Visibility Driven BVH Build Up Algorithm
for Ray Tracing

Marek Vinkler, Vlastimil Havran, and Jifi Sochor.

This is the preprint/preliminary version of the arti-
cle that was accepted on February 20th, 2012 to the
journal Computers & Graphics published by Elsevier.
This preliminary version can be used in accordance to
rules of Elsevier http://www.elsevier.com/wps/find/
authorsview.authors/rights, this is for scholarly pur-
poses. The final and revised version of the article will become
available on the Elsevier’s website. For any questions on other
usage of the document than scholarly purposes you are obliged
to consult the Elsevier’s website http://www.elsevier. com.

Visibility Driven BVH Build Up Algorithm for Ray Tracing

Marek Vinkler®'*, Vlastimil Havran®, Jifi Sochor®

4 Faculty of Informatics, Masaryk University, Botanickd 554/68a, 602 00 Brno, Czech Republic
bFaculty of Electrical Engineering, Czech Technical University, Karlovo ndmésti 13, 121 35 Praha 2, Czech Republic

Abstract

The minimization of traversal cost using surface area heuristic is extensively used to build high quality spatial subdivisions and
bounding volume hierarchies for ray tracing. Despite the fair performance of trees built with the cost model, it is known that the
underlying assumptions for surface area heuristics are not realistic. In this paper we show how the cost function of the surface area
heuristic can be improved on using the assumed visibility of geometric primitives such as triangles. This way the build algorithm
utilizes the exact or assumed visibility to construct more efficient BVHs by traversing smaller portion of the hierarchy. We show
that by these inexpensive modifications to the cost function we can speed up the ray traversal by approximately 102% on average
for path tracing of highly occluded scenes compared to standard surface area heuristics. Moreover, it is also possible to lower the
construction time and memory usage by subdividing only those parts of the animated scene through which rays are expected to be

traversed.

Keywords:

ray tracing, bounding volume hierarchies, BVH build algorithm, surface area heuristic

1. Introduction

Ray tracing is a fundamental operation used in rendering al-
gorithms to synthesize images of a virtual scene. A crucial com-
ponent influencing the performance is the quality of the accel-
eration data structures used to prune the search along the ray.
In the rest of the paper we will deal only with hierarchical data
structures that use a tree to encode the spatial regions or objects.

Many hierarchical data structures have been developed but
only a few are commonly used in practice. Kd-trees offer the
fastest traversal performance in general but they can require in-
creased build times and higher memory usage. Another efficient
data structure is the Bounding Volume Hierarchy (BVH) which
performs comparably well to kd-trees. BVHs are considered
to be more efficient for dynamic scenes as they can be refitted
instead of a full rebuild and have a smaller memory footprint.
BVHs are used throughout this paper but the findings could be
applied to kd-trees as well.

The hierarchical data structures generally used are built up
with the cost model with surface area heuristic (SAH) [1, 2].
Although data structures built in such a way perform reasonably
well even for irregular distributions of objects, the assumptions
for the underlying cost model are known to be unrealistic. In
particular, the cost model with SAH expects a uniform distri-
bution of rays in scene space and, more importantly, it assumes
that rays do not intersect any objects. Both these assumptions

*Corresponding author
Email addresses: xvinkl1@fi.muni.cz (Marek Vinkler),
havran@fel.cvut.cz (Vlastimil Havran), sochor@fi.muni.cz (Jifi
Sochor)
Ttel: 00420549495357

Preprint submitted to Computers & Graphics

are almost always violated when rendering any particular im-
age.

In this paper we alleviate both these assumptions. We use the
information about triangle visibility in the context of anima-
tion to suggest a new cost model that produces more efficient
BVHs for scenes with high occlusion. Moreover, as we mod-
ify only the cost model the technique should be orthogonal to
other methods for building high quality BVHs. The benefit of
our method is visualized as colour coded workload in Figure 1.

The results of ray tracing BVHs built with our method are
correct even if the information about the visibility is only ap-
proximate. This allows the method to be used in the context of
animation where approximate visibility can be gathered during
the rendering of the previous frame.

To show the hypothetical gains achievable by visibility
driven build up, we compare BVHs built according to our
heuristic with SAH based BVHs built over visible triangles
only. The visible triangle BVHs are faster to traverse because
they are built over the smallest possible number of triangles
needed to get the correct result.

In section 2 we describe previous work. In section 3 we dis-
cuss background needed for the description of the algorithm in
section 4. We present the results in section 5, followed by con-
clusion in section 6.

2. Related work

The building algorithms for BVHs in the context of ray trac-
ing have been intensively studied in several directions. The
CPU algorithms mostly focused on improving tree quality [3, 4]

February 20, 2012

(d

Figure 1: The visualization of the algorithm for primary rays using the scene Soda Hall rotated by 45 degrees: (a) rendered image
with shading, (b) the number of traversal steps per ray for the reference (SAH) method, (c) the number of traversal steps per ray for
our (OSAH) method, (d) number of intersection tests for the reference (SAH) method, and (e) number of intersection tests for our
(OSAH) method. The colour of each pixel codes the amount of work done for that pixel, ranging from blue (the lowest value), via

magenta to green, then to yellow and red (the highest value).

but some of them considered build times as well [5, 6]. Re-
cently, the efficient storage of BVHs has also been researched
in pursuit of realtime frame rates on massive models [7, 8]. On
the other hand, GPU build up algorithms [9, 10, 11] targeted
mainly the building times.

The final performance of ray tracing system is dependent not
only on the BVH quality but also on the efficiency of its traver-
sal. The bulk of the recent research targeted GPUs [12, 13] be-
cause of their superior floating point performance. Let us detail
the most important papers related to ray tracing of BVH.

Efficient BVHs. The first top-down method of building up
BVHs with spatial median was introduced by Kay and Ka-
jiya [14]. Goldsmith and Salmon [1] showed that ray tracing
performance fairly corresponds to the cost of the BVH and they
suggested the insertion-based algorithm for BVH. Using this
observation Ng and Trifonov [15] and Kensler [3] proposed to
post-process BVH build up with a phase that improves the tree
cost through series of subtree rotations.

Hybrid hierarchies. Another technique improving the cost
was presented by Stich et al. [16]. They used a modified BVH
build up algorithm that utilized spatial splitting similar to kd-
trees in order to split large triangles causing extensive overlaps
and increasing the cost. According to the observation of Gold-
smith & Salmon [1] the improvement in tree cost is reflected in
the traversal performance.

A similar method was proposed by Popov et al. [17]. Their
kd-tree like build minimizes the overlap in BVH nodes and thus
increases the performance. They also propose the assumption
of non-terminating rays to be invalid and increasing the ex-
pected traversal cost of BVH.

Camera based optimization. The building of data struc-
tures using information about camera position was studied for
kd-trees by Havran and Bittner [18] and for grids by Hunt and
Mark [4]. The technique uses the surface area after perspective
projection to the image plane instead of the world space sur-
face area of the bounding box in the cost model. Such modified
cost function leads to a more accurate estimate of the split cost
for the current frame. This results in speedups at the cost of
rebuilding the data structure for each camera position.

Bottom-up build. The hierarchical data structures for ray
tracing are usually built in the top-down “Divide and conquer”
manner. A bottom-up agglomerative clustering build up was

presented by Walter et al. [19]. They showed how this approach
can improve the data structures quality while keeping reason-
able building times even for large data sets.

Dynamic data structures. Applications dealing with dy-
namic geometry are interested in both traversal and build times
of data structures and different trade-offs may influence the win-
ning strategy. Lauterbach et al. [5] presented a hybrid solution
for interactive ray tracing of deformable objects. Based on a
simple heuristic cheaper updating of node bounds and keep-
ing the topology or full rebuild of the BVH is chosen in each
frame. Similarly, Garanzha [6] proposed to combine cheap up-
dates like refitting and subtree migrating with localized rebuilds
to build the BVH for the current frame from the one for the pre-
vious frame. Two-level tree targeting realtime rebuilds on non-
deformable models was described by Reichl et al. [20] combin-
ing BVH and kd-tree. Their shallow dynamic top level BVH
assured low rebuild times while static kd-trees in the bottom
level were responsible for keeping the tree quality.

Memory storage. As the complexity of scenes used in com-
puter graphics increases, it is not always possible or viable to
keep all the data in the main memory. To cope with this prob-
lem data have to be either compressed, loaded on-demand, or
both. Eisemann et al. [7] decreased the memory footprint of
the BVHs by expressing each node’s bounding volume in only
8 bytes. They take advantage of the fact that each node shares
three bounding planes with its parent. Just two bits are used per
node in the scheme of Bauszat et al. [21]. Their method gets
rid of children pointers by making the tree left-balanced and
children bounding boxes are expressed implicitly by shrinking
the parent box along the longest axis. The method offers low
memory consumption at the cost of significantly worse traver-
sal times. A hybrid method using SAH for the upper levels of
the tree is proposed to mend this. BVH compression for mas-
sive models and out-of-core processing was studied by Kim
et al. [8]. They focused on minimizing the hard drive access
through compression of the data structure and lazy loading of
only its traversed parts.

GPU build up algorithms. Parallel build up of BVHs on
the GPU was investigated by Lauterbach et al. [9]. They imple-
mented the median splitting strategy through fast radix sorting
of Morton codes. To improve the quality of the final data struc-
ture, SAH based GPU build is used for lower levels of the tree.

The Hierarchical Linear BVH (HLBVH) of Pataleoni et al. [10]
extends the approach of Lauterbach et al. [9] by reducing both
the amount of computation and memory traffic. This is achieved
by using the compress-sort-decompress approach of Garanzha
and Loop [13] for sorting of primitives. They also proposed
a hybrid algorithm, but unlike the previous method the SAH
is used for the top levels of the hierarchy and HLBVH for the
rest. Recently this build algorithm has been further optimized
by Garanzha et al. [11]. They replaced the complex pipeline
of the original paper with work queues as in Wald [22]. The
result is faster and more memory efficient build of BVHs on
the GPU. Hou et al. [23] discussed out-of-core build up of very
large BVH trees on the GPU. They built the tree chunk by chunk
on the GPU and assembled it on the CPU.

GPU traversal algorithms. Aila and Laine [12] studied effi-
ciency of traversal on the GPU. A hardware aware implementa-
tion was compared to a simulator to asses its distance from the
theoretical maximum. A completely different approach to GPU
ray traversal algorithm was presented by Garanzha et al. [13].
They reformulated ray traversal as a sorting problem to extract
ray coherence following the idea of Havran et al. in their ray
shooting cache [24]. To lower the cost of sorting a compress-
sort-decompress scheme is used. The authors claim speedup
up to the factor of three over an optimized GPU depth-first ray
tracing implementation.

Query driven approaches. Our method shares some resem-
blance with three other methods. First, Havran [2, Section 4.7]
proposed a general cost model for building kd-trees that tries to
get rid of all the unrealistic assumptions in SAH. However, this
relatively complex method results in kd-trees that are not more
efficient than kd-trees built with the cost model with SAH. Fur-
ther, Bittner and Havran [25] studied how ray distribution infor-
mation can be leveraged in building more efficient data struc-
tures but reported only mild improvements. Recently, Ize and
Hansen [26] suggested to encode the knowledge whether the
subtree rooted in the left child is cheaper or more expensive
than the subtree rooted in the right child. This helps to compute
shadow rays faster since the traversal of the shadow rays can
be organized arbitrarily because finding any occluder along the
ray path is sufficient. They report up to two times speedups.

Compared to the above discussed papers we only use the
knowledge about expected triangle visibility in the context of
ray tracing, that is finding the first object intersected along the
ray path.

3. Background

In this section we give an overview of the cost model with
SAH and the build method used in this paper. In the same man-
ner we present the method of Stich et al. [16] which is also
extended by our method.

3.1. Standard cost model with Surface Area Heuristic

The surface area cost model minimizes the traversal cost of
a single random ray [1, 2]. Based on this model a Surface Area
Heuristic (SAH) is developed which makes several assumptions
about the properties of rays and their distribution:

All rays intersect the bounding box of the root node.

The rays are uniformly distributed.

None of the rays intersects an object.

The complexity of yet unconstructed parts of the hierar-
chy uses a linear estimate from the number of geometric
primitives.

=

From these assumptions a standard cost model with SAH is
derived:

Crs + Cir(pr - N + pr - Ng), (1
Cir - N, ()

Crode =
Cieq f =

where Crg is the cost of performing the traversal step, Cjr is
the average cost of ray-primitive intersection, p; and pg are the
probabilities of traversing the left and right child respectively,
Ny and Ny are the numbers of geometric primitives in the left
and right child respectively, and N is the number of geometric
primitives in a leaf. The terms p; and pg correspond to geo-
metric probabilities of intersecting the bounding box of a child
node when its parent is visited and they are computed as:

S (LIR)

S
where S {1z, are the surface areas of left and right child’s bound-
ing boxes and S is the surface area of the parent’s bounding box.

This cost model allows us to estimate the traversal cost of a
ray in terms of the number of traversal steps and intersection
tests provided the four simplifying assumptions above hold.
During the top-down build the candidate split with minimal cost
is found using Equation 1. The split with minimum estimated
cost is then used to divide the primitives into child nodes. Si-
multaneously the cost estimate can be used to terminate further
subdivision of the current node [2]. A leaf is created, if the cost
of creating the interior node C,,4. is larger than the cost of a
leaf Cyqr. The split made according to this method is referred
to as object split.

P{LIR) = 3)

BVH build

There are several BVH build methods. Our implementation
of BVH building algorithm is carried out on the CPU and is
based on a publicly available framework [12]. The build pro-
ceeds recursively top-down from the root node containing all
the triangles (in fact the references to triangles).

For each node the best object split is found by sorting the
triangles according to the centroids of their bounding boxes in
each dimension. This linearly ordered array of triangles is then
processed left to right and the cost is computed with Equation 1
for each possible split. The split with minimum cost is then
found over all three axes.

After the best split position has been evaluated, its cost
(Equation 1) is compared to the cost of a leaf (Equation 2).
The current node is declared a leaf if the cost of the leaf is the
smaller one and the number of triangles in the current node is
less than a predefined maximum, in our case 8. Otherwise, an
inner node is created and the triangles are distributed into its
left and right child.

3.2. Spatial split for BVH

As observed by Ernst and Greiner [27], Dammertz and
Keller [28], and Stich et al. [16], large triangles may hamper
the performance of data structures built using the cost model
with SAH. This is because they produce large overlaps of child
nodes’ bounding boxes and rays visiting this overlap may be
forced to traverse the same spatial regions repetitively.

Stich et al. [16] suggest to solve this by splitting such a node
with a kd-tree like split. The position of the splitting plane is
chosen so that the SAH cost is minimized. This method can
result in more references to a triangle which is spatially subdi-
vided. This is called a spatial split. However, splitting a node
with a spatial split need not be always beneficial. As refer-
ences are duplicated, the SAH cost of BVH may also increase.
Therefore, they solve this by choosing the split with the lower
cost from spatial and object splits. Another side effect of spa-
tial splitting is a significant increase in memory footprint and
build time. The resulting data structure is denoted Spatial BVH
(SBVH).

SBVH build

Existence of spatial splits requires changes of the building
algorithm. We use the algorithm as implemented in the frame-
work of Aila and Laine [12] which is based on a similar idea
for kd-trees as the paper by Popov et al. [29]. The method uses
the binning approach similar to Giinther et al. [30], but instead
of the centroids the left and right boundaries of the triangles in
the selected axis are used. Each of the 32 bins in each dimen-
sion holds the counters of the triangle’s left boundaries starting
in this bin and right boundaries ending in this bin. This rep-
resentation of reference spatial position allows to compute the
number of triangles that span over the bins boundary.

The triangle’s bounding box is then split along the bin bound-
aries updating each bin’s bounding box with the corresponding
part of its bounding box. After the binning is finished the bins
are swept left to right in each dimension. The numbers of ob-
jects for the left child Ny, and for the right child Nk are com-
puted from the counters in bins. The triangles straddling the
splitting plane are counted in both Ny and Ng. This allows to
compute also the number of triangles split by a plane of the
spatial split.

Finally a split with the minimal cost is found for spatial split
and object split and the one with smaller cost is chosen to create
the child nodes. If a spatial split is chosen, three new costs are
computed for triangles that straddle the splitting plane. The
first cost is for putting the whole triangle into the left child,
the second one for putting it into the right child, and the third
cost when the triangle is put into both children. The option
with minimal cost is realized further improving the SAH cost
of spatial splits. If a triangle straddles the splitting plane, two
new tight bounding boxes are computed for its parts falling into
the left and right child [31]. The termination criteria influencing
the creation of leaves are the same as for the SAH method.

4. The Cost Model with Occlusion Heuristic

In ray tracing the data structure spatially organizes the re-
gions of a scene in order to aid the ray in finding its closest
intersection. Without the loss of generality, further in the text
we will use only triangles as geometric primitives of a scene.
The straightforward idea of our approach is that we could build
more efficient data structures if we knew (or estimated well)
which triangles are the closest along all the rays and which tri-
angles are not visible. We suggest to modify the cost function
so that we can compute the results for rays hitting visible tri-
angles in a more efficient way. Nevertheless, the BVH built
with our method allows to compute correctly also the results
for rays hitting triangles that are not expected to be visible but
with a higher cost than for the visible triangles. If the visibil-
ity assumptions are mostly valid, on average the algorithm will
perform faster.

Before the computation of an image is finished, we do not
know which triangles are visible. However, the proposed
method is useful in two scenarios. First, when we compute the
images for an animation where we yield a significant frame to
frame coherence [32]. Then we can predict visible and invisible
triangles with a high probability. Second, when we compute re-
ally many rays such as for path tracing, it will pay us back to get
the approximate visibility information about triangles for sev-
eral samples of the pixel. Then we can rebuild the data structure
using this information as it is still more efficient in total (even
with the time needed for rebuild). This is useful for rendering
high quality images as in movie production etc.

With the information about approximate visibility of geomet-
ric primitives we create the cost function, where visible and in-
visible triangles are accounted for differently. We modify the
cost function so that it separates potentially visible and invisi-
ble triangles in the hierarchy. The benefit of such an approach
is that there are generally much fewer potentially visible trian-
gles than invisible ones, if the scene contains spatial regions
with high occlusion. This way the parts of the BVH tree con-
taining potentially visible triangles are shallower. During the
ray traversal for all the rays we can then compute the result in
fewer traversal steps and ray object intersection tests.

To justify our approach with modified cost function we also
tried to build a BVH from two subtrees, one for potentially vis-
ible and the other one for invisible triangles. The root of the
resulting BVH has the BVH over potentially visible triangles
as the left child and the BVH for potentially invisible triangles
as the right child. Although this approach also yielded some
benefit, indicating that visibility information can accelerate ray
tracing, it was only marginal. In particular, on high occlusion
scenes the two-subtree method improved the ray tracing perfor-
mance for primary rays by less than 10% on average compared
to the SAH. Our method, however, improves the performance
approximately twice.

Any stack-based traversal algorithm for BVHs has two
phases. In phase one, we find the first intersected object O
along the ray path. In phase two, we have to also check for the
ray intersection with all the triangles that could lie in front of
the object O. This is usually implemented by a traversal stack

from which the nodes to be further visited are popped. Until
explicitly tested the traversal algorithm does not know whether
the found intersection is the closest one.

This presents another challenge; we not only have to find
the closest intersection fast, but we also want to minimize the
cost of traversal in phase two, after the closest intersection is
found. When popping the nodes from the stack, ray-box and
ray-triangle intersections in their subtrees are considered valid
only if they are closer than the closest currently found ray-
triangle intersection. We minimize the work in phase two by
preventing nodes containing only invisible triangles to be closer
than any visible triangle as detailed in the next section. Thus
subtrees under these invisible nodes need not be traversed by
rays hitting the visible triangles.

4.1. OSAH

In this section we describe in detail our technique that op-
timizes for visible triangles. Clearly, separation of visible and
invisible triangles cannot be made if all the triangles in the cur-
rent node are either visible or invisible. In these cases the stan-
dard cost model with SAH is used to build the subtree under
the node (Equation 1). If the node contains both visible and
invisible triangles, we use this modified cost model:

w = 09
Ny St
= w—————+(1.0-w)—
pL N+ NV () 3
Ny Sk
= w———+(1.0—-w)—
PR e S

Cnode = Ct + Ci(pL : NL + DR NR)a (4)

where N} and Ny are the numbers of visible triangles in the left
and right child respectively and w is the weight of importance
for visible triangles. The other variables have the same mean-
ing as in section 3.1, Equation 1 and 2. We call a split made
according to Equation 4 an OSAH split.

The weight w is set to 0.9 to favour strongly the visible trian-
gles. The reason for this choice is that our method targets scenes
with high occlusion where visibility information can bring sig-
nificant speedup. For scenes or viewpoints with less occlusion,
setting the weight w to 0.5 can be more appropriate. On the
average the method is not much sensitive to this weight as can
be seen from graphs in section 5. Note that weight of 1.0 is not
a good choice because the probability of ray-box intersection is
then completely lost and cannot be used to break ties between
splits with equally good visibility term.

For OSAH split it could be most advantageous if it puts all
the visible references into one child and invisible references
into the other child, supposed the bounding boxes of both chil-
dren do not overlap. Obviously, this is not always possible, the
bounding box over visible triangles might be the same as the
bounding box of the whole node. Still, some candidate split
with a minimum cost is chosen, even though it does not sepa-
rate the child nodes well. To prevent the creation of such degen-
erated bounding boxes we first evaluate an additional viability
condition before the OSAH split is chosen. The viability con-
dition compares the best split computed with the OSAH cost

model with the best split computed with the SAH cost model.
The viability condition considers an OSAH split efficient only
if it hides more triangles than the SAH cost model split. If the
OSAH split is not viable, the split with the SAH cost model is
used to create the child nodes. We use this viability condition:

Ny = N, if N/ <Ny
Ng otherwise
N; > max(N; A7 NSAH),)

where N; 4% and N34# are the numbers of triangles in the left
and right child for the best split using the SAH cost model,
respectively. In the most favourable case all visible triangles
are put in a single child of the OSAH split and N; thus counts
only invisible triangles.

It is possible that the bounding volume of one child in the
OSAH split will overlap some visible triangles from the other
child as well. Then both children will have to be traversed by
the rays hitting such visible triangles. To prevent this we use
spatial splits as in the approach of Stich et al. [16]. Since we
use triangle binning to compute the number of triangles to the
left and right of the splitting plane, a visible triangle may be
counted in both children, which puts a penalty to such a split.
This helps to separate visible and invisible triangles and mini-
mize the work done in phase two of the BVH traversal, when
nodes from the traversal stack are popped to check if they can
contain a closer triangle. As spatial splitting ensures that their
ray-box intersection lies further along the ray than the visible
triangles, such popped nodes can be discarded quickly.

We use spatial splits also for computing the SAH cost model
split in the viability condition. Thus the spatial splits for the
OSAH and SAH cost models can be computed at the same time.
We are also able to perform a SBVH split in case the OSAH
split is not viable. As the OSAH splits are meaningful only
close to the root we limit their depth to 1/2 - log, (#tris). Below
this depth only SBVH splits are computed. To minimize the
build time and memory footprint we use spatial splits only in
nodes which are expected to be reached during traversal, e.g. in
nodes containing visible triangles. An illustration of the splits
chosen by the three BVH build algorithms is given in Figure 2.

Unlike for the SBVH split triangles straddling the splitting
plane cannot be chosen to be put entirely into the invisible child
even though this might lower the cost of such created child
nodes. This is because this insertion might cause visible trian-
gles to be overlapped by the enlarged invisible child’s bounding
box, which is what we are trying to avoid as explained above.
On the other hand, these triangles can be freely put into the visi-
ble child as this will not cause visible triangles to be overlapped
and overlapping of invisible triangles should not influence the
traversal performance. Identically to the SAH and SBVH a leaf
is created if its cost is smaller than the cost of splitting the node
and the number of triangles in the node is less than the prede-
fined maximum constant.

4.2. Modification for particular traversal algorithm

Finally, we modify the way child nodes are added to the hi-
erarchy which is connected to the used traversal algorithm. In

VA
N

VA
N

—

\ ERVZAN

————

(a) SAH

(b) SBVH

(c) OSAH

Figure 2: Visualization of different split types for BVH: (a) SAH, (b) SBVH, and (c) OSAH. Blue triangles are visible, light grey
triangles are invisible. The black rectangles represent bounding boxes and have been slightly enlarged for clarity. Notice how
OSAH can produce large bounding boxes but these are not traversed if the method’s assumptions are met.

this traversal algorithm the left child is chosen to be traversed
first, if bounding boxes of both children have the same distance
along a ray. We can take advantage of this by making the child
with more visible triangles the left child. Often, all the vis-
ible triangles are put in only one child and the nodes of the
hierarchy with visible triangles are traversed before those with
invisible triangles. Thus, the closest triangles are discovered
faster and the traversal takes fewer steps. This feature is partic-
ularly beneficial for large axis-aligned occluding triangles (like
walls) which are often overlapped by both child node’s bound-
ing boxes and the better traversal order cannot be deduced from
the distances themselves.

5. Results

We have implemented the proposed method in the soft-
ware framework accompanying the previous work of Aila and
Laine [12] that utilizes CUDA, highly parallel computer archi-
tecture from NVIDIA. The ray tracer implementation builds the
BVH on the CPU, the data structure is then transferred to the
GPU, and the ray traversal code and image computation runs
entirely on the GPU. We have extended the framework by path
tracing, shooting 1,000 samples per pixel in our tests. For test-
ing we have used a PC with Intel Core i7-2600, 16GB of RAM
and NVIDIA GeForce GTX 580 running 64-bit version of Win-
dows 7. All images in this paper were rendered at the resolution
of 1024x768 pixels.

5.1. Reference method ABVH and VSAH

Our method for building BVH described in section 4.1, de-
noted OSAH, is compared with several previously known meth-
ods for building BVH, namely the standard BVH with the cost
function with SAH as in Wald [22] (denoted SAH) and Spatial
BVH as described by Stich et al. [16] (denoted SBVH). We also
show results for two other reference methods denoted as ABVH
and VSAH to make the comparison fair and also to show the
potential of using the visibility information for building hierar-
chies.

The first new reference, the ABVH method, improves on the
SBVH [16]. It computes the SBVH splits only in nodes contain-
ing visible triangles. It builds the visible parts of the tree with
the SBVH while invisible parts are built with the standard SAH.
The ray tracing performance of the method is nearly the same
as for the SBVH but obviously it has almost always a lower
build time. This method is a beneficial approximation to the
full SBVH build using the visibility information, and it was not
published in the former literature. It also enables us to show the
difference between the utilization of spatial splits in the OSAH
and the SBVH/ABVH. We want to remark that the ABVH build
can be slower than the SBVH when many triangles are visible
and the BVH for the two methods is very similar. Then the
overhead of keeping the visibility information can slow down
the build slightly. In our measurements this happened only for
some cameras tested with path tracing (the increase of the time
for building was 3% at most).

The other reference, the VSAH method, utilizes the visibil-
ity information more directly. It restricts the BVH building only
over the visible triangles. This assumes exact knowledge of vis-
ibility, which is not possible by sampling, but it is still useful
when taken as a reference. This method provides some upper
bound for the performance improvement achievable using the
visibility information alone. It also provides some lower bound
on the construction time and memory usage. Because it is based
on SAH and does not use spatial splits, it need not be the fastest
of all of the compared methods, especially when many trian-
gles are visible. We want to repeat here that this method is not
practical as it implies that we know the exact triangle visibility
beforehand. Note that for comparing all the methods the infor-
mation about the visibility is precomputed for the same set of
rays unless mentioned otherwise, i.e. it is exact.

5.2. Test Scenes

We report most of our results on three architectural models
(Sibenik Cathedral, Sponza, and Soda Hall) and their alterna-
tive representation given by rotating the data by 45 degrees (as
also used by Stich et al. [16]). These models and the Power

(a) Fairy Forest

(b) Happy Buddha

(c) Dragon (d) Mbal

Figure 3: Four low occlusion scenes used for measurements rendered with ambient occlusion.

Scene #Tris BVH Size [MB]
SAH SBVH ABVH OSAH VSAH
high occlusion
Sibenik 80k 6.46 +22% +18% +18% -50%
Sibenik_rot45z 80k 641 +32% +28% +26% -49%
Sponza 76k 6.10 +30% +24% +22% -26%
Sponza_rot4Sy 76k 588 +102% +79% +77% -26%
Soda Hall 22M 17091 +12% +6% +6% -95%
Soda Hall_rot45z 22M 170.83 +25% +12% +11% -95%
Powerplant 127M 1326.80 +19% +19% +18% -95%
Powerplant_rot45z 12.7M 1278.34 +34% +32% +33% -95%
low occlusion
Fairy Forest 174k 14.00 +6% +6% +6% -19%
Happy Buddha 1088k 90.81 +7% +6% +7% -51%
Dragon 871k 7284 +4% +4% +5% -43%
Mbal 84k 6.54 +69% +56% +54% -63%

Table 1: Statistics for all of our test scenes: number of trian-
gles and average BVH memory consumption for five compared
BVH building methods. The BVH sizes for ABVH, OSAH and
VSAH are for path tracing where the number of visible trian-
gles is the highest over all of our measured ray distributions.

Plant model represent scenes with high occlusion. Rendered
images used for testing these scenes are in Figure 8. In addi-
tion to these highly occluded scenes, we have also tested our
method on four other scenes, depicted in Figure 3. These four
scenes (Fairy Forest, Happy Buddha, Dragon, and Mbal) fea-
ture little occlusion and therefore their potential for improve-
ment using our method is small. Nevertheless, we show that
our method performs similarly well as the reference method on
these scenes.

The properties of all the scenes and the memory consump-
tion of built BVHs are reported in Table 1. The visibility based
methods have higher memory consumption than the method
with standard SAH but the memory increase for the OSAH is
almost always lower than for the SBVH. There are two rea-
sons for this behaviour. First, only a small number of OSAH
splits close to the root of the tree is often enough to separate the
visible and invisible triangles. Second, there is much less visi-
ble geometry than invisible geometry. In our measurements be-
tween 1/1000 and 1/100 of the nodes were split with an OSAH
split. Also the data given in Table 1 are for path tracing which
has the most visible triangles of all the distributions and thus
the highest BVH size for the OSAH and the VSAH.

5.3. Path Tracing

The summary results for path tracing, averaged over all cam-
eras/viewpoints, are shown in Table 2. For each scene and
method we report the average number of triangle intersection
tests per ray N;r, average number of traversal steps Nrg, the
performance in Mrays/s, and the time to build the BVH in sec-
onds. The measured build times for the visibility driven heuris-
tics (ABVH, OSAH, and VSAH) include the GPU to CPU
transfer of triangle visibility information. The time for allo-
cation of visibility array on the CPU and the GPU/CPU transfer
is insignificant compared to the time needed to build the BVH;
it takes about 25.5ms for the Power Plant model. We represent
triangle visibility in an integer array, if the transfer time have
become a bottleneck we could lower the overhead by represent-
ing visibility as bits. The SAH is used as the reference method
in our tables (i.e. the reference method has ratio +0%).

Detailed results for path tracing on the highly occluded
scenes are given in Tables 3 and 4. For each scene four cameras
(i.e. viewpoints) were chosen. The first viewpoint is an outside
view of a detail of the model. The second one is an outside view
of a complex geometry. The third and fourth viewpoints are in-
terior views of the detailed and complex geometry. The images
computed for these selected viewpoints are shown in Figure 8.

5.4. Discussion

As can be seen from the tables, for path tracing the BVHs
built with the OSAH perform always faster than BVHs built
with the reference SAH. The BVHs built with the OSAH are
almost always faster even than the ones build with the SBVH.
The speedup is obviously higher on scenes with high occlusion
and on cameras located outside the scene. On cameras located
inside the scene majority of rays traverse through the empty
space (the invisible part of the BVH) and thus our method can-
not help here. Also for the rotated scenes it is much harder to
separate visible and invisible triangles and the speedup is usu-
ally low compared to SBVH. However, the performance of the
SBVH comes at the cost of significantly increased build times,
which are much less pronounced in our method. For the scenes
with high occlusion, the OSAH method’s average performance
is 67% higher compared to the SAH and 17% with respect to
the SBVH for path tracing. Also the memory consumption is a
little lower than for the SBVH.

We have also studied the dependence of the method on the
weight w used in Equation 4. This is shown for primary rays

Scene Nt Nrg Performance [Mrays/s] Tpuild!s)

SAH SBVH ABVH OSAH VSAH SAH SBVH ABVH OSAH VSAH SAH SBVH ABVH OSAH VSAH SAH SBVH ABVH OSAH VSAH
Sibenik 0.84 -10% -10% -17% +1% 9.13 -8% -8% -10% 2% 88.92 +4% +3% +22% +4% 0.61 +492% +352% +330% -48%
Sibenik_rot45z 237 -29% -29% -30% -3% 11.39 -14% -14% -13% -0% 51.78 +20% +19% +28% +3% 0.62 +534% +416% +387% -47%
Sponza 1.34 -29% -30% -20% -1% 12.09 -13% -14% -24% -16% 348.64 +6% +6% +46% +83% 0.58 +566% +436% +424% -21%
Sponza.rot45y 5.80 -64% -65% -66% -16% 19.64 -41% -41% -42% -22% 142.97 +141% +139% +153% +217% 0.57 +796% +623% +596% -19%
Soda Hall 1.25 -25% -26% -26% 2% 11.84 -4% -4% -16% -6% 61.42 +15% +14% +20% +4% 26.07 +85% +48% +22% -96%
Soda Hall_rot45z 5.60 -66% -66% -66% +9% 19.23 -38% -38% -41% -8% 25.66 +94% +93% +93% +8% 2595 +119% +61% +33% -96%
Powerplant 4.18 -68% -69% -69% -30% 24.93 -44% -44% -48% -12% 23.73 +121% +123% +129% +19% 196.07 +38% +42% +27% -96%
Powerplant_rot45z 23.52 -81% -81% -81% -33% 37.41 -57% -58% -59% -18% 7.11 +316% +320% +325% +65% 190.20 +78% +80% +69% -96%
Fairy Forest 232 -0% -1% -16% -24% 12.66 -1% -1% -4% +2% 4428 +2% +2% +9% +5% 1.58 +138% +139% +141% -15%
Happy Buddha 0.37 -3% -3% -19% +0% 5.19 2% 2% -5% -3% 68.69 +2% +2% +8% +1% 11.08 +170% +159% +136% -51%
Dragon 0.42 +0% +0% -12% +0% 5.55 -1% -1% -2% -0% 72.21 +1% +1% +6% +1% 8.55 +182% +175% +157% -42%
Mbal 0.82 -30% -30% -34% -7% 8.72 -27% -27% -29% -6% 40.05 +35% +35% +39% +6% 0.60 +763% +568% +543% -63%
total average 4.07 -64% -64% -65% 21% 14.81 -31% -31% -34% -11% 81.29 +35% +34% +55% +64% 38.54 +72% +67% +53% -93%
ratio average +0% -34% -34% -38% -9% +0% 21% -21% -24% -8% +0% +63% +63% +73% +35% +0% +330% +258% +239% -57%

Table 2: Summary results for path tracing and five BVH build methods, the new method is denoted OSAH. The average values
over all the cameras are reported on the tested scenes; the number of ray-triangle intersection tests, the number of traversal steps,
performance in Mrays/s, and the time to build the BVH are reported. SAH is used as the reference method (+0%). These data were
measured for 1,000 samples per pixel. The total average is computed from all scenes and viewpoints as a mean value, the ratio
average is computed from the averages over the viewpoints shown in this table for all the scenes.

standard scene data (not rotated)

Scene / Ny Nrg Performance [Mrays/s] Tpita [5)

camera SAH SBVH ABVH OSAH VSAH | SAH SBVH ABVH OSAH VSAH SAH SBVH ABVH OSAH VSAH SAH SBVH ABVH OSAH VSAH
Sibenik 0 026 35% 3% 27% 4% | 390 1% A% -12% % | 21762 +2% % +27% +5% 062 +487% +165% +121% -97%
Sibenik 1 030 7% % 20% 3% | 405 3% 2% 1% 2% | 10739 +5% 4% +14% +3% 061 +490% +246% +220% -90%
Sibenik 2 142 6% % -11% % | 1322 u%e % 1% 1% 1370 +12% +12% +14% +1% 061 +490% +497% +485% 3%
Sibenik 3 139 -12% -12% 22% +0% | 1536 9% 8% 9% 1% 1696 +14% +13% +18% +1% 062 +481% +487% +477% 3%
average 084 -10% -10% -17% 1% | 913 8% 8% -10% 2% 88.92 +4% 3% +22% +4% 061 +492% +352% +330% -48%
Sponza 0 149 1% -12% +37% -11% | 9.48 5% 6% 8% -19% | 129870 +5% 5% +48% +89% 058 +566% +31% 9% 99%
Sponza | 071 37% 8% 4% -15% | 675 -19% 20% -21% 1% 9188 424% +23% +30% +2% 058 +566% +571% +560% +5%
Sponza 2 167 -40% -40% -45% 5% | 1595 2% -12% -13% +0% 250 +20% 420% +24% +1% 058 +564% +571% +567% +5%
Sponza 3 148 3% 2% -39% 3% | 1620 -17% 7% -18% 1% 139 +21% +20% +22% +2% 058 +566% +571% +562% +5%
average 134 29% 30% -20% % | 1200 -13% -14% 24% -16% | 348.64 +6% +6% +46% +83% 058 +566% +436% +424% 21%
Soda Hall 0 045 -13% -13% -13% 1% | 906 -12% -12% 2% -12% 7930 +15% +14% +22% +6% | 2608 +85% +47% +21% -96%
Soda Hall 1 022 27% 21% 27% 5% | 510 -10% -10% -15% 8% | 10292 +13% +12% +16% 1% | 2607 +85% +64% +37% -93%
Soda Hall 2 262 -16% -15% -11% +6% | 1866 +11% +11% 9% -10% 7.94 12% 2% +14% 2% | 2608 +85% +28% 8% -99%
Soda Hall 3 170 -41% 45% -50% -16% | 1454 -15% -16% 21% +4% 5551 422% +23% +27% 6% | 2607 +85% +51% +21% -96%
average 125 25% 26% -26% 2% | 1184 4% 4% -16% 6% 6142 +15% +14% +20% 4% | 2607 +85% +48% +22% -96%
Powerplant0 | 295 -60% -60% -61% 6% | 1270 23% -23% -26% 7% 3276 +81% +81% +86% +17% | 19606 +38% +43% +28% -95%
Powerplant 1 | 140 -64% -64% -64% A% | 835 21% 21% 21% 6% 3224 +103% +102% +103% +20% | 19607 +38% +43% +25% -96%
Powerplant2 | 460 -65% -65% -64% -12% | 3730 -44% -45% -53% 6% 1498 +189% +195% +224% +10% | 19608 +38% +40% +23% -97%
Powerplant3 | 776 5% 5% 5% -56% | 4137 2% -53% 3% 21% 1492 +178% +185% +185% +28% | 19607 +38% +43% +32% -96%
average 418 -68% -69% -69% -30% | 2493 -44% -44% -48% -12% 2373 +121% +123% +129% +19% | 19607 +38% +42% +27% -96%

[tomlaverage | 190 -48% 48% A% -18% | 1450 -24% 24% 30% -10% | 13068 +12% 4120 +43% +57% | 5583 +A6% +44% +28% -96% |
| mtoaverage | +0% -33% 3% 3% 0% | +0% 1% 7% 4% 9% | 40% ¥36% +37% +54% +27% | +0% +295% +220% +201% 6% |

Table 3: Comparison of methods for highly occluded scenes with four cameras each (shown in Figure 8). The legend is the same
as in Table 2.

rotated version of scene data (Sibenik and Soda Hall 457 in Z-axis, Sponza and Powerplant 45 in Y-axis)

Scene / Nyt Nrg Performance [Mrays/s] Tpuild [s]

camera SAH _SBVH ABVH OSAH VSAH | SAH SBVH ABVH OSAH VSAH | SAH SBVH ABVH OSAH _ VSAH | SAH SBVH ABVH _ OSAH _ VSAH
Sibenik 0 087 38% 39% -28% A% | 4% 1% 1% 8% 4% | 12035 +19% +18% +29% +3% 062 +534% +266% +234% -95%
Sibenik 1 082 4% 4% 29% A% | s14 3% 3% -14% 5% | 6876 +18% +18% +25% +3% 063 +524% 4313% +256% -89%
Sibenik 2 421 3% 3B% 3% 5% | 1558 -15% -15% -13% +1% 819 428% 428% +26% +0% 062 +534% +539% +524% 2%
Sibenik 3 352 2% 23% 26% 0% | 1988 -15% 4% 1% 981 426% +26% +27% 1% 063 +524% 4530% +517% 3%
average 237 2% 2% -30% 3% | 1139 -14% -13% 0% | 5178 +20% +19% +28% +3% 062 +534% +4l6% +381% -41%
Sponza 0 506 68% -68% -66% 58% | 2019 -56% 0% 80% | 54079 +141% +139% +153% +230% 057 +198% 1% +16% -99%
Sponza | 556 80% -80% -81% 4% | 155 43% -43% 3% | 2951 +142% +141% +147% +1% 057 +796% +807% +189% +7%
Sponza 2 492 3% 3% -41% 3% | 2168 -29% 30% 4% LIL +80% +79% +84% 1% 057 +796% +804% +795% +1%
Sponza 3 765 68% 9% -10% 5% | 2502 38% 37% -4% 047 +130% +130% +126% +4% 057 +796% +804% +T86% +1%
average 580 64% -65% -66% -16% | 1964 -41% 2% 0% | 14297 4141% +139% +153% +217% 057 +796% +623% +596% -19%
Soda Hall 0 403 6% 6% % +0% | 171 30% -30% 29% 6% | 3400 +94% +93% +86% 16% | 2596 +119% +65% +34% -96%
Soda Hall 1 221 8% 8% 1% 8% | 769 -34% -34% 35% -11% | 4498 +86% +85% +88% +10% | 2595 +119% +81% +51% -93%
SodaHall2 | 1139 -62% -63% -65% +15% | 3438 37% 38% -45% -11% 253 +l11% +114% +165% +9% | 2595 +119% +32% +10% -99%
Soda Hall 3 469 -S8% -58% 59% +13% | 2306 43% -43% -43% 5% | 2113 +108% +108% +107% $7% | 2595 +119% +65% +38% -96%
average 560 66% -66% -66% 9% | 1923 38% 38% -41% 8% | 2566 +94% +93% +93% +8% | 2595 +119% +61% +33% -96%
Powerplant0 | 1140 -12% -12% 12% % | 2114 39% 39% -39% 6% 883 +277% +275% +278% +73% | 19020 +78% +82% +72% 95%
Powerplant | | 655 -78% 18% 18% -17% | 1335 -46% -46% -46% -14% 887 4326% 4323% +323% +71% | 19021 478% 481% +68% -96%
Powerplant2 | 4577 -85% -85% -85% -59% | 6289 -65% -65% -67% -32% 449 44ST% +459% +480% +105% | 19020 +78% +I5% +10% 97%
Powerplant3 | 3035 -19% 19% -19% % | 5227 51% -60% -60% 1% 624 4255% 4279% +285% +18% | 19020 +78% +81% +67% -96%
average 2352 8% 1% 81% 3% | 3741 51% 8% -59% -18% TAL +316% +320% +325% +65% | 19020 +78% +80% +69% -96%

[Comlaverige | 932 3% 3% 3% 2% | 2192 44% 44% -45% -14% | 5688 +113% +112% +123% +140% | 5433 +86% +80% +67% -96% |
[rtoavenge | +0% 60% 60% -61% -10% | +0% 7% 38% 39% 126 | +0% +142% +143% +150% +73% | +0% +382% +295% +272% 65% |

Table 4: Comparison of methods for rotated variants of highly occluded scenes with the same viewpoints as in Table 3.

9

in graphs in Figure 4. The results show that there is not much
dependence of the weight on average. We have set w = 0.9
for all other measurements to decrease the number of reported
results.

5.5. Animation

In order to demonstrate that the method is beneficial even
when using only estimated triangle visibility from the previous
frame, we have also prepared a hundred-frame-long fly-through
animation sequences. The camera looks at a single point in a
scene while it is moving around the scene. The performance
for the animations is summarized in graphs in Figure 5 for the
three test scenes and their rotated variants.

Similarly we have prepared generic animations where 50 to
100 boxes are randomly placed inside the scene’s bounding box
and the vertices inside these boxes are randomly moved. > The
results can be seen in Figure 6. In these walkthroughs and ani-
mations the performance of the OSAH method was very similar
when the BVH used the visibility information from the current
frame (i.e. exact visibility) and from the previous frame (i.e.
only approximate visibility). This indicates that our method
can be used with success when this approximate visibility as-
sumption holds, irrespective if the scene is only a walkthrough
or a fully animated scene (such as in movie production).

5.6. Different Ray Distributions

Finally, we present the average performance for each of the
architectural models, measured for several ray distributions.
The results are in graph in Figure 7. Note that for the shadow
and ambient occlusion rays the hit triangle need not be the clos-
est one along the ray. The visible triangles are thus not spatially
localized, which is more challenging for our method. Never-
theless, even with these ray distributions our method performs
better than the other methods. The graphs indicate that the per-
formance is largely independent of the ray distribution imposed
by rendering (not for random ones) and gracefully degrades to
the performance of SBVH/ABVH as more geometry becomes
visible.

Another important comparison of the data structure build
methods is through the average speedups, computed as an arith-
metic mean of the speedups for each scene and viewpoint. Ta-
ble 5 shows the average ray tracing speedup and average in-
crease in build times over the reference SAH method for the
SBVH and our OSAH build methods. The comparison is taken
for each of the measured ray distributions for highly occluded
scenes.

6. Conclusion and Future Work

We have introduced a new concept for improving the per-
formance of the data structures that relies on the approximate
visibility information over scene primitives. For this concept

2There are accompanying videos for the walkthroughs and animations for
this submission.

10

Distribution Ray tracing Build time
of rays speedup [%] increase [%]
SBVH OSAH SBVH OSAH
primary +87% +102% +331% +62%
shadow +62% +73% +340% +123%
ambient occlusion +46% +59% +326% +107%
diffuse +83% +101% +328% +171%
path tracing +89% +102% +338% +236%

Table 5: Results summary: average speedups for ray tracing,
and the increase of building time for the SBVH and OSAH
methods for different ray distributions, where SAH is taken as a
reference method. The values are computed over all high occlu-
sion scenes (Sibenik, Sponza, Soda Hall, Powerplant and their
rotated counterparts).

we have presented a novel technique for building higher qual-
ity data structures, bounding volume hierarchies (BVHs), by
modifying the cost model. The BVHs built up using the pro-
posed cost model speed up path tracing by 102% on average on
highly occluded scenes compared to the SAH and 10% com-
pared to SBVH. Although this is not a very high factor, this
improvement is significant as we improve the constant behind
already very efficient algorithm and not the asymptotic (i.e. log-
arithmic) behaviour of the algorithm. The proposed method is
capable of improving the performance for other ray distribu-
tions as well with similar or better results. The technique is
particularly beneficial for outside views of possibly deforming
massive models with high occlusion.

For future work there are several possibilities of using the
visibility information in building algorithm for hierarchical data
structures. Foremost we would like to implement the same cost
model for building up kd-trees to judge the benefit or penalty
imposed by front-to-back traversal. More sophisticated weight,
cost functions, and viability conditions may further increase
performance and decrease memory footprint and build times.
Another perspective direction is to study lazy partial rebuilds of
BVH with the OSAH like method for the animated scenes. This
will require development of a heuristic evaluating the changes
in visibility inside each node’s subtree and deciding whether the
subtree should be rebuilt or not.

Acknowledgements

We would like to thank the authors of the modelled scenes
used in this work: Marko Dabrovic (http://www.rna.hr) for the
Sibenik Cathedral and Sponza models, and Prof. Carlo Séquin
for the Soda Hall model, UTAH animation repository for pro-
viding Fairy Forest scene, and Stanford repository for the two
models Happy Buddha and Dragon. We would also like to
thank Tero Karras, Timo Aila, and Samuli Laine for releasing
their ray tracing framework.

This work was supported by Ministry of Education of The
Czech Republic under research programs LC06008 and MSM
6840770014, further by the Grant Agency of the Czech Repub-
lic under research programs P202/10/1435, P202/12/2413, and
P202/11/1883, and the Grant Agency of the Czech Technical
University in Prague, grant No. SGS10/289/OHK3/3T/13.

0.004

0.0035

0.003

0.0025

0.002

0.0015

Computation time per ray [ns]

0.001

0.0005

0.004

0.0035

0.003

0.0025

0.002

0.0015

Computation time per ray [ns]

0.001

0.0005

Figure 4: The performance of BVH built with the cost function with OSAH as function of weight in Equation 4, (a) Sibenik Cathe-
dral, (b) Soda Hall, (c) Sponza, (d) average for these scenes and their rotated variants. The graphs show the average computation

Performance as function of weight

04 06
Weight w

Comp. time NIT —— NTS ——

(a) Sibenik Cathedral

Performance as function of weight

M

0.4
Weight w
Comp. time

NIT —— NTS ——

(c) Sponza

60

50

40

30

20

60

50

40

30

20

Traversal steps/Intersection tests per ray [-]

Traversal steps/Intersection tests per ray [

Computation time per ray [ns]

Computation time per ray [ns]

0.004

0.0035

0.003

0.0025

0.002

0.0015

0.001

0.0005

0.004

0.0035

0.003

0.0025

0.002

0.0015

0.001

0.0005

Performance as function of weight

Weight w

NIT ——

(b) Soda Hall

Comp. time NTS ——

Performance as function of weight

0.4 06
Weight w

Comp. time NIT —— NTS ——

(d) Average

time, the number of traversal steps and intersection tests per ray for primary rays.

11

0.8 1

60

50

40

30

20

10

60

50

40

30

20

Traversal steps/intersection tests per ray [-]

Traversal steps/Intersection tests per ray [-]

Performance [Mrays/s]

Performance [Mrays/s]

Performance [Mrays/s]

Performance [Mrays/s]

900

SAH (avg: 525.46) ——
SBVH (avg: +6.66%) ——
OSAH 1 (avg: +13.44%) ——
OSAH 2 (avg: +13.36%) ——

800

700

SAH (avg: 366.45) ——
SBVH (avg: +25.50%) ——
OSAH 1 (avg: +25.23%) ——
OSAH 2 (avg: +25.32%) ——

w600
@
4
g
= 500
3
g
g 400
H
300 - & 300
200 - 200
100 + 100
]]
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Frame Frame
(a) Sibenik Cathedral (b) Sibenik Cathedral rotated
700 700
SAH (avg: 334.06) —— SAH (avg: 159.84) ——
SBVH (avg: +28.36%) —— SBVH (avg: +84.09%) ——
600 OSAH 1 (avg: +44.94%) —— 600 OSAH 1 (avg: +86.63%) ——
OSAH 2 (avg: +44.63%) —— OSAH 2 (avg: +86.55%)
500 500
g
400 s 400
3
I3
5
300 E 300
K]
S
&
200 + 200
100 100
0 0
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Frame Frame
(c) Soda Hall (d) Soda Hall rotated
1200 T T T T T T T T, T 1200 T T T T T T T T
SAH (avg: 362.19) —— SAH (avg: 194.09) ——
SBVH (avg: +44.97%) —— SBVH (avg: +85.15%) ——
OSAH 1 (avg: +61.31%) —— OSAH 1 (avg: +85.43%)
1000 OSAH 2 (avg: +62.00%) —— 1000 OSAH 2 (avg: +86.49%) ——
v
2
B
H
g
H
£
H
o
&
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 920 100
Frame Frame
(e) Sponza (f) Sponza rotated
350 350
SAH (avg: 103.29) —— SAH (avg: 33.58) ——
SBVH (avg: +98.70%) ——— SBVH (avg: +269.83%)
300 OSAH 1 (avg: +100.79%) 300 OSAH 1 (avg: +269.62%) ——
r OSAH 2 (avg: +100.66%) —— OSAH 2 (avg: +269.92%) ——
250 250
7
2
g
200 + s 200
3
&
5
150 - E
s
H
§
&

Frame

(g) Powerplant

12

Frame

(h) Powerplant rotated

Figure 5: The performance of ray tracing for animation walkthrough with 100 frames using BVH built with SAH, SBVH and OSAH
for (a) Sibenik Cathedral, (b) Sibenik Cathedral rotated 45 degrees in z-axis, (c) Soda Hall, (d) Soda Hall rotated by 45 degrees in
z-axis, (e) Sponza, (f) Sponza rotated by 45 degrees in y-axis, (g) Powerplant, (h) Powerplant rotated by 45 degrees in y-axis. The
method “OSAH 1” uses visibility information for the current frame while the method “OSAH 2” uses visibility information from
the previous frame to build the BVH. Notice that the curves for “OSAH 1” and “OSAH 2” are almost identical, which shows that
the approximate visibility from the previous frame can be used while preserving the performance. Average performance in Mrays/s
over the entire length of animation is reported in brackets absolutely or relatively to the SAH method.

SAH (avg: 312.84) ——
SBVH (avg: +30.14%) ——
OSAH 1 (avg: +44.71%) ——
OSAH 2 (avg: +44.26%)

SAH (avg: 153.09) ——
SBVH (avg: +83.77%)
OSAH 1 (avg: +87.38%)
OSAH 2 (avg: +85.31%)

Performance [Mrays/s]
Performance [Mrays/s]

0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Frame

(b) Soda Hall rotated

Frame

(a) Soda Hall

" SAH (avg: 32.47) ——
SBVH (avg: +273.33%) ——
OSAH 1 (avg: +272.25%) ——
OSAH 2 (avg: +272.22%) —— |

" SAH (avg: 71.16) ——
SBVH (avg: +167.59%) ———
OSAH 1 (avg: +167.69%) ——
OSAH 2 (avg: +166.30%) ——

Performance [Mrays/s]
Performance [Mrays/s]

0 10 20 30 40 50 60 70 80 90 100
Frame

(d) Powerplant rotated

(c) Powerplant

Figure 6: The performance of ray tracing for the animation of 100 frames with the deformable scenes made by the pertubation of a
static scene. The legend is the same as in Figure 5. (a) Soda Hall, (b) Soda Hall rotated by 45 degrees in z-axis, (c) Powerplant, (d)
Powerplant rotated by 45 degrees in y-axis.

450 % T T T T T
SAH

., [SBVH o

400 % pSAH]

350 % | B
300 % | B
250 % | B
200 % | B

150 % B

Performance [Mrays/s]

100 % B

50 % B

0%

TR 2R, 2R 2L 2R 2L 2R 2L AN 2R 2L 222 2R

) 2,050, 3,025, 2,0 3,025, 3,0 3025 23,0259,

ARoLs BNoLs AR055 A%oes 4055 a%oes A%055 a%ons
%Oéoga %%%@ 9’20@2@@ %OALO@@ 9’2%\2\9@ %%@@ 9’20&0&0 9‘20&0\9@
sibenik sibenik_rot45z sponza sponza_rot45y soda soda_rot45z powerplant powerplant_rot45y

Figure 7: Relative performance in Mrays/s of our method (OSAH) and two reference methods (SAH and SBVH) in dependence of
ray distribution. The cameras from Figure 8 were used for the measurements. The graphs are normalized to the performance of the
reference SAH method (100%). primary distribution stands for camera rays. shadow for occlusion from 10 point light sources (5
outside, 5 inside). ao stands for ambient occlusion (numbers in brackets are ray lengths as ratios to scene diagonal), diffuse for one
bounce diffuse interreflection. path stands for path tracing with 1,000 samples used per pixel. For ao and diffuse 32 rays were used
to sample the hemisphere above hit point.

13

e

(a) Sibenik / Sibenik_rot45z 0 (b) Sibenik / Sibenik _rot45z 1 (c) Sibenik / Sibenik _rot45z 2 (d) Sibenik / Sibenik_rot45z 3

(e) Sponza / Sponza_rot45y 0 (f) Sponza / Sponza_rot45y 1 (g) Sponza / Sponza_rot45y 2 (h) Sponza / Sponza_rot45y 3

(i) Soda Hall / Soda Hall _rot45z 0 (j) Soda Hall / Soda Hall_rot45z 1 (k) Soda Hall / Soda Hall_rot45z 2 (1) Soda Hall / Soda Hall rot45z 3

(m) Powerplant / Powerplant_rot45y (n) Powerplant / Powerplant_rot45y 1 (o) Powerplant / Powerplant_rot45y 2 (p) Powerplant / Powerplant_rot45y 3
0

- E

Figure 8: Cameras-viewpoints used for our measurements for the highly occluded scenes: Sibenik, Sponza, Soda Hall, and Power-
plant.

14

References

(1]

[2]

[3]

(4]

[3]

[6]

[7]

[8]

[9]

(10]

(11]

[12]

[13]

(14]

[15]

[16]

(17]

[18]

(19]

(20]

[21]

(22]

J. Goldsmith, J. Salmon, Automatic Creation of Object Hierarchies for
Ray Tracing, IEEE Computer Graphics and Applications 7 (5) (1987)
14-20.

V. Havran, Heuristic Ray Shooting Algorithms, Ph.D. Thesis, Department
of Computer Science and Engineering, Faculty of Electrical Engineering,
Czech Technical University in Prague (November 2000).

A. Kensler, Tree Rotations for Improving Bounding Volume Hierarchies,
in: Proceedings of the 2008 IEEE/Eurographics Symposium on Interac-
tive Ray Tracing, 2008, pp. 73-76.

W. Hunt, W. Mark, Ray-Specialized Acceleration Structures for Ray
Tracing, in: Proceedings of the 2008 IEEE/Eurographics Symposium on
Interactive Ray Tracing, 2008, pp. 3—10.

C. Lauterbach, S.-E. Yoon, D. Tuft, D. Manocha, RT-DEFORM: Interac-
tive Ray Tracing of Dynamic Scenes using BVHs, in: Proceedings of the
2006 IEEE Symposium on Interactive Ray Tracing, 2006, pp. 39-46.

K. Garanzha, Efficient Clustered BVH Update Algorithm for Highly-
Dynamic Models, in: Proceedings of the 2008 IEEE/Eurographics Sym-
posium on Interactive Ray Tracing, 2008, pp. 123-130.

M. Eisemann, C. Woizischke, M. Magnor, Ray Tracing with the Single-
Slab Hierarchy, in: Proc. Vision, Modeling and Visualization (VMV)
2008, Konstanz, Germany, 2008, pp. 373-381.

T.-J. Kim, B. Moon, D. Kim, S.-E. Yoon, RACBVHs: Random-
Accessible Compressed Bounding Volume Hierarchies, IEEE Transac-
tions on Visualization and Computer Graphics 16 (2) (2010) 273-286.
C. Lauterbach, M. Garland, S. Sengupta, D. Luebke, D. Manocha, Fast
BVH Construction on GPUs, Computer Graphics Forum 28 (2) (2009)
375-384.

J. Pantaleoni, D. Luebke, HLBVH: Hierarchical LBVH Construction for
Real-Time Ray Tracing of Dynamic Geometry, in: M. Doggett, S. Laine,
W. Hunt (Eds.), Proceedings of the Conference on High Performance
Graphics 2010, HPG ’10, ACM SIGGRAPH/Eurographics, Saarbriicken,
Germany, 2010, pp. 87-95.

K. Garanzha, J. Pantaleoni, D. McAllister, Simpler and Faster HLBVH
with Work Queues, in: Proceedings of the Conference on High Perfor-
mance Graphics 2011, HPG 11, ACM SIGGRAPH/Eurographics, New
York, NY, USA, 2011, pp. 59-64.

T. Aila, S. Laine, Understanding the Efficiency of Ray Traversal on GPUs,
in: Proceedings of the Conference on High Performance Graphics 2009,
HPG ’09, ACM SIGGRAPH/Eurographics, New York, NY, USA, 2009,
pp. 145-149.

K. Garanzha, C. Loop, Fast Ray Sorting and Breadth-First Packet Traver-
sal for GPU Ray Tracing, Computer Graphics Forum 29 (2) (2010) 289—
298.

T. L. Kay, J. T. Kajiya, Ray Tracing Complex Scenes, SIGGRAPH Com-
put. Graph. 20 (1986) 269-278.

K. Ng, B. Trifonov, Automatic Bounding Volume Hierarchy Genera-
tion Using Stochastic Search Methods, in: CPSC532D Mini-Workshop
”Stochastic Search Algorithms”, 2003, pp. 147-162.

M. Stich, H. Friedrich, A. Dietrich, Spatial Splits in Bounding Volume
Hierarchies, in: Proceedings of the Conference on High Performance
Graphics 2009, HPG ’09, ACM SIGGRAPH/Eurographics, New York,
NY, USA, 2009, pp. 7-13.

S. Popov, 1. Georgiev, R. Dimov, P. Slusallek, Object Partitioning Con-
sidered Harmful: Space Subdivision for BVHs, in: Proceedings of the
Conference on High Performance Graphics 2009, HPG 09, ACM SIG-
GRAPH/Eurographics, New York, NY, USA, 2009, pp. 15-22.

V. Havran, J. Bittner, Rectilinear BSP trees for preferred ray sets, in: Pro-
ceedings of SCCG’99 (Spring Conference on Computer Graphics), Bud-
merice, Slovak Republic, 1999, pp. 171-179.

B. Walter, K. Bala, M. Kulkarni, K. Pingali, Fast Agglomerative Cluster-
ing for Rendering, in: Proceedings of the 2008 IEEE/Eurographics Sym-
posium on Interactive Ray Tracing, 2008, pp. 81-86.

M. Reichl, R. Diinger, A. Schiewe, T. Klemmer, M. Hartleb, C. Lux,
B. Frohlich, GPU-based Ray Tracing of Dynamic Scenes, Journal of Vir-
tual Reality and Broadcasting 7 (1).

P. Bauszat, M. Eisemann, M. Magnor, The Minimal Bounding Volume
Hierarchy, in: Proc. Vision, Modeling and Visualization (VMV) 2010,
Siegen, Germany, 2010, pp. 227-234.

1. Wald, On fast Construction of SAH-based Bounding Volume Hierar-
chies, in: Proceedings of the 2007 IEEE Symposium on Interactive Ray

15

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

Tracing, IEEE Computer Society, Washington, DC, USA, 2007, pp. 33—
40.

Q. Hou, X. Sun, K. Zhou, C. Lauterbach, D. Manocha, Memory-Scalable
GPU Spatial Hierarchy Construction, IEEE Transactions on Visualization
and Computer Graphics 17 (4) (2011) 466—474.

V. Havran, R. Herzog, H.-P. Seidel, Fast final gathering via reverse photon
mapping, Computer Graphics Forum (Proceedings of Eurographics 2005)
24 (3) (2005) 323-333.

J. Bittner, V. Havran, RDH: Ray Distribution Heuristics for Construction
of Spatial Data Structures, in: H. Hauser (Ed.), 25th Spring Conference
on Computer Graphics (SCCG 2009), ACM, Budmerice, Slovakia, 2009,
pp. 61-67.

T.Ize, C. Hansen, RTSAH Traversal Order for Occlusion Rays, Computer
Graphics Forum (Proceedings of Eurographics 2011) 30 (2) (2011) 297-
305.

M. Ernst, G. Greiner, Multi Bounding Volume Hierarchies, in: Proceed-
ings of the 2008 IEEE/Eurographics Symposium on Interactive Ray Trac-
ing, 2008, pp. 35-40.

H. Dammertz, A. Keller, The Edge Volume Heuristic - Robust Trian-
gle Subdivision for Improved BVH Performance, in: Proceedings of the
2008 IEEE/Eurographics Symposium on Interactive Ray Tracing, 2008,
pp. 155-158.

S. Popov, J. Giinther, H.-P. Seidel, P. Slusallek, Experiences with Stream-
ing Construction of SAH KD-Trees, in: Proceedings of the 2006 IEEE
Symposium on Interactive Ray Tracing, 2006, pp. 89-94.

J. Giinther, S. Popov, H.-P. Seidel, P. Slusallek, Realtime Ray Tracing
on GPU with BVH-based Packet Traversal, in: Proceedings of the 2007
IEEE/Eurographics Symposium on Interactive Ray Tracing, IEEE Com-
puter Society, Washington, DC, USA, 2007, pp. 113-118.

V. Havran, J. Bittner, On Improving KD-Trees for Ray Shooting, Journal
of WSCG 10 (1) (2002) 209-216.

H. Hubschman, S. W. Zucker, Frame-to-frame coherence and the hidden
surface computation: constraints for a convex world, ACM Trans. Graph.
1(1982) 129-162.

