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Sources Results

Figure 1: Examples of images synthesized using our method (right) generated from various sources (left). Our method simul-
taneously produces meaningful boundaries and interior structures, with textural features that respect the shape and direction
specified by the user. Source credits: denim: inxti @ shutterstock; plank: My Life Graphic @ shutterstock; grass: varuna @
shutterstock; cookie: Alessandro Paiva @ rgbstock

Abstract
In this paper we present Brushables—a novel approach to example-based painting that respects user-specified
shapes at the global level and preserves textural details of the source image at the local level. We formulate the
synthesis as a joint optimization problem that simultaneously synthesizes the interior and the boundaries of the
region, transferring relevant content from the source to meaningful locations in the target. We also provide an
intuitive interface to control both local and global direction of textural details in the synthesized image. A key
advantage of our approach is that it enables a “combing” metaphor in which the user can incrementally modify
the target direction field to achieve the desired look. Based on this, we implement an interactive texture painting
tool capable of handling more complex textures than ever before, and demonstrate its versatility on difficult inputs
including vegetation, textiles, hair and painting media.

1. Introduction

Example-based image synthesis enables transfer of visual
characteristics from a given exemplar to a user-defined tar-
get image [Ash01, HJO∗01]. In this context a texture-by-
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numbers metaphor is typically used to guide the transfer
of textural information between specific locations in the
source and target images. Ritter et al. [RLC∗06] showed
that the quality of the synthesis can be improved when
the algorithm takes into account specific effects that oc-
cur close to the boundaries of individual segments. This
edge-aware approach was recently improved by Lukáč et
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al. [LFB∗13] who showed how to synthesize boundary ef-
fects in a direction-aware manner independently from the
interior—the direction of synthesized boundary features ex-
actly follows the direction of the boundary shape. Direction
awareness was also previously used in general texture syn-
thesis [ZZV∗03, LH06, ELS08, DBP∗15] to allow control of
the orientation of the synthesized texture.

A key limitation of existing techniques is that they treat
edge and direction awareness independently, making it hard
to produce images where the prescribed directionality of the
shape’s interior interacts with the appearance of its bound-
aries.

In this paper, we propose a novel method for interactive
example-based image synthesis that combines edge and di-
rection awareness in a single algorithm. While these features
are useful independently to synthesize textural areas and lin-
ear edge structures with user-specified orientation, combin-
ing them enables complex shape-aware effects that no pre-
vious method can handle. See, e.g., examples in Figure 1
where the appearance of boundaries (e.g., blades of grass or
hair ends) depends on a specific context that is given by the
directionality of the interior.

Our method builds upon the popular patch-based op-
timization scheme originally developed by Wexler at
al. [WSI07] and later extended by others [BSFG09,DSB∗12,
KNL∗15]. A key contribution of our work is that we provide
a new extension of the original Wexler et al. formulation that
combines both direction and edge awareness into one op-
timization problem. We further improve the visual quality
of the synthesized result using a novel coherence weighting
mechanism.

We also propose a unified interactive framework that
helps the user prepare the necessary input data for the syn-
thesis. We extend previous related techniques for detect-
ing [KLC09, Kyp11] and authoring [ZMT06, FSDH07] di-
rection fields by creating a new signed direction field. The
sign was not considered previously, and we show that it
helps the user specify semantically meaningful configura-
tions where unsigned orientation fields are insufficient (see,
e.g., direction of hair/grass growth in Figure 1).

2. Related Work

One of the first instances of combining texture synthesis
with a painting interface was Synthesizing Natural Tex-
tures [Ash01]. The user painted an output suggestion in the
color domain, and the synthesis created output that roughly
matched the colors. However, color information was not
enough to finely specify texture areas.

Image Analogies [HJO∗01] alleviated this limitation with
a texture-by-numbers approach. The user pre-segmented the
input image and directly painted a segmentation mask. How-
ever, the lack of additional information about boundary ori-
entation led to visible inconsistencies.

Painting with Texture [RLC∗06] represented a further de-
velopment in this area. It was the first approach explicitly de-
signed for synthesizing stroke interactions and texture edge
effects by introducing a shape mask into the patch distance
term. The mask provided rudimentary edge awareness, but
its small size could not represent subtle orientation changes
and larger sizes would make the synthesis over-constrained,
causing visible repetitions and other artifacts.

Painting by Feature [LFB∗13] presented an improvement
over the previous techniques by treating lines and edges
separately from the interior texture. Instead of relying on
pre-segmented input images, the user interactively selected
a line feature or a texture to be used as an example and
then painted them into the output canvas. Despite full cre-
ative freedom, this technique could become tedious, requir-
ing painstaking boundary tracing even when edges were ob-
vious. This method also did not provide an explicit control
over the directionality of the texture in the interior regions.

RealBrush [LBDF13] is a canonical example of stroke
synthesis, capable of transferring the directionality and edge
effects of the input strokes directly to the result using a paint-
ing metaphor. However, since it uses a lengthwise cut-and-
stitch approach instead of full synthesis, it is strictly limited
to 1D curves and cannot synthesize arbitrary area structures.
Other stroke synthesis systems [LBW∗14, ZLL13] typically
suffer from the same limitation.

Accounting for directionality in texture synthesis
is a proven idea. It can compensate for transforma-
tions [ELS08, LH06] or allow specification of direction
in textures [ZZV∗03, DBP∗15]. Detecting orientation
in images is also crucial for various stylization tech-
niques [HE04, KLC09, Kyp11]. However, a painting
scenario such as ours requires further considerations.
The direction fields should be authored seamlessly using
the basic brush metaphor, and the detection needs to be
configurable to ensure compatibility of input and output
direction fields.

Structure tensors [BWBM06] and edge tangent
flow [KLC07] are common techniques to detect orien-
tation in textures. Their key limitation is that they cannot
provide consistent direction: the orientation sign is either
omitted or inconsistent in the final solution. However, this is
crucial in our scenario because real textures typically con-
tain asymmetric structures. Although there are techniques
that try to find consistent direction [KLC09, XCOJ∗09],
they typically fail on larger scales or when singularities are
present in the input field.

User-guided authoring of vector fields has been exten-
sively studied in the context of 3D surfaces [ZMT06,
FSDH07, CDS10, MBS∗11]. Although these techniques
compute smoothly varying vector fields from a sparse set of
user-provided constraints, their main drawback is that every
new constraint has a global impact on the resulting field. In
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(a) (b) (c) (d) (e) (f)

Figure 2: An example of Brushables workflow: (a) selected source image, (b) detected source direction field (direction wheel
for reference), (c) hand-drawn stroke defining a target mask and direction field, (d) synthesis result, (e) refined target direction
field, (f) refined result

our scenario we would like to modify the existing field on-
the-fly by adding new directional strokes whose local impact
is controlled by the user.

Optimization-based texture synthesis methods [KEBK05,
WSI07] are the current state of art for synthesis applica-
tions [DSB∗12, FLJ∗14, KNL∗15]. They accurately repro-
duce exemplar structures at interactive rates, thanks to fast
approximate nearest-neighbor search [BSFG09]. We take
advantage of the flexibility of this framework to introduce
edge and direction awareness, and make adaptations to mit-
igate artifacts introduced by the free-form nature of our sce-
nario.

For edge awareness, we build upon shape descriptors,
commonly used in computer vision [BMP02, BM01]. They
examine large areas of the shape to properly consider con-
text, which is computationally expensive. Because texture
synthesis requires numerous evaluations in a short time-
frame, this can be a bottleneck.

3. Our Approach

Figure 2 illustrates the workflow of our method. The user
starts with a regular RGB image and uses interactive image
segmentation and matting to extract the area of interest along
with the opacity values. The resulting RGBA image source
S then serves as the basis for further processing (see Fig-
ure 2a).

Initially we take all pixels in S with non-zero alpha to form
a binary shape mask Ms and then let the user determine the
edge extent, i.e., how wide the boundary effects are. Finally,
we employ direction analysis to obtain a source direction
field ds with a desired level of smoothness and consistent
sign of the tangent vectors (see Section 3.1).

In the following painting phase, the user uses a brush
tool to paint a mask that defines the set of pixels to be
synthesized—the direction field dt and its shape mask Mt .

Then the use can alter or refine the target direction field (the
combing process). For this our novel direction diffusion al-
gorithm (Section 3.2) gives precise control over the stroke
extent, seamlessly combining multiple strokes, and combin-
ing new strokes with the pre-existing direction field.

Finally, given the source image S, source and target masks
(Ms and Mt ) and direction fields (ds and dt ) we run our
direction- and edge-aware texture synthesis (Section 3.3).
We synthesize the output texture, using a novel Shape Hint to
ensure that boundary effects are synthesized appropriately in
a context-sensitive way, enforcing the prescribed direction,
and using a coherence weighting mechanism to improve the
final visual quality of the synthesized image T even under
strong non-rigid deformation.

3.1. Direction Analysis

Before we can paint taking the directionality of the source
into account, we need to estimate it. Our first step is to create
a direction field ds that specifies local direction at all pixels
of S. To support arbitrary input exemplars and have a self-
contained approach, we determine the direction field using
only the RGB color information.

For best results, a reasonable direction field ds should be
locally smooth and perpendicular to the gradient field of S—
a tangent field. Because smoothness and perpendicularity
cannot usually be satisfied simultaneously, additional filter-
ing is required. We also take the sign of the tangent vectors
into account, since they are often semantically significant.

Estimation of smooth tangent fields has been ex-
plored before, predominantly in image stylization tech-
niques [KLC07, Kyp11]. However, these approaches typi-
cally ignore the sign of the tangent vector, since the filters
they ultimately employ are symmetric with respect to the
sign. In particular, the multi-lateral filter employed by Kang
et al. uses a non-linear term to preserve the sign of the tan-
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gent vectors. In such case, flipping the signs of some of the
tangents in the initialization phase will not affect the mag-
nitudes or absolute direction of the tangents in the result-
ing tangent field, merely their signs. This means that we can
solve sign harmonization independently as a pre-processing
pass and then apply one of the filters to get a coherent,
smooth result.

We base our sign harmonization on the edge tangent flow
(ETF) filter [KLC07], but we improve the initialization. We
fix the sign of the pixel with the greatest gradient magnitude
and use a breadth-first propagation to harmonize the tangents
along with their signs. Figure 3 shows how this method elim-
inates the 180-degree discontinuities present in earlier meth-
ods.

3.2. Direction Diffusion

In previous approaches [DSB∗12, LFB∗13], the texture di-
rection emerges implicitly from the color domain so as to
match the boundary conditions. In contrast, we give the user
explicit control over texture direction, much like stroke syn-
thesis approaches do [ZLL13, LBW∗14]. Given a region
painted by the user with a variable-width brush, we deter-
mine the direction field dt , assigning a direction to every
pixel in the region.

Like stroke synthesis, we are given a user-specified 1D
stroke path with an instantaneous direction at every path
sample. We propagate the sparse direction samples to the
entire stroke area. As an act of painting, the effect of brush-
ing should be local, with its influence strictly limited to the
area within the brush footprint leaving the rest of the image
unaffected. To avoid synthesis artifacts, we also must ensure
that we do not create discontinuities in the direction field at
the brush boundary and that the target direction field has a
similar level of smoothness to the direction field of the input.

Related approaches use various optimization processes to
construct a smooth direction field from sparse user-specified
constraints [ZMT06, FSDH07]. However, these techniques
are global by nature and do not provide for a localized,
controlled way to combine new strokes with an existing di-
rection field, which is needed to permit combing and gen-
eral refinement. We use a kernel-based diffusion scheme to
smoothly diffuse and blend the direction of an arbitrary num-
ber of strokes of variable radius, while also permitting blend-
ing with a pre-existing field.

Given a stroke path K consisting of all points k ∈ K, we
calculate the direction dk(p) diffused from this stroke at a
point p as follows:

dk(p) =
1

wk(p)

∫
k∈K

G(||p� k||2,σ2
k) ·d

′(k) (1)

where G(x,σ2
k) is a gaussian kernel with the standard devia-

tion set to half the stroke width, d′(k) is the local normalized

tangent, and

wk(p) =
∫

k∈K
G(||p� k||2,σ2

k) (2)

This yields a smooth interpolation that can be evaluated an-
alytically if the input stroke is approximated as a polyline,
and the generalization to multiple simultaneous strokes is
straightforward (see Figure 4a). If we need to combine the
diffused direction of the current stroke with the aggregated
direction field of all the previous strokes (as in Figure 4b),
we calculate the convex mix of the previous value dn�1(p)
with the new one dk(p) like so:

dn(p) = ws(p) ·ds(p)+(1�ws(p)) ·dn�1(p) (3)

assuming ws(p) is clamped to remain in the convex interval
〈0,1〉.

(a) (b)

Figure 4: A demonstration of direction field authoring and
refinement. (a) a composition of thick strokes made with a
120px wide brush next to its synthesis result; (b) direction
field with two 80px refinement strokes and the refined syn-
thesis result.

3.3. Example-based Synthesis

Once source and target direction fields ds and dt are pre-
pared we proceed to the synthesis phase, generating the out-
put image while respecting the principles of edge and direc-
tion awareness we have described earlier.

We build our synthesis algorithm upon established the
patch-based optimization framework introduced originally
by Wexler et al. [WSI07]. We chose this framework for its
flexibility: we can substantially alter its behavior by sub-
stituting our own patch distance measure and patch voting
logic, making it fit our own requirements.

We introduce edge-awareness into the synthesis by adding
a new shape distance term to the energy function we mini-
mize:

E(T,S) = ∑
q∈T

min
p∈S

(
Dpatch(p,q)+λDshape(p,q)

)
(4)

Dpatch(p,q) measures the color distance of patches and
Dshape(p,q) the distance of local shapes around pixels p ∈ S
and q ∈ T .

Direction awareness is added to these distance measures
by taking local direction at both p and q into account. We do
this by introducing a rotation operator �αpq, which rotates
the local frame of reference for the patch or shape descriptor

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.
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(a) (e)(c) (d)(b)

Figure 3: An illustration of the output of Kang et al.’s [KLC07] method for orientation detection with and without our unified
tangent sign initialization: (a) original synthetic image (radial stripes), (b) false-colour visualization of the initial direction field
(gradients rotated 90◦to the left), (c) converged result after a few ETF filter iterations, (d) initial direction field after our unified
tangent sign initialization, (e) result after single ETF filter iteration applied on our unified tangent sign initialization.

by the difference in local direction at p and q, i.e., αpq =
dt(q)−ds(p).

We can then calculate the color distance as the direction-
aware sum of squared differences:

Dpatch(p,q) =
∣∣∣∣Ps

p−Pt
q�αpq

∣∣∣∣2 (5)

between the source patch Ps
p centered on p ∈ S and the

rotated target patch Pt
q centered on q ∈ T . Similarly, the

direction-aware shape distance is evaluated as:

Dshape(p,q) = χ
2(Hs

p,H
t
q�αpq

)
(6)

i.e., the distance between source and target Shape Hint his-
tograms described below, which introduce shape awareness
by considering both the spatial distance from the texture
boundary, and its shape relative to the local direction field.

(a) (b)

Figure 5: Importance of Shape Hints: (a) synthesis without
Shape Hint (using just distance to the boundary) and (b) syn-
thesis with Shape Hint.

Shape Hint: To introduce edge-awareness into the synthe-
sis we use Shape Hints—a local shape descriptor derived
from the shape context [BMP02], which we have simpli-
fied and adapted for interactive use. Shape descriptors like
these are a powerful tool commonly used to find similar lo-
cations within shapes. Compared to previous context aware
solutions based on a distance transform [LH06, BCK∗13],
a shape descriptor considers a larger context, allowing it to

distinguish between locations at edges and corners or around
interior holes; this is vital for our concept of edge-awareness,
since it lets us pick patches from appropriate regions more
contextually (see Figure 5). It is also more flexible than com-
paring mask patches, as in Painting with Texture [RLC∗06];
the distance measure is continuous rather than discrete and
degenerates gracefully, without overconstraining the synthe-
sis at texture edges.

Like the shape context, our descriptor counts the edge pix-
els that fall into “bins” mapped to image space. These counts
are then treated as histograms of edge pixels and can be com-
pared using the χ

2 metric. This creates a descriptor that is
capable of capturing the shape of the object boundary with a
configurable level of tolerance to high-frequency variations,
based on how large is the spatial support of the bins. To date,
performance considerations precluded the use of shape con-
text in texture synthesis, as typically local descriptors need
to be evaluated repeatedly at many points of the image, and
the computational complexity of evaluating a shape context
scales quadratically with its radius.

Shape Context Shape Hint

Figure 6: Shape and arrangement of bins in an oriented
single-layer shape context (left) and in our Shape Hint
(right).

To overcome this limitation, we propose an adaptation
wherein we change the shape of the bins used to count
edge pixels (see Figure 6). Instead of annular sections,
we use circular bins, similar to image descriptors like

c© 2015 The Author(s)
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FREAK [AOV12], but we keep the shape context’s compact
representation based on edge pixel counting and its method
of calculating similarity.

As circles are rotationally invariant, the shape of the bin
becomes constant with respect to both the orientation of the
descriptor as a whole and the bin’s position therein. The
value of any bin at any point can thus be pre-computed by
convolving the edge pixel map with a disc filter of the ap-
propriate radius, and consequentially, we can evaluate the
descriptor with a constant number of bitmap queries regard-
less of its spatial support or the number of edge pixels in the
image.

This not only leads to faster evaluation, making use in tex-
ture synthesis possible, but also permits free-form continu-
ous rotations of the descriptor at no additional computational
cost. We have found it sufficient to only use a single radial
layer of bins, although the descriptor naturally generalizes to
multiple layers.

In synthesis, we use the source and target masks MT and
MS to calculate the Shape Hints, with the radius of the de-
scriptor set to the edge extent that the user defined earlier in
the source analysis phase. This value should roughly corre-
spond to the width of the boundary effects, i.e., how “deep”
into the texture they extend. Content within this range is im-
plicitly treated as the boundary, while content deeper inside
is considered to be in the interior.

Alpha Channel: To further improve the quality of the syn-
thesis at boundaries we add an alpha mask as an additional
pixel channel. This has two effects. It lets us synthesize
opacity, and together with the Shape Hint, guides the syn-
thesis towards a solution where pixels close to boundaries in
the source are more likely to be matched with boundary pix-
els in the target. To give the opacity comparable weight to
color we multiply the difference in alpha channel by 3 when
computing the sum of squared differences in (5).

While the alpha channel gives us the ability to synthesize
opacity and “fading out” at the boundaries, it is in itself not
sufficient to capture longer-range edge effects, and cannot
discriminate boundaries from the interior in textures with
partially transparent interiors. Therefore, a combination of
alpha channel synthesis and shape matching is optimal for
synthesis of edge effects in our scenario.

Optimization: To minimize (4) we use the Expectation-
Maximization optimization outlined by Wexler et
al [WSI07] that consists of alternating search and vot-
ing steps on an image pyramid in a coarse-to-fine order. To
improve texture coherence and richness in the synthesized
image, we propose an improvement to the voting step to
take both local nearest-neighbor field coherency and the
color histograms of both images into account. When eval-
uating the final color C(p) of a pixel p, we iterate through
the overlapping patches mapped to its neighborhood and
perform a weighted average of the candidates cx gathered

from them:

C(p) =
∑q∈Np

wc(q) ·wh(q) ·C(q)

∑q∈Np
wc(q) ·wh(q)

(7)

where wh is the color histogram weight of the candidate
pixel, as detailed by Kopf et al [KFCO∗07] and wc is the
coherence weight, which serves to propagate coherent ar-
rangements of patches from the source. As described in the
original paper, the histogram weight promotes pixel candi-
dates with relatively underrepresented colors, improving the
diversity of the synthesized image.

The coherence weight is vital in our scenario, since free-
form rotations of the texture tend to induce non-rigid map-
ping in the nearest-neighbor field, which in turn causes
blurry and visually displeasing results (see comparison in
Figure 7). By increasing the weight of coherently-mapped
configurations of patches, we encourage forming larger, co-
herently mapped areas over multiple iterations. This pre-
serves high-frequency detail and causes less blurring.

with coherence without coherence

(a) (b) (c) (d)

(e) (f)

Figure 7: A comparison of results (a,c) and correspond-
ing nearest-neighbor fields (b,d) synthesised with (left) and
without (right) the coherence weight. The details (e,f) show
how structural details of individual blades are better pre-
served with the coherence weight. Note also how the coher-
ence weight leads to larger patches in the nearest-neighbor
fields.

To calculate the coherency weight, we examine the coher-
ence of mapped pixel configurations as follows:

In effect, a nearest-neighbor match is a rigid mapping
from T to S. The matched coordinates and relative rotation
at a pixel q thus define a mapping Rq, which maps the pixel
grid in T to a rotated and offset pixel grid in S. Because the
optimization is based on the assumption that these mappings
are approximately identical for the group of pixels within
the area of a patch, we design our coherency measure as a
quantification of how this assumption holds. To evaluate this
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measure, we examine the patch neighborhood of a pixel q0
and the induced mappings therein (c.f. Figure 8):

wc(q0) = ∑
q∈Nq0

G(||Rq0(q)�Rq(q)||2,σ2
c) (8)

where σ
2
c is the coherency range, which we set to 2 through-

out.

q0

q

Rq0

Rq

T S

p0

p

p′

Figure 8: Calculating the coherence of a patch: we examine
all pixels q in a patch around the pixel q0 in the target image
T . The position of pixel q is projected into the pixels p and
p′ in the source image S using both the rigid transformation
induced by the match at q0: p = Rq0(q) and its own trans-
formation: p′ = Rq(q). The more coherent the matching is,
the lower the sum of distances ||p� p′|| (red arrow).

Multiplying these weights, along with the guaranteed
range on both of them, ensures that the weighting scheme
degenerates gracefully in any edge case.

3.4. Implementation Details

We have implemented the described algorithm in C++11 and
run it on a desktop computer. The synthesis takes approxi-
mately 5 seconds for a megapixel output image, with 80%
of the time spent calculating the nearest-neighbor field. The
texture analysis step was more computationally intensive,
taking up to 30 seconds for larger settings of the ETF filter;
however, this only needs to be done once for each source
texture as a pre-process, and the results can be efficiently
stored. The rest of the method operates interactively.

As most of our parameters have intuitive semantics, they
were set contextually as appropriate. The range of the edge
tangent flow filter was usually set to a default value of 10
pixels. This setting was only increased for noisier textures to
approximately 35 pixels. λ in Equation 4 was hardcoded to
a value of 25 (equal to the number of pixels in a patch used
to measure color distance), and the width of the brush was
interactively adjusted as appropriate.

Edge extent was the crucial parameter to achieve edge
awareness; setting it too low can cause boundary patches to
be randomly used in the interior, while setting it too high can
cause the extent of the synthesized texture to visibly deviate

inwards from the user-specified mask. Ultimately, the value
in pixels should be set approximately equal to the width of
the boundary effects the user wishes to capture.

4. Results

Figures 1 and 14 shows the synthesis results of a variety of
natural textures. Our approach coherently synthesizes tex-
tured outputs with direction configurations not present in
the original source (see e.g., the crochet results). Plank ex-
ample demonstrates how our algorithm picks the semanti-
cally correct edge features according to local direction. The
grass and the colored pencil examples show that even trans-
parency is synthesized correctly both on the boundary and
in the interior. The braided wig example serves to highlight
the strength of shape descriptor-based edge awareness; the
narrower sections are synthesized from braid patches, while
the wider parts are synthesized out of the upper, combed part
of the exemplar. Again, current approaches do not have such
capabilities. The ornamental leaves are an example of a rela-
tively simpler stroke synthesis application. It shows how our
approach organically synthesizes branching by virtue of not
relying on stroke semantics. The red wig shows how locally-
variant anisotropic textures can be coherently deformed to
novel configurations.

Note that after texture analysis, the only user input we
require are the brush strokes. Thus, our tool places no
more burden on the end user than a regular brush. The
overall interaction takes only a couple of seconds, depend-
ing mainly on the ability of the user to draw individual
strokes (see supplementary video for an example of inter-
active sessions). This brings an improvement over Painting
by Feature [LFB∗13], which requires more elaborate input
to achieve similar results (see Figure 10).

Figure 9: A example result when using multiple textures.
The top row is the example and its segmentation, bottom row
the synthesized output and its painted segmentation. Source
credit: Radu Bercan @ shutterstock

Our method can also be easily extended to process images
with multiple, segmentable textures (see Figures 9 and 11).
In this case, we require that a segmentation map be provided
for the input texture, and the direction brush is concurrently
used to paint also the output segmentation. The synthesis
is then adjusted so that it only maps patches between com-
patible segments. Segment boundaries are considered in the
same way as foreground boundaries for the Shape Hint.

c© 2015 The Author(s)
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source Painting by Feature Our approach

ds dt T

Figure 10: Comparison of the amount of user interaction required to create a similar output using Painting by Feature
(PBF) [LFB∗13] and our approach. Each colored line in the PBF example represents a user stroke (area selections are not
shown); in contrast, our approach produced the result with only two strokes. Also compare the coherence of texture on the
interior and the tassels.

Our approach Our close-upSource Image + segmentation Painting by Feature PbF close-up

Painting by Feature Our approach PbF close-up Our close-upSource Image + segmentation

Figure 11: Comparison of our approach with Painting by Feature (PBF) [LFB∗13] with respect to ability to handle edges with
highly varying width. Note how our unified approach integrates interiors with edges smoothly, whereas in the PBF output there
are discontinuities between the areas synthesized as edges and those synthesized as interiors (see red arrows). In the bottom
example, PBF is able to more closely match the user-specified shape, but does so at the cost of faithfulness to the example and
visual richness. Source credit: monkey: c© ACM; hedge source: Joe Shlabotnik @ flickr

Multiple texture extension allows us to make a compari-
son with Painting by Feature [LFB∗13] (see Figure 11 and
supplementary material). Our method produces comparable
or better visual quality without the necessity to use a cus-
tom synthesis algorithm for the boundaries. It also notably
improves the look of the interior parts by maintaining the
appearance of the original source and creating seamless tran-
sitions from the edge that follows prescribed direction field.

Our method can also be used to synthesize example-based
brush strokes of comparable quality to those produced by
RealBrush framework [LBDF13] (see Figure 12). In addi-
tion, the same algorithm can be applied to fill larger areas,
which the original RealBrush method cannot do.

In Figure 13 we show results where only the edge
or direction awareness is taken into account. This exam-
ple demonstrates limitations of previous approaches (such

as [RLC∗06] or [LH06]) where a joint edge- and direction-
aware formulation was not considered.

4.1. Limitations

Our algorithm does not automatically take changes in texture
scale into account, nor does it natively compensate for per-
spective. Support for these could be added by pre-processing
the input image to compensate for these.

Because our algorithm does not take advantage of any do-
main knowledge, it cannot replicate stroke-specific effects
that require such knowledge. Most significantly, the smudg-
ing and smearing effects supported by RealBrush [LBDF13]
cannot be replicated. Instead, overlapping strokes merge into
a single larger area and are synthesized as such (see Fig-
ure 11 right).

c© 2015 The Author(s)
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Lukáč et al. / Brushables

Sources Results

Figure 12: Brushables can also be used in the RealBrush scenario [LBDF13]. Our approach can synthesize new strokes like
RealBrush can, and also synthesize regions of arbitrary shape.

Furthermore, because we rely on an area representa-
tion rather than an outline-based one, our approach does
not natively handle interior lines like Painting by Fea-
ture [LFB∗13] does. This effect could be emulated by se-
lecting the line in the example as a separate texture, painting
that and combining the results. Still, the nature of our brush-
based interaction model makes this less convenient than sim-
ilar operations are for vector-based tools.

In some textures, there may be hidden variables not re-
lated to direction that affect incidence of features both on the
edges and on the interior; these might include e.g. the holes
in the cracker, or the precise position of the hairband in the
braid. In such cases, our approach is unable to distinguish
the underlying semantics and will distribute these features
randomly. The ability to specify manual constrains, such as
the ones used in appearance-space texture synthesis [LH06],
could allow the user to resolve these cases.

Only direction-aware Only edge-aware

Figure 13: Results from Figure 11 with the shape aware-
ness and direction awareness turned off. Those examples
demonstrate importance of joint formulation proposed in
our framework and illustrate limitation of previous ap-
proaches, which take into account only direction [LH06] or
edge [RLC∗06] awareness.

Our algorithm also exhibits some of the artifacts of
the original synthesis method of Wexler et al. [WSI07],
namely the repetition of textural features. Extensions to this
optimization scheme that eliminate these have been pro-
posed [KNL∗15, JFA∗15]; we consider these to be orthog-
onal to, and compatible with, our work.

5. Conclusion and Future Work

As discussed above, our approach handles complicated natu-
ral textures using a simple mode of interaction demonstrated
earlier. Adding direction awareness to the synthesis process
lets us handle textures with locally-variant anisotropic prop-
erties without requiring large exemplars or losing informa-
tion. Our direction detection and authoring framework give
users control over the output direction field that is semanti-
cally significant for many textures.

Adding the shape hint to texture synthesis enables robust
handling of edge effects. Combined with alpha-channel syn-
thesis, our approach can reproduce edge effects present in
partially transparent textures. As a result, edges need not be
explicitly drawn by the artists any more.

When combined, these two features become even more
powerful, allowing semantically significant edge areas to be
used for synthesis in different places. This allows artists to
use previously unaccessible textures for true interactive tex-
ture painting.

For future work, we would like to better handle the cases
where the direction configurations in the source do not match
the target direction field. One possible solution is to auto-
matically adapt the target direction field in a constrained
and meaningful way. Furthermore, we would like to experi-
ment with our shape hint in the domain of shape synthesis.
It might be able to give rough user sketches the same type
of high-level detail that a source shape does. Another pos-
sible avenue is to synthesize the mixing of textures using a
blending approach like Image Melding [DSB∗12].

Our approach integrates naturally into digital painting
pipelines, thanks to its intuitive mode of interaction. Its abil-
ity to handle painting media exemplars lends itself to the cre-
ation of digital art. The ability to synthesize complex natural
textures with edge effects make it useful for photo editing or
matte painting applications.
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Figure 14: Various sources (top): cracker, crochet, denim, sample of color pencil, bread, red wig, braided wig, ornamental
leaves, plank, and grass were used to synthesize target images (below). Note how our approach handles both linear structures
and regions with boundaries and how user-specified directions are gracefully preserved in the result. Source credits: cookie:
Alessandro Paiva @ rgbstock; crochet: anneheathen @ flickr; denim: inxti @ shutterstock; bread: Giles Hodges @ DeviantArt;
red wig: Lenor Ko @ shutterstock; braided wig: Karina Bakalyan @ shutterstock; ivy leaves: Michael & Christa Richert @
rgbstock; plank: My Life Graphic @ shutterstock; grass: varuna @ shutterstock
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