. Putting it together

In this section we briefly review the complete algorithm and
describe some implementation details, particularly those con-
nected with the GPU implementation of the method.
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6.1. Summary of the algorithm

The proposed algorithm takes as input a 3D scene S consisting
of n 3D objects Oi,iAf1, . . . ,ng, the set of principal directions D, the
parameters da and de, and the weights w1, y, w7. The result of the
0.03
0.035
0.04
0.045
0.05
0.055
0.06
0.065

5 7 9 11 13 15 17 19

s

# of labels

28.4

22.5
21

17.6
16.4

Fig. 8. The average time per frame in dependency on the number of labels. The

number above each sample is the corresponding FPS rate.

Fig. 9. A simple example showing the influence of the weights w2 and w3 on the labeling

w3 ¼ 0.2.

Fig. 7. The influence of the parameter da on the final labeling: (a) da ¼ 0.1,

(b) da ¼ 0.4. We used de ¼ 0 for both figures.
algorithm is a set of leader lines L¼ fl1 ¼ ða1,e1Þ, . . . ,ln ¼ ðan,enÞg.
The algorithm proceeds as follows:
1.
: (a)
Obtain the set of areas A¼ fA1, . . . ,Ang by computing the
visibility of each object in scene S.
2.
 For each point a in internal area AI find the closest point e on
the silhouette of AI such that a � e is collinear with a direction
dAD. Thus the leader line candidate l ¼ (a, e) is established
and function f2(l) is calculated for each point a in AI.
3.
 Calculate the length of the longest leader line candidate dmax.

4.
 For each point a in area Ai,iAf1, . . . ,ng, calculate the function

f3(l). That is, the distance of a to the nearest point on the
silhouette of Ai.
5.
 Establish the set of leader lines L¼ fg.

6.
 Calculate the feasibility F(l) of each leader line candidate

l ¼ (a, e).

7.
 While the set of areas is not empty, do

(a) Calculate the priority Pi for each area Ai.
(b) Select the area Amax with the highest priority.
(c) Select the most feasible leader line candidate lmax with

maximal F(l).
(d) Put the leader line candidate lmax into the set of leader

lines L.
(e) Remove the area Amax from the set of areas A.
(f) Update functions f3 and f4 using lmax and reevaluate F(l) for

all leader line candidates in non-processed areas A.
w2 ¼
8.
 If necessary correct the label layout.

6.2. Implementation details

We have implemented the presented algorithm as multi-pass
rendering algorithm written in Java using OpenGL and JOGL [12].

Step 2 is calculated with jump flooding [14]. Jump flooding is a
fast method, suitable for the GPU, for obtaining a Voronoi diagram of
the seeds and the Euclidean distance of each pixel to the nearest
seed. The pixels on the silhouette of AI are used as the seeds. Note
that for each pixel we need to find the closest point along one of the
principal directions on the silhouette of AI. Traditional jump flooding
computes the Euclidean distance along all possible directions which
is suitable for the silhouette-based layout only. For layouts with a
restricted set of principal directions (e.g., left–right layout) we have
modified the jump flooding algorithm to compute the Euclidean
distance only along these directions. In Table 1 we show side-by-
side the principal directions for major layout types and the
corresponding look up directions used to evaluate minimal
distances in the jump flooding algorithm. Note that apart from the
metric used in distance evaluation the resulting layout can also be
modified by changing the shape of the internal area AI (as discussed
0.2, w3 ¼ 1.0, (b) w2 ¼ 1.0, w3 ¼ 1.0, (c) w2 ¼ 0.2, w3 ¼ 0.2, (d) w2 ¼ 1.0,
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in Sections 5.6 and 7.1). An important aspect of jump flooding is that
the texture in which we compute the distance has to be rectangular.
Note that for representing the distances, the membership functions
and their aggregations we use 16 bit floating point textures.

In step 3 we use scattering [16] to find the longest leader line
candidate among all areas.
Fig. 11. A comparison of our method with the method of Ali et al. [1] on an engine mode

(b) a silhouette-based layout using our method (da ¼ 0.05, de ¼ 0.15), (c) a left–right

method (da ¼ 0.15, de ¼ 0.06).

Fig. 10. The influence of the parameter de on the final labeling: (a) de ¼ 0.1,

(b) de ¼ 0.4. We used da ¼ 0 for both figures.
Step 4 is also calculated with jump flooding, where the seeds
are pixels on the silhouettes of areas A1, y, An. For each pixel in
area Ai, iAf1, . . . ,ng, we calculate the Euclidean distance (along all
possible directions) to the closest pixel on the silhouette of Ai.
Note that the areas do not overlap each other, therefore we can
process all areas at once.

Step 6 is implemented as a fragment shader working on a
screen aligned quad. In the shader we calculate the feasibility F(l)
of each leader line candidate using Eq. (12).

In steps (a)–(c) we use scattering to compute the priorities Pi,
selecting the area with the highest priority and selecting the most
feasible leader line candidate.

In step 7(f) the functions f4(l) and f5(l) are calculated and
multiplied with F(l) using again a fragment shader operating on
the screen aligned quad.
7. Results

In this section we present results of our solution of the external
labeling problem and discuss the impact of the input parameters
on the results. Further we compare our results with the method of
Ali et al. [1].

7.1. Supported layout types

In order to demonstrate the flexibility of the labeling layouts
produced by our method, we used our method with different
shapes of internal area AI and different sets of principal directions.
When we use a convex hull of the 3D scene as internal area AI and
consider the distances only in certain principal directions we can
obtain layouts presented in Figs. 1, 2, 7, 10, 11 and 12. When we
use other shapes of the internal area we can obtain layouts as
those presented in Fig. 6. In Fig. 6(a) principal directions
correspond to all possible directions. In Fig. 6(b) only the east
and west directions are used.
l: (a) a silhouette-based layout produced using the method of Ali et al. (da ¼ 0.05),

layout using the method of Ali et al. (da ¼ 0.15), (d) a left–right layout using our
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7.2. Distance of leader lines and distance of anchors

The input parameter da is used to specify the desired minimal
distance between anchors. We express the distance as a scale of
the bounding sphere diameter dS. The impact of parameter da on
the final labeling can be seen in Fig. 7.

The input parameter de is used to specify the desired minimal
distance between the leader lines. Also here we express the
distance as a scale of the bounding sphere diameter dS. Our
experiments have shown that superior values of de for horizontal
layouts (left, right, and left–right) are similar to the height of the
label box. For vertical layouts (top, bottom, and top–bottom) and
radial layouts (silhouette-based) the superior values are similar to
the average width of the label boxes. The impact of parameter de

on the final labeling can be seen in Fig. 10.
Note that with increasing parameter da we can produce

labeling where labels are more evenly distributed. However,
certain anchors may become less salient (e.g. anchor to which
label body is attached in Fig. 7(b)). When we also increase
parameter de then the anchors are more resistant to this
effect.
Fig. 12. A comparison of our method with the method of Ali et al. [1] on an anatom

(da ¼ 0.05), (b) a silhouette-based layout using our method (da ¼ 0.05, de ¼ 0.2), (c) a lef

our method (da ¼ 0.05, de ¼ 0.15). Note particularly the difference in placing the larnix

these labels are more uniformly distributed around the model.
7.3. Influence of the weights

In this section we discus the impact of the weights on the final
labeling. The weights are used to reduce the impact of the
membership functions. In other words we use the weights to
suppress significance of certain criteria and emphasize significance
of the other criteria. As we use the same criteria for each type of
layout we also use the same weights for all layout types. Note that
we cannot change the type of layout by using different weights. We
demonstrate the impact of the weights on a simple example in
Fig. 9. In the example we use only criterion 1 (Leader line length)
and criterion 2 (Anchor salience) and their respective weights.

The weights w2 and w3 influence the length of the leader lines
and the salience of the anchors. The corresponding two criteria
contradict each other and therefore a balance between them has
to be found. Our experiments have shown that good values for w2

and w3 are: w2 ¼ 0.2 and w3 ¼ 1. In other words we prefer the
salience of anchors over the length of the leader lines.

The weights w4 and w5 influence the distance between the
anchors and the distance between the endpoints of leader lines.
A similar effect can be achieved by using the parameters da and de.
y model: (a) a silhouette-based layout produced using the method of Ali et al.

t–right layout using the method of Ali et al. (da ¼ 0.05), (d) a left–right layout using

_1 and larnix_2 labels. Due to the endpoint distance criterion used in our method
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These parameters provide more intuitive control over the labeling
and therefore we recommend to set the weight w4 and w5 to 1
and use da and de to control the distance between the leader lines.

The weights w6 and w7 are used to reduce the impact of
membership functions f6 and f7 that provide frame-to-frame
coherence in interactive environments. Our experiments have
shown that good values of w6 and w7 are: w6 ¼ 0.7 and w7 ¼ 0.7.
These values appeared as best compromise between too glued
anchors and too unstable leader lines.

Note that all figures in this paper obtained by our method were
generated using weights with the above described values.

7.4. Comparison with state-of-the-art

In this section we compare the proposed method with our
implementation of the method of Ali et al. [1]. A side by side
comparison is shown in Figs. 11 and 12. As the method of Ali et al.
does not consider criteria applying to the length of leader lines,
the endpoint distance and the endpoint coherence it gives less
aesthetic results for views where the most salient points of
several areas are collinear. Note that for silhouette-based layout
Ali et al. apply compulsive forces between the label boxes to
reduce their uneven distribution. This step is omitted in our
implementation of both their method and our method.

7.5. Performance

Fig. 8 shows the performance of our method in dependency on
the number of labels. We can see that our method scales almost
linearly with the number of labels. The measurements were done
on a computer equipped with NVIDIA Geforce 8800 GT with
512 MB of RAM in resolution 512�512 pixels. Note that the
number of labels depends on the number of visible objects.
Typically the 3D model contains many more objects and only
some of them are visible from a given viewpoint.
8. Conclusion

In this paper we have proposed a novel method for computing
the labeling of 3D illustrations in real-time. We have shown how
to reduce the dimensionality of the problem and how to
formulate the labeling problem as a multiple criteria optimization
problem. We solve the optimization problem using fuzzy logic
combined with greedy optimization. We have implemented the
presented method almost entirely on the GPU and the resulting
implementation achieves interactive rates on medium-sized
models. The results show that the method compares favorably
to the state-of-the-art techniques for interactive external labeling.
In particular, according to our opinion the method provides
aesthetic labeling for various layout types and it is easy to fine
tune the labeling by using a few intuitive parameters.
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