
EUROGRAPHICS 2015 / O. Sorkine-Hornung and M. Wimmer
(Guest Editors)

Volume 34 (2015), Number 2

T-SAH: Animation Optimized Bounding Volume Hierarchies

J. Bittner and D. Meister

Czech Technical University in Prague, Faculty of Electrical Engineering

1.1x vs SAH+refit
1.5x vs HLBVH

5.4x vs SAH+refit
1.1x vs HLBVH

1.3x vs SAH+refit
2.6x vs HLBVH

1.4x vs SAH+refit
1.6x vs HLBVH

Figure 1: Average speedups of ray tracing for several tested animations when using our single T-SAH optimized BVH with
refitting compared to SAH with refitting and per frame rebuilding using HLBVH algorithm. From left to right: Fairy Forest,
Dragon Bunny, San Miguel + Running Horses, Breaking Lion.

Abstract
We propose a method for creating a bounding volume hierarchy (BVH) that is optimized for all frames of a given
animated scene. The method is based on a novel extension of surface area heuristic to temporal domain (T-SAH).
We perform iterative BVH optimization using T-SAH and create a single BVH accounting for scene geometry
distribution at different frames of the animation. Having a single optimized BVH for the whole animation makes
our method extremely easy to integrate to any application using BVHs, limiting the per-frame overhead only to
refitting the bounding volumes. We evaluated the T-SAH optimized BVHs in the scope of real-time GPU ray tracing.
We demonstrate, that our method can handle even highly complex inputs with large deformations and significant
topology changes. The results show, that in a vast majority of tested scenes our method provides significantly better
run-time performance than traditional SAH and also better performance than GPU based per-frame BVH rebuild.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Raytracing—I.3.5 [Com-
puter Graphics]: Object Hierarchies—I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism—

1. Introduction

Ray tracing stands at the core of many rendering algorithms.
With the advances of computational power it is possible to
use ray tracing for interactive applications, including those
involving dynamic or animated scenes. Bounding Volume
Hierarchies became a very popular data structure for ray
tracing. They exhibit a predictable memory budget, fast con-
struction, very good ray tracing performance, and also allow
easy updates for handling dynamic scenes.

A number of efficient techniques have been proposed for
bounding volume hierarchies. For example methods for con-
struction of high quality BVHs [WBKP08, BHH13, KA13,
GHFB13] are particularly suitable for offline applications
as they provide hierarchies leading to the best possible ray
tracing performance. Other class of techniques uses very
fast BVH construction targeting at interactive and real-time
applications with dynamic and animated scenes [GPM11,
Kar12]. These methods lead to real-time or interactive per-
formance for scenes of low to moderate complexity.

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

J. Bittner & D. Meister / T-SAH: Animation Optimized Bounding Volume Hierarchies

In many cases animated or deformable models exhibit
large amount of coherence and just refitting the BVH and
keeping its topology provides a very good overall perfor-
mance. However, in some cases this approach breaks due to
topology changes or large deformations [WBS07]. Several
methods have been proposed to handle this issue by dynam-
ically updating the BVH at runtime [LYTM06,KIS∗12]. We
propose to use a novel approach based on temporal extension
of the surface area heuristic (T-SAH). We describe an algo-
rithm that uses T-SAH to construct a single BVH optimized
for a given animation sequence. In the most of the test cases
the T-SAH based BVH provides surprisingly stable results
even for scenes involving very complex topology changes
(see the accompanying paper video or snapshots in Figures 5
and 6 for the range of topology changes we aim to handle).
Apart from animated scenes the method can also handle de-
formable and/or articulated objects such as animated charac-
ters.

Since the BVH can be optimized for the whole anima-
tion sequence in the preprocess, there is no need to rebuild
the BVH at runtime. Our tests indicate, that for interactive
rendering of complex scenes with known animations this
leads to significantly better performance than rebuilding the
BVH at runtime. The savings are not only due to faster up-
date time, but the measured ray tracing performance is also
higher for most tested scenes, since the preprocess allows to
construct BVH of better quality than the methods working at
runtime.

2. Related Work

SAH Bounding volume hierarchies have a long tradition in
rendering and collision detection. Kay and Kajiya [KK86]
designed one of the first BVH construction algorithms us-
ing spatial median splits. Goldsmith and Salmon [GS87]
proposed the measure currently known as the surface area
heuristic (SAH), which predicts the efficiency of the hierar-
chy during the BVH construction. The vast majority of cur-
rently used methods for BVH construction use a top-down
approach based on SAH. A particularly popular method is
the fast approximate SAH evaluation using binning proposed
by Havran et al. [HHS06] and Wald et al. [Wal07].

SAH extensions Several extensions of the basic SAH have
been proposed in the past. Hunt [Hun08] proposed correc-
tions of SAH with respect to mailboxing. Fabianowski et
al. [FFD09] proposed SAH modification for handling scene
interior ray origins. Bittner and Havran proposed to modify
SAH by including the actual ray distribution [BH09], Felt-
man et al. [FLF12] extended this idea to shadow rays. Cor-
rections of the SAH based BVH quality metrics have been
recently proposed by Aila et al. [AKL13].

Parallel BVH construction Another class of meth-
ods target fast parallel BVH construction. Lauterbach et
al. [LGS∗09] proposed a GPU BVH construction algorithm

using a 3D space-filling curve. Wald [Wal12] studied the
possibility of fast rebuilds from scratch on an Intel archi-
tecture with many cores. Pantaleoni and Luebke [PL10],
Garanzha et al. [GPM11], and Karras [Kar12] proposed
GPU based methods for efficient parallel BVH construction.
These techniques achieve impressive performance, but gen-
erally construct a BVH of lower quality than the full SAH
builders. We use the HLBVH method [GPM11] as one of
the references for our comparisons.

High quality BVH Recently more interest has been de-
voted to methods, which are not limited to the top-down
BVH construction. Walter et al. [WBKP08] proposed to use
bottom-up agglomerative clustering for constructing a high
quality BVH. Gu et al. [GHFB13] proposed a parallel ap-
proximative agglomerative clustering for accelerating the
bottom-up BVH construction. Kensler [Ken08], Bittner et
al. [BHH13], and Karras and Aila [KA13] proposed to op-
timize the BVH by performing topological modifications of
the existing tree. These approaches allow to decrease the ex-
pected cost of a BVH beyond the cost achieved by the tra-
ditional top down approach. Our method uses an extension
of the insertion based optimization algorithm proposed by
Bittner et al. [BHH13].

Dynamic and animated scenes Wald et al. [WBS03] sug-
gested to decompose dynamic scenes into multiple objects
with their local transformations and use a top-level hierar-
chy for organizing these objects. This concept has recently
been used within the Embree ray tracer [WWB∗14]. Lauter-
bach et al. [LYTM06] proposed to rebuild subtrees if they ex-
hibit significant SAH cost changes. Gunther et al. [GFW∗06]
subdivided the model into clusters of coherent movement
and used fuzzy kd-trees to describe the residual geometry
changes. Olsson [Ols07] studied 4D kd-trees focusing on op-
timzing their performance for rendering motion blur. Wald
et al. [WBS07] proposed to use BVH refitting combined
with packet based traversal for rendering dynamic scenes.
Ize et al. [IWP07] proposed asynchronous BVH reconstruc-
tion and refitting for increasing runtime performance. Up-
dating BVH at runtime using rotations has been proposed
by Yoon et al. [YCM07] and more recently by Kopta et
al. [KIS∗12]. Garanzha [Gar09] precomputes coherent tri-
angle clusters using motion prediction in order to accelerate
the BVH construction at runtime. Mora [Mor11] proposed
to perform ray tracing without an explicit data structure us-
ing a divide and conquer algorithm. Ray tracing animated
scenes was surveyed by Wald et al. [WMG∗09]. Unlike the
previous methods, our method is the first to create a single
ordinary BVH optimized for the whole animation, requiring
no topology modifications at runtime.

The paper is further structured as follows: Section 3
presents an overview of the proposed method, Section 4
introduces the T-SAH cost model, Section 5 describes the
BVH construction using T-SAH, Section 6 presents the re-
sults and their discussion, and Section 7 concludes the paper.

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.

J. Bittner & D. Meister / T-SAH: Animation Optimized Bounding Volume Hierarchies

3. Algorithm Overview

Our algorithm starts by resampling the input animation se-
quence into a small number of representative frames. The
representative frames provide information about the geome-
try distribution during the animation. We construct a BVH
for the first representative frame using a standard sweep
based algorithm based on SAH. The BVH is then iteratively
optimized using the cost model given by the temporal exten-
sion of the surface area heuristic (T-SAH). T-SAH simulta-
neously considers costs of all representative frames, and thus
optimizing according to T-SAH will improve the overall per-
formance of the BVH for the input animation sequence.

The actual BVH optimization algorithm is a modification
of the method proposed by Bittner et al. [BHH13] that uses
the new T-SAH cost model. The method performs a series
of remove and insert operations on subtrees of the BVH in
order to minimize the T-SAH cost of the BVH. Since the es-
timated ray tracing performance is known during the BVH
optimization procedure, the method can put more effort to
optimize difficult representative frames. An illustration of
the optimization and its impact on a scene involving signifi-
cant topology changes is shown in Figure 2.

0
1
2
3

... ...

Figure 2: Illustration of the BVH optimization using T-SAH.
During the optimization we keep an array of bounding boxes
for each BVH node, which correspond to bounding vol-
umes for different representative frames. The optimization
regroups nodes at all tree levels to yield clusters as compact
as possible considering all frames. The bottom row shows vi-
sualization of a BVH constructed for the Dragon Bunny ani-
mation using SAH (left) and T-SAH (right) (a cut in the BVH
involving nodes with less than 5.000 polygons is shown).
Note how T-SAH automatically identifies groups of polygons
forming fragments of the broken Dragon that appear in the
later stages of the animation.

4. T-SAH for Animations

The SAH cost is based on expressing the probability of hit-
ting a bounding volume with a random unoccluded ray. Once
the ray hits a bounding volume of area S we express the prob-
ability of hitting its child bounding volume S′ as the ratio of
surface areas S′/S. The SAH cost of the whole BVH can be
expressed as a function of time as:

C(t) =
cT

S(t) ∑
N∈inner

SN(t)+
cI

S(t) ∑
N∈leaves

SN(t) jN , (1)

where SN(t) is the surface area of node N at time t, S(t) is
the surface area of the root of the BVH, jN is the number of
triangles in leaf N, and cT , cI are costs for ray traversal and
ray intersection computations.

We resample the animation sequence or the pose space
of a character into a set of n representative frames at cor-
responding times ti for which we obtain a discrete set of n
BVH costs Ci = C(ti), 0 ≤ i < n. Using the representative
frames we define the T-SAH cost C̃, which is a temporal ex-
tension of the SAH cost function. T-SAH cost C̃ expresses
the cost of the whole animation sequence as a weighted av-
erage of the frame costs:

C̃ =
1

∑i wi
∑

i
wiCi 0 ≤ i < n (2)

where wi is the weight of the representative frame i.

As we do not assume a priori knowledge of importance of
the representative animation frames, we use sampling at uni-
form time intervals and we set the weights wi to depend on
the actual cost of the frame: wi = Ck

i . The exponent k is the
parameter of the method influencing the relative contribution
of the cost for the given frame to the T-SAH cost function.
The T-SAH cost function is then given as:

C̃k =
1

∑i Ck
i
∑

i
Ck+1

i 0 ≤ i < n (3)

Note that for the special case of k = 0, all the frames
are weighted equally and the T-SAH cost function C̃0 corre-
sponds to the average cost of the sampled animation frames:

C̃0 =
1
n ∑

i
Ci 0 ≤ i < n (4)

If the exponent k becomes larger (e.g. k ≥ 2) significantly
more weight is given to the frames with high values of the
cost function. Thus when minimizing the T-SAH cost func-
tion these frames will have higher importance and the algo-
rithm should aim to optimize the BVH by reducing the cost

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.

J. Bittner & D. Meister / T-SAH: Animation Optimized Bounding Volume Hierarchies

of these frames with higher priority. In other words when
minimizing the T-SAH cost function using higher exponents
k we should eliminate peaks of the sampled cost function
even at the price that the average cost C̃0 will increase. This
is useful for example in the scenario when we have a strict
time budget for rendering a frame and we want that the BVH
provides performance fulfilling this budget for the whole an-
imation sequence.

The above described definition expresses the T-SAH cost
of the whole BVH. When evaluating a cost of a subtree us-
ing Eq. 2 we use the global weights wi corresponding to the
whole tree as they give a better overview of the importance
of different representative frames for the animation.

5. Building BVH using T-SAH

We decided to use T-SAH with the insertion based BVH op-
timization method proposed by Bittner et al. [BHH13]. This
method works by optimizing an already existing BVH, and
so it can take into account all the components of the T-SAH
cost model including the calculation of weights wi based on
the costs of the representative frames. This section describes
the BVH construction algorithm focusing on the modifica-
tions required for supporting the T-SAH cost model.

5.1. Insertion Based Optimization

The elementary step of the insertion based optimization
method is removing a node from the BVH and reinserting
it back at a position reducing the global tree cost. Here we
do not reproduce the basics of the method and we refer the
interested reader to the work of Bittner et al. [BHH13]. The
removal of a node and its insertion back into the BVH re-
quires only simple local operations on the tree once the op-
timal insertion position is found.

The crucial part of the algorithm is searching for the op-
timal position to re-insert the node into the BVH while ac-
counting for the T-SAH cost model. Similarly to the stan-
dard version of the insertion based optimization the algo-
rithm uses branch-and-bound search. This search tracks the
cost increase caused by expanding bounding volumes of
nodes above the currently examined insertion position (in-
duced cost). The other component of the total cost increase
is given by inserting a new node connecting the re-inserted
subtree and the node which was identified as the best in-
sertion point (direct cost). In the algorithm by Bittner et
al. [BHH13] the induced cost corresponds to the surface area
increase of nodes on the path to the root and the direct cost
to the surface area of the union of bounding boxes of the
inserted node and the box of the node at the insertion point.

The modification for T-SAH involves computing vectors
of costs instead of scalar variables, where the components of
these vectors correspond to different representative frames.
For example the components of the vector of induced costs

correspond to surface area increase at different represen-
tative frames above the node that is currently visited by
the searching algorithm. The actual costs are then evaluated
from the cost vectors using the T-SAH model (Eq. 2).

To accelerate the search procedure we use an approxima-
tion to T-SAH cost model, that only updates weights wi after
a batch of reinsertion operations has been performed. We
used a batch size equal to 2% of the number of nodes in
the BVH. Note that when optimizing the average cost C̃0

the weights are constant and need not be re-evaluated in the
whole optimization process.

5.2. Selecting Nodes for Update

One choice to apply the above described optimization is to
select nodes to be updated in random order. However, using
some prioritization scheme can accelerate the optimization
process [BHH13]. As a priority for updating a given node
we use its contribution ∆

k
N to the cost function C̃k. This con-

tribution corresponds to a weighted sum of surface areas of
the node over all representative frames, where the weights
correspond to frame weights wi:

∆
k
N = ∑

i
wiSN(ti) = ∑

i
Ck

i SN(ti)

For C̃0 this priority simplifies to a sum of surface areas of
the node bounding box over all representative frames.

We use an independent chain Metropolis-Hastings sam-
pling in order to quickly select nodes for updates. We want
the target distribution of selected nodes to be proportional to
∆

k
N . We pick up a node Xi+1 using a uniform proposal dis-

tribution. This node is either accepted or rejected based on
the ratio of the cost contributions of the node and the pre-
viously accepted node ∆

k
i+1/∆

k
i . This process introduces a

correlation, i.e. some nodes would be drawn a number of
times in a sequence. In our application updating the same
node in a sequence does not make sense as the determinis-
tic search would always find the same optimal position for
this node in the BVH. We therefore continue the sampling
until we accept a different node, which is then updated. The
actual distribution of selected nodes does not strictly follow

∆C̃k
N , but nevertheless it is able to significantly accelerate the

convergence of the BVH cost (about 1.5 to 4x compared to
random sampling). We also observed that for complex an-
imations, the described stochastic method converges faster
than the deterministing batch sorting proposed for optimiz-
ing a single BVH [BHH13], as the later one primarily fo-
cuses only on small percentage of nodes with high costs. On
the contrary for simpler animations the batch sorting based
selection provided the best convergence rate (see Figure 3).

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.

J. Bittner & D. Meister / T-SAH: Animation Optimized Bounding Volume Hierarchies

64

66

68

70

72

74

76

0 0.5 1 1.5 2 2.5 3 3.5 4

av
g.

dB
V

H
dc

os
td[

-]

timed[s]

batchdsort
random
M-H

0
200
400
600
800

1000
1200
1400
1600

0 50 100 150 200 250

av
g.

 B
V

H
 c

os
t [

-]

time [s]

batch sort
random
M-H

Figure 3: Convergence rates of BVH optimization for differ-
ent node selection methods (left: BART robots, right: BART
museum). Note that on a very complex animation sequence
like BART Museum batch sorting was not very succesful and
the cost was reduced only after switching to random sam-
pling after couple of initial optimization passes (at t=20s).

5.3. Terminating the Optimization

We terminate the BVH optimization if there was no reduc-
tion of the BVH cost in the given number of update batches.
We observed, that terminating after three batches when the
cost was not reduced was a good overall setting for the tested
scenes.

5.4. Adaptive Leaf Size

For obtaining an optimized BVH with the highest possible
quality it is important to initially construct a deep BVH with
a single triangle per leaf. This allows the T-SAH based op-
timization algorithm to identify fine grained groups of tri-
angles which exhibit coherent movement or deformations.
Having such a deep BVH is however not desirable for the ac-
tual rendering. An optimal leaf size depends on the constants
of the ray tracer implementation, the type of animation, and
ray distribution.

To finalize the BVH we compact the tree by collapsing
the subtrees into larger leaf nodes as proposed by Bittner et
al. [BHH13]. In the case of animated scenes this does not
only account for particular constants of the ray tracer (ratio
of cT /cI), but it also efficiently handles some potential de-
formations of the model. The algorithm evaluates the cost of
the subtree Ck

N and compresses it when the cost of the sub-
tree becoming a leaf is smaller.

6. Results

We evaluated the proposed method on nine animated scenes.
Eight scenes represent standard benchmarks for animated
ray tracing, one scene is a composition of a static model of
a moderate complexity (7.8M triangles), and an animation
representing several horses running through the scene. The
overview of tested animated scenes is given in Table 1.

6.1. BVH Optimization

First, we compared the costs and the build times of BVHs
constructed offline using different methods. For the com-
parison we used BVH constructed for every frame us-
ing the full sweep SAH (SAH-rebuild), the best-over-time
BVH [WBS07] with refitting (SAH∗), BVH constructed for
the first frame with refitting (SAH0), and the proposed T-
SAH with refitting using three different settings (C̃0, C̃2,
C̃4). For SAH-rebuild and SAH∗ we also employed the in-
sertion based optimization [BHH13]. For SAH0 this opti-
mization was not used as we observed that for some com-
plex animations, like Museum or Dragon-Bunny, optimizing
the BVH for the first frame slightly increased the average
BVH cost for the whole animation. The measurements were
performed within a single threaded C++ implementation on
a PC with Intel Xeon E5-1620, 3.6GHz, with 32GB RAM.
The results are summarized in Table 1. For T-SAH we used
5 uniformly sampled representative frames. The evaluation
was performed using 50 interpolated animation frames for
all tests.

The table shows that the BVH construction time for T-
SAH varies between 1.9s for the smallest reported scene
(BART robots) and 328s for the largest one (San Miguel +
Horses). The actual T-SAH optimization time corresponds
to the difference between the build times of the particu-
lar T-SAH method and SAH0, as we always applied the T-
SAH based optimization on the BVH constructed for the first
frame. Comparing to SAH0 we can observe, that for simpler
animations the reduction of the average BVH cost is not very
dramatic (in order of 10-20%), which indicates that even a
single SAH optimized BVH is quite good to handle these
animations. However for scenes with extreme deformations
such as Dragon Bunny, Breaking Lion, or BART museum
our method reduces the cost by more than an order of mag-
nitude. We can see that in these cases the SAH∗ correspond-
ing to the best over time BVH also provides much better re-
sults than SAH0, but the BVH cost is still significantly larger
than for T-SAH methods. As expected the SAH-rebuild ref-
erence method provides the best results in all tests, but in the
simpler animations the SAH∗ and T-SAH methods are very
close to this reference solution. We can also observe, that in
scenes with simple geometric changes different exponents
of the T-SAH cost model lead to very similar results. How-
ever in scenes with pronounced peaks of the cost function
such as Dragon-Bunny or Museum, the T-SAH with higher
exponents provides lower maximum BVH costs at the ex-
pense of a higher average BVH cost. In other words the cost
function gets more smoothed for the whole animation se-
quence (see Figure 4-left). This is important for time critical
applications, like for example ray traced augmented reality
with animated objects, in which we want to ray trace the pre-
processed animation at stable real-time rates. Figure 4-right
shows the progress of the optimization for different settings
of the T-SAH cost model.

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.

J. Bittner & D. Meister / T-SAH: Animation Optimized Bounding Volume Hierarchies

BART Robots BART Museum Cloth Ball
triangles 71.5k # triangles 75.8k # triangles 92.2k
key frames 300 # key frames 300 # key frames 94

test time [s] cost max. cost test time [s] cost max. cost test time [s] cost max. cost
SAH-rebuild 24.7 56 57 SAH-rebuild 39.7 40 148 SAH-rebuild 22.9 73 91
SAH∗ 18.5 57 58 SAH∗ 18.6 364 1376 SAH∗ 20.8 97 156
SAH0 0.4 69 71 SAH0 0.4 1558 2335 SAH0 0.4 97 156
T-SAH C̃0 1.9 57 57 T-SAH C̃0 123 119 365 T-SAH C̃0 9.0 90 139
T-SAH C̃2 1.9 57 57 T-SAH C̃2 155 136 282 T-SAH C̃2 9.7 90 129
T-SAH C̃4 2.0 57 57 T-SAH C̃4 161 149 266 T-SAH C̃4 0.6 98 147

BART Kitchen 24 Cell Fairy Forest
triangles 110.5k # triangles 122.8k # triangles 174.1k
key frames 300 # key frames 128 # key frames 21

test time [s] cost max. cost test time [s] cost max. cost test time [s] cost max. cost
SAH-rebuild 41.6 26 26 SAH-rebuild 49.2 111 120 SAH-rebuild 68.5 76 77
SAH∗ 32.6 26 26 SAH∗ 28.6 161 181 SAH∗ 22.7 76 77
SAH0 0.7 37 38 SAH0 0.5 195 250 SAH0 1.0 87 92
T-SAH C̃0 3.6 26 26 T-SAH C̃0 13.1 131 142 T-SAH C̃0 7.5 76 77
T-SAH C̃2 3.7 26 26 T-SAH C̃2 13.5 131 142 T-SAH C̃2 6.2 76 77
T-SAH C̃4 3.7 26 26 T-SAH C̃4 13.5 131 141 T-SAH C̃4 5.3 76 77

Dragon Bunny Breaking Lion Horses
triangles 252.5k # triangles 1604.0k # triangles 8048.9k
key frames 15 # key frames 34 # key frames 31

test time [s] cost max. cost test time [s] cost max. cost test time [s] cost max. cost
SAH-rebuild 112 57 134 SAH-rebuild 912 555 644 SAH-rebuild 6603 130 131
SAH∗ 25.8 474 1441 SAH∗ 460 747 907 SAH∗ 2906 159 182
SAH0 1.4 1542 2865 SAH0 12.2 1530 3801 SAH0 89 214 281
T-SAH C̃0 13.2 137 365 T-SAH C̃0 116 571 658 T-SAH C̃0 328 133 133
T-SAH C̃2 34.0 102 220 T-SAH C̃2 116 567 647 T-SAH C̃2 319 133 133
T-SAH C̃4 28.7 103 190 T-SAH C̃4 120 566 640 T-SAH C̃4 319 133 133

Table 1: Summary results for the high quality BVH construction algorithms. The table shows the BVH optimization time, and
the average and maximum BVH costs for the given animation sequence. For computing the BVH cost, we used cT = 3, cI = 2.

We also evaluated the dependence of the method on the
number of representative frames. When increasing the num-
ber of representative frames from 5 to 10 the BVH opti-
mization time almost doubled, the maximum BVH cost was
slightly reduced, but the resulting average BVH costs stayed
practically the same for most tested scenes. The most notable
differences we observed for the Museum and Breaking Lion
scenes where the average BVH cost was reduced by 1% and
the maximum BVH cost by about 2%. This indicates that a
relatively small number of representative frames is sufficient
to optimize even for complex animation sequences.

6.2. Performance Comparisons

We evaluated the performance of the optimized BVH for
ray tracing using CUDA ray tracing framework by Aila

et al. [AL09]. We extended the framework by implement-
ing new kernels for interpolating triangle vertices, refitting
bounding volumes, recomputing Woop matrices, and imple-
menting the HLBVH algorithm. The actual ray tracing ker-
nel was used without modifications. All computations thus
run on the GPU, the CPU is used only to execute CUDA
kernels. For all tests we used NVIDIA GeForce GTX TI-
TAN Black GPU with 6GB RAM.

We used five reference methods for comparisons. The first
one uses precomputed high quality BVH (SAH-rebuild), the
second one uses best over time BVH with refitting (SAH∗),
the third one uses BVH build for the first frame with refit-
ting (SAH0). The forth reference method uses the fast GPU
build using the HLBVH algorithm [GPM11] limited to spa-
tial median splits with 30-bit Morton codes (HLBVH-med).

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.

J. Bittner & D. Meister / T-SAH: Animation Optimized Bounding Volume Hierarchies

C̃0 C̃2 C̃4

0
50

100
150
200
250
300
350
400

0 10 20 30 40 50

B
V

H
 c

os
t [

-]

frame [-]

0
200
400
600
800

1000
1200
1400

0 5 10 15 20 25 30 35

av
g.

 B
V

H
 c

os
t [

-]

time [s]

0
50

100
150
200
250
300
350
400
450

0 50 100 150 200 250 300

B
V

H
 c

os
t [

-]

frame [-]

0
200
400
600
800

1000
1200
1400

0 20 40 60 80 100 120 140 160 180

av
g.

 B
V

H
 c

os
t [

-]
time [s]

Figure 4: Plots showing the costs for the BVH optimized using T-SAH with different exponents C̃0, C̃2, C̃4. (left) Costs of the
optimized BVH for different frames of the animation. (right) Average BVH cost (C̃0) in the progress of the BVH optimization.
The upper figures correspond to the Dragon Bunny scene, the lower to the Museum scene.

The fifth reference uses HLBVH including the surface area
heuristic (HLBVH-SAH) with 30-bit Morton codes (15-bits
SAH, 15-bits spatial median). Both HLBVH algorithms use
maximum 8 triangles per leaf as a termination criterion. For
all tests the we used 1024x768 resolution, 1 primary ray per
pixel, 8 ambient occlusion rays, and 2 shadow rays. We mea-
sured the time needed to update the BVH for the given frame
(using either refit or rebuild), the ray tracing speed expressed
in MRays/s, and the total frame time.

The results are summarized in Table 2. We can observe
that in the majority of cases T-SAH C̃0 provides the best to-
tal frame times for the tested animations. In the case of rel-
atively simple animations (BART Robots, BART Kitchen,
Fairy Forest) the results of SAH0, SAH∗, and T-SAH and
very close and the timing differences are also influenced by
the actual match of the BVH topology and the view point.
For scenes which involve complex animations with deforma-
tions or topological changes, the SAH0 method fails com-
pletely (BART Museum, Dragon Bunny, Breaking Lion),
whereas T-SAH C̃0 with refit successfully compensates for
the dynamic changes of the scene. The HLBVH methods
provide a stable performance as the BVH is always con-
structed from scratch. However, with increasing size of the
scene the overhead of BVH rebuild becomes more and
more important and the method provides significantly lower
frame times than T-SAH. Interestingly for most tests the T-
SAH provides not only lower BVH update times, but also

higher ray tracing speed even comparing to the HLBVH-
SAH method. This is due to the fact, that the method uses
a more complex BVH optimization than the approximate
SAH algorithm used in HLBVH. A notable exception is the
BART Museum scene, in which both HLBVH methods pro-
vide smaller total times. This scene exhibits extreme topo-
logical changes and although T-SAH provides more than
10x better performance than SAH0, it is not able to com-
pensate for all these changes. Nevertheless when splitting
the animation into three parts and constructing a BVH using
T-SAH for each of these parts, we can observe that the over-
all frame time for T-SAH gets very close to rebuilding the
BVH from scratch at each frame (see Table 2 - BART Mu-
seum*). The influence of using multiple BVHs is also shown
in Figure 5. While more elaborate techniques for splitting the
animation sequence could be used such as adaptive splitting
and/or finding the minimal number of BVHs fulfilling the
given performance limit, we leave these extensions as topics
for future work. Note that the differences in refit times are
due to the adaptive leaf size discussed in Section 5.4, which
for the case of using the T-SAH cost model usually lead to
slightly deeper tree.

The frame times and the ray tracing speed for two selected
animated scenes are shown in Figure 6. We can observe, that
for the Dragon Bunny scene T-SAH is able to eliminate the
large total time increase of the SAH method caused by the
explosion of the geometry of the dragon. In the Breaking
Lion scene we can observe that T-SAH successfully com-

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.

J. Bittner & D. Meister / T-SAH: Animation Optimized Bounding Volume Hierarchies

pensates the part of the animation, in which the lion is bro-
ken into a large number of disconnected pieces. This scene
has a higher polygon count and therefore we can observe a
constant overhead of both HLBVH methods in total time,
which is caused by a longer time needed to rebuild the BVH
in each frame.

SAH-rebuild SAH0 SAH∗

T-SAH C̃0 HLBVH-med HLBVH-SAH

0

500

1000

1500

2000

0 10 20 30 40 50 60 70 80 90

to
ta

l t
im

e
[m

s]

0

500

1000

1500

2000

0 10 20 30 40 50 60 70 80 90

to
ta

l t
im

e
[m

s]

frame [-]

Figure 5: Plots of the total frame time for BART Museum
scene. (top) Single BVH optimized using T-SAH. (bottom)
Using 3 BVHs optimized for frames 0-32, 33-65 and 66-99
using T-SAH.

6.3. Discussion and Limitations

Maximizing ray tracing performance In terms of ray
tracing performance an optimal solution for a known ani-
mation sequence would precompute a high quality BVH for
every frame that is rendered as we did using SAH-rebuild
method. However this method has important practical draw-
backs compared to T-SAH. First, for scenes with large num-
ber of key frames the SAH-rebuild becomes very memory
intensive. Second, the implementation has to maintain large
number of BVHs, which requires more implementation ef-
fort and complicates the usage with existing frameworks.
The first issue can actually be handled by using T-SAH op-
timized BVH with a range of key frames (as we suggest for
the Museum scene). Given the same memory budget T-SAH
optimized BVHs should provide better ray tracing perfor-
mance than the same number of SAH optimized ones.

Dynamic scenes In fully dynamic scenes new objects can
appear, or existing objects can undergo some movement,

which cannot be predicted. However we believe, that T-
SAH could still be used to optimize parts of such scenes
for which the movement is well predictable. We also ex-
pect that by feeding T-SAH optimization algorithm with a
set of expected positions of dynamic objects would cause an
automatic separation of dynamic and static content. Those
objects which are expected to behave in a similar way would
get clustered together in appropriate levels of the BVH. T-
SAH could also be used in combination with the decompo-
sition to local subtrees proposed by Wald et al. [WBS03] to
handle dynamic scenes with unpredictable object movement.

Optimization time We implemented the BVH optimiza-
tion using a simple single threaded application that takes sig-
nificantly more time than fast GPU builders. However, this
phase is only done once in preprocessing and at runtime the
final BVH can be used just as an ordinary BVH, on which
only refit is applied.

Using T-SAH with other algorithms We expect that
bottom up clustering could easily handle T-SAH as the T-
SAH could serve as a basis for evaluating the distance be-
tween clusters. We believe that T-SAH could be success-
fully exploited also in combination with a GPU based BVH
optimization using rotations [KIS∗12], or with bottom-up
BVH construction algorithms [GHFB13]. Using these meth-
ods might lead to lower optimization times for applications
where this is required.

7. Conclusion and Future Work

We proposed an extension of the surface area heuristic to
temporal domain (T-SAH). We exploit T-SAH to construct a
single bounding volume hierarchy optimized for all frames
of an animated sequence. The algorithm uses a small set
of representative frames and performs an iterative optimiza-
tion of the BVH in order to minimize the T-SAH cost. Our
method uses an extension of a recently proposed insertion
based BVH optimization algorithm. We have shown that the
algorithm is able to handle a broad class of animated scenes
including those involving complex deformations and topol-
ogy changes. We evaluated the performance of T-SAH op-
timized BVH for ray tracing. The results show that T-SAH
performs significantly better than SAH and in a vast majority
of cases it outperforms even the fast per frame rebuilds using
the HLBVH algorithm. The proposed method requires prac-
tically no modifications to existing rendering packages and
thus it can be used as an optional optimization step for han-
dling animated scenes in the context of real-time ray tracing
or collision detection.

We believe that our extension of SAH to animations gives
a new insight on how hierarchical object partitioning can or-
ganize the scene by exploring locality in both spatial and
temporal domains. In the future we want to look at adap-
tively subdividing the input animation sequence in order to
provide a minimal set of BVHs within a given memory bud-
get, which yield the optimal rendering performance. We also

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.

J. Bittner & D. Meister / T-SAH: Animation Optimized Bounding Volume Hierarchies

update trace total update trace total update trace total update trace total update trace total
time speed time time speed [ms] time speed time time speed time time speed time
[ms] [MRays/s] [ms] [ms] [MRays/s] [ms] [ms] [MRays/s] [ms] [ms] [MRays/s] [ms] [ms] [MRays/s] [ms]

BART Robots BART Museum BART Museum* Cloth Ball BART Kitchen
SAH-rebuild 0.0 179.8 64.8 0.0 184.9 70.9 0.0 184.9 70.9 0.0 87.5 49.1 0.0 241.6 48.6
SAH∗ 7.4 183.1 70.7 2.3 19.5 674.5 2.4 56.0 234.1 3.0 78.8 57.0 5.2 241.1 53.3
SAH0 3.8 190.1 66.3 2.3 6.3 2082.4 2.1 6.7 1958.0 2.5 81.2 55.5 3.4 235.5 54.5
T-SAH C̃0 7.1 190.7 68.2 2.7 62.7 212.0 2.1 118.3 110.8 3.0 82.2 55.0 5.3 239.1 53.8
HLBVH-med 18.1 117.0 119.7 10.3 161.3 91.7 10.3 161.3 91.7 12.1 79.6 66.7 17.4 172.3 87.8
HLBVH-SAH 49.3 129.4 139.0 22.6 177.9 96.5 22.6 177.9 96.5 31.2 80.3 84.6 46.2 189.2 107.7

24 Cell Fairy Forest Dragon Bunny Breaking Lion Horses
SAH-rebuild 0.0 67.3 50.4 0.0 169.9 68.2 0.0 38.8 46.7 0.0 32.6 58.2 0.0 80.5 143.7
SAH∗ 4.0 57.5 62.6 4.5 162.4 75.9 3.3 17.6 105.7 9.9 26.7 82.9 36.3 75.3 190.3
SAH0 2.8 54.2 66.0 3.7 142.4 85.1 3.5 5.8 315.8 8.8 22.0 97.2 30.4 67.8 201.9
T-SAH C̃0 4.3 65.3 56.0 5.3 163.0 76.5 3.4 32.8 58.4 9.3 33.0 68.8 35.7 89.9 164.6
HLBVH-med 15.5 58.9 74.1 16.3 123.4 110.8 14.7 37.7 62.6 41.7 28.4 110.7 162.5 45.6 417.5
HLBVH-SAH 38.9 59.8 95.6 34.8 127.3 126.1 29.3 38.4 76.5 67.2 29.1 134.5 224.6 57.8 425.6

Table 2: Performance comparison of tested methods. The reported numbers represent the average values for the whole anima-
tion sequence. The times were measured using CPU side timers and thus they include the CUDA kernel execution and setup
times. For SAH∗, SAH0, and T-SAH method a single BVH is used for the whole animation, SAH-rebuild, HLBVH-med, and
HLBVH-SAH perform BVH rebuild in each frame. Note that for BART Museum* we used three BVHs optimized for different
parts of the animation. The results with the best trace speed and total time for a given scene are highlighted in bold (note that
this does not include the SAH-rebuild reference method).

want to study the possibility of taking into account the ex-
pected ray distribution by creating BVHs optimized not only
for the scene geometry changes, but also for the expected
camera positions. Finally, we want to exploit T-SAH in the
context of other applications such as collision detection or
run time BVH optimization using temporal prediction of ob-
ject movement.

Acknowledgements

This research was supported by the Czech Science Founda-
tion under research program P202/12/2413 (Opalis) and the
Grant Agency of the Czech Technical University in Prague,
grant No. SGS13/214/OHK3/3T/13.

References
[AKL13] AILA T., KARRAS T., LAINE S.: On Quality Metrics

of Bounding Volume Hierarchies. In In Proceedings of High Per-
formance Graphics (2013), ACM, pp. 101–108. 2

[AL09] AILA T., LAINE S.: Understanding the Efficiency of Ray
Traversal on GPUs. In Proceedings of HPG (2009), pp. 145–149.
5

[BH09] BITTNER J., HAVRAN V.: RDH: Ray Distribution
Heuristics for Construction of Spatial Data Structures. In Pro-
ceedings of SCCG (2009), ACM, pp. 61–67. 2

[BHH13] BITTNER J., HAPALA M., HAVRAN V.: Fast Insertion-
Based Optimization of Bounding Volume Hierarchies. Computer
Graphics Forum 32, 1 (2013), 85–100. 1, 2, 3, 4, 5

[FFD09] FABIANOWSKI B., FOWLER C., DINGLIANA J.: A cost
metric for scene-interior ray origins. Eurographics, Short Papers
(2009), 49–52. 2

[FLF12] FELTMAN N., LEE M., FATAHALIAN K.: SRDH: Spe-
cializing BVH Construction and Traversal Order Using Repre-
sentative Shadow Ray Sets. In Proceedings of HPG (2012),
pp. 49–55. 2

[Gar09] GARANZHA K.: The use of precomputed triangle clus-
ters for accelerated ray tracing in dynamic scenes. Comput.
Graph. Forum 28, 4 (2009), 1199–1206. 2

[GFW∗06] GUNTHER J., FRIEDRICH H., WALD I., SEIDEL H.-
P., SLUSALLEK P.: Ray tracing animated scenes using motion
decomposition. Computer Graphics Forum 25, 3 (2006), 517–
525. 2

[GHFB13] GU Y., HE Y., FATAHALIAN K., BLELLOCH G. E.:
Efficient BVH Construction via Approximate Agglomerative
Clustering. In Proceedings of High Performance Graphics
(2013), ACM, pp. 81–88. 1, 2, 7

[GPM11] GARANZHA K., PANTALEONI J., MCALLISTER D.:
Simpler and Faster HLBVH with Work Queues. In Proceedings
of posium on High Performance Graphics (2011), pp. 59–64. 2,
5

[GS87] GOLDSMITH J., SALMON J.: Automatic Creation of Ob-
ject Hierarchies for Ray Tracing. IEEE Computer Graphics and
Applications 7, 5 (May 1987), 14–20. 2

[HHS06] HAVRAN V., HERZOG R., SEIDEL H.-P.: On the Fast
Construction of Spatial Data Structures for Ray Tracing. In Pro-
ceedings of IEEE Symposium on Interactive Ray Tracing 2006
(Sept 2006), pp. 71–80. 2

[Hun08] HUNT W.: Corrections to the surface area metric with
respect to mail-boxing. In Interactive Ray Tracing, 2008. RT
2008. IEEE Symposium on (Aug 2008), pp. 77–80. 2

[IWP07] IZE T., WALD I., PARKER S. G.: Asynchronous BVH
Construction for Ray Tracing Dynamic Scenes on Parallel Multi-
Core Architectures. In Proceedings of Symposium on Parallel
Graphics and Visualization ’07 (2007), pp. 101–108. 2

[KA13] KARRAS T., AILA T.: Fast Parallel Construction of

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.

J. Bittner & D. Meister / T-SAH: Animation Optimized Bounding Volume Hierarchies

SAH-rebuild SAH0 SAH∗ T-SAH C̃0 HLBVH-med HLBVH-SAH

0
100
200
300
400
500
600
700
800
900

0 10 20 30 40 50 60 70 80 90

to
ta

l t
im

e
[m

s]

40
60
80

100
120
140
160
180
200
220

0 10 20 30 40 50 60 70 80 90

to
ta

l t
im

e
[m

s]

0

10

20

30

40

50

60

0 10 20 30 40 50 60 70 80 90

tr
ac

e
sp

ee
d

[M
R

ay
s/

s]

frame [-]

10
15
20
25
30
35
40
45

0 10 20 30 40 50 60 70 80 90

tr
ac

e
sp

ee
d

[M
R

ay
s/

s]
frame [-]

Figure 6: Plots of the total frame times and ray tracing speed for the Dragon-Bunny scene (left) and Breaking Lion scene
(right).

High-Quality Bounding Volume Hierarchies. In Proceedings of
High Performance Graphics (2013), ACM, pp. 89–100. 1, 2

[Kar12] KARRAS T.: Maximizing Parallelism in the Construc-
tion of BVHs, Octrees, and k-d Trees. In Proceedings of High
Performance Graphics (2012), pp. 33–37. 2

[Ken08] KENSLER A.: Tree Rotations for Improving Bounding
Volume Hierarchies. In Proceedings of the 2008 IEEE Sympo-
sium on Interactive Ray Tracing (Aug 2008), pp. 73–76. 2

[KIS∗12] KOPTA D., IZE T., SPJUT J., BRUNVAND E., DAVIS
A., KENSLER A.: Fast, effective bvh updates for animated
scenes. In Proceedings of Symposium on Interactive 3D Graphics
and Games (2012), pp. 197–204. 2, 7

[KK86] KAY T. L., KAJIYA J. T.: Ray Tracing Complex Scenes.
Computer Graphics (SIGGRAPH ’86 Proceedings) 20, 4 (1986),
269–278. 2

[LGS∗09] LAUTERBACH C., GARLAND M., SENGUPTA S.,
LUEBKE D., MANOCHA D.: Fast BVH Construction on GPUs.
Comput. Graph. Forum 28, 2 (2009), 375–384. 2

[LYTM06] LAUTERBACH C., YOON S.-E., TUFT D.,
MANOCHA D.: RT-DEFORM: Interactive Ray Tracing
of Dynamic Scenes using BVHs. In IEEE Symposium on
Interactive Ray Tracing (RT’06) (Sept 2006), pp. 39–46. 2

[Mor11] MORA B.: Naive ray-tracing: A divide-and-conquer ap-
proach. ACM Trans. Graph. 30, 5 (2011), 117:1–117:12. 2

[Ols07] OLSSON J.: Ray Tracing Animations Using 4D Kd-Trees.
Master’s thesis, Lund University, 2007. 2

[PL10] PANTALEONI J., LUEBKE D.: HLBVH: Hierarchical
LBVH Construction for Real-Time Ray Tracing of Dynamic

Geometry. In Proceedings of High Performance Graphics ’10
(2010), pp. 87–95. 2

[Wal07] WALD I.: On fast Construction of SAH based Bound-
ing Volume Hierarchies. In Proceedings of the Symposium on
Interactive Ray Tracing (2007), pp. 33–40. 2

[Wal12] WALD I.: Fast Construction of SAH BVHs on the Intel
Many Integrated Core (MIC) Architecture. IEEE Transactions
on Visualization and Computer Graphics 18, 1 (2012), 47–57. 2

[WBKP08] WALTER B., BALA K., KULKARNI M., PINGALI
K.: Fast Agglomerative Clustering for Rendering. In IEEE Sym-
posium on Interactive Ray Tracing (2008), pp. 81–86. 1, 2

[WBS03] WALD I., BENTHIN C., SLUSALLEK P.: Distributed
interactive ray tracing of dynamic scenes. In Proceedings of the
IEEE Symposium on Parallel and Large-Data Visualization and
Graphics (2003), pp. 77–86. 2, 7

[WBS07] WALD I., BOULOS S., SHIRLEY P.: Ray tracing de-
formable scenes using dynamic bounding volume hierarchies.
ACM Trans. Graph. 26, 1 (Jan. 2007). 2, 5

[WMG∗09] WALD I., MARK W. R., GÜNTHER J., BOULOS S.,
IZE T., HUNT W. A., PARKER S. G., SHIRLEY P.: State of the
art in ray tracing animated scenes. Comput. Graph. Forum 28, 6
(2009), 1691–1722. 2

[WWB∗14] WALD I., WOOP S., BENTHIN C., JOHNSON G. S.,
ERNST M.: Embree: A kernel framework for efficient CPU ray
tracing. ACM Transactions on Graphics 33 (2014). 2

[YCM07] YOON S.-E., CURTIS S., MANOCHA D.: Ray Tracing
Dynamic Scenes using Selective Restructuring. In Proceedings
of Eurographics Symposium on Rendering (2007), pp. 73–84. 2

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.

