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Abstract
We compare five existing dynamic memory allocators optimized for GPUs and show their strengths and weak-
nesses. In the measurements we use three generic evaluation tests proposed in the past and we add one with a
real workload, where dynamic memory allocation is used in building the k-d tree data structure. Following the
performance analysis we propose a new dynamic memory allocator and its variants that address the limitations of
the existing dynamic memory allocators. The new dynamic memory allocator uses few resources and is targeted
towards large and variably sized memory allocations on massively parallel hardware architectures.
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Categories and Subject Descriptors (according to ACM CCS): D.1.3 [Programming Techniques]: Concurrent
Programming—Parallel programming D.3.3 [Programming Languages]: Language Constructs and Features—
Dynamic storage management D.4.2 [Operating Systems]: Storage Management—Allocation/deallocation strate-
gies

1. Introduction

The increase in capabilities and performance of GPUs allows
for programming techniques known from CPUs to be used
on GPUs as well. One such technique is the ability to dynam-
ically allocate memory directly from the kernel running on
the GPU. This opens up new possibilities for implementing
algorithms targeting GPUs and allows for entirely new al-
gorithms to be ported to GPUs. While a significant amount
of work has been devoted to dynamic memory allocations
on the CPU, GPU dynamic memory allocation has only re-
cently drawn some interest. The design of a GPU dynamic
memory allocator (further referred to as an allocator) is a
challenging task because of the massively parallel nature of
GPUs. Thousands of threads may be allocating memory at
the same time, making state-of-the-art CPU allocators com-
putationally or memory inefficient.

In this paper we compare and analyze several formerly pub-
lished and available algorithms for dynamic memory allo-
cations on the GPU. Then we propose a new allocator that
addresses some of the limitations found in current solutions.
In particular, we target allocators that behave well in real
workloads, in our case the construction of a k-d tree data
structure. In such scenarios, factors like register usage di-

rectly influence the performance of the allocation (acquiring
a pointer to a continuous chunk of memory of a given size)
and deallocation (returning the chunk so that it can be reused
by upcoming allocations) operations, and may lead to differ-
ent results than when using generic tests.

The paper is structured as follows. Section 2 summarizes the
literature on dynamic memory allocations on the GPU and
Section 3 discusses the design goals an allocator targeting
many-core hardware should adhere to. The existing alloca-
tors included in our comparison are described in more detail
in Section 4. In Section 5 we propose our new allocator for
GPUs. The evaluation tests used for the comparison are de-
fined in Section 6. Section 7 gives the measurements of the
allocators’ performance in the evaluation tests. The fragmen-
tation of the proposed allocator is summarized in Section 8.
Finally, Section 9 summarizes our findings and presents pos-
sibilities for future research.

2. Related Work

CPU memory allocators. The design of allocators for
single-core and multi-core systems is a well-researched
area. A common technique used in these allocators is to
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maintain one private heap per thread such as in Berger et
al. [BMBW00]. Such techniques do not scale well to many-
core architectures with thousands of threads running concur-
rently, as was demonstrated by Steinberger et al. [SKKS12].
For the GPU hardware used in this paper (GTX Titan Black)
there are up to 90 warps (SIMD units) running concurrently
and up to 960 warps resident on the multiprocessors at the
same time. Using a private heap for each of the warps would
consume too much memory or make the per warp heaps ex-
tremely small.

Another problem with porting multi-core memory allocators
to many-core processors is the use of locks. Even the high
performance allocators such as TCMalloc [GM] use locking
algorithms when accessing the global heap, e.g. when serv-
ing a large allocation. Using locks is infeasible for the high
number of threads running concurrently on many-core pro-
cessors as we demonstrate in this paper.

The lock-free memory allocators [SKL11, LC12] also try to
achieve low latency by caching free blocks at multiple lev-
els. This is again less beneficial for GPUs that feature much
smaller sizes of L1 and L2 caches, and may even hurt per-
formance because of the high latency of subsequent memory
accesses.

GPU memory allocators. In recent years, several re-
searchers have shown interest in the area of dynamic mem-
ory allocation on the GPU. The built-in allocator distributed
with the CUDA toolkit [NBGS08] was introduced in version
3.2 of the SDK [NVI10]. We refer to this allocator as Cud-
aMalloc.

Huang et al. [HRJ∗10] presented a two-level allocation
scheme for many-core architectures called XMalloc. On
the first level, allocations of superblocks, serving subsequent
allocations, are handled by updating a doubly linked list that
defines the usage of the memory pool (a continuous block of
memory). On the second level, individual chunks of memory
are allocated from these superblocks. Deallocated chunks of
memory are cached for faster reuse. To accelerate concurrent
allocations by threads from the same SIMD unit (a warp),
individual allocations are coalesced into a single allocation
and performed by a single thread of the warp.

Because of the addition of hardware caches in the newer gen-
eration of GPUs, an updated version of the XMalloc allo-
cator was presented by the same authors [HRJ∗13]. In this
version, the allocation of superblocks in the doubly linked
list is replaced with the CudaMalloc allocator introduced
in the newer version of CUDA. The caches for the fixed-size
lists of deallocated items were also changed.

The dynamic allocation of the GPU memory in CUDA was
further researched by Steinberger et al. [SKKS12], who call
their allocator ScatterAlloc. They ported some of the
current allocators designed for the CPU to the GPU and
showed that these are not efficient in the context of mas-
sively parallel processors. Based on their findings, they set

the design goals for a GPU allocator. They compare Scat-
terAlloc to CudaMalloc and XMalloc showing that
hashing significantly reduces the allocation times and thus
ScatterAlloc outperforms the previous approaches.

Another CUDA allocator, FDGMalloc was proposed by
Widmer et al. [WWWG13]. They use a two-level alloca-
tion scheme as in the paper by Huang et al. [HRJ∗13] and
target many subsequent allocations. The authors claim that
their allocator is faster than ScatterAlloc by a factor of
10 to 1000. A similar idea to Widmer et al. was presented
by Grimmer et al. [GKR13]. Their method uses some CPU
management and allows for deallocating of individual mem-
ory allocations. The authors conclude that their allocator is
slower than ScatterAlloc.

The Halloc allocator of Adinetz and Pleiter [AP14] uses
a clever hashing function in the spirit of ScatterAlloc
to significantly reduce the cost of small memory allocations.
For a large number of allocating threads, their allocator is
supposed to be up to 1000× faster than ScatterAlloc.
Memory allocations larger than 3 kilobytes are delegated to
CudaMalloc similarly to FDGMalloc.

Recently, a memory allocator has also been developed for
OpenCL [SGS10] by Spliet et al. [SHGV14]. In OpenCL
the hardware specifics are less exposed to the programmer
than in CUDA, making the implementation more challeng-
ing. Their allocator is faster than CudaMalloc on NVIDIA
devices, but significantly slower than ScatterAlloc
through an indirect comparison. Very recently, Steinberger
et al. [SKK∗14] have proposed a list-based allocator for allo-
cating geometry buffers that is based on the buddy allocator
scheme of Knowlton [Kno65].

3. Design Goals

A dynamic memory allocator targeting many-core GPU ar-
chitectures has to adhere to several design goals to be gen-
erally applicable and to achieve high performance. We fol-
low the design goals summarized for the ScatterAlloc
in the paper of Steinberger et al. [SKKS12]. Their summary
builds on three categories: correctness, speed, and mem-
ory overhead with several design goals falling under these
categories. We believe this list is not complete and add new
design goals to the list.

Register usage. Apart from the internal and external mem-
ory fragmentation and overhead of the allocator itself, on
GPUs the number of registers used by the allocator is crucial
as well. The registers used up by the allocator may increase
the register usage of the entire kernel and thus influence the
occupancy of the kernel or the efficiency of the compiled
code. Thus, we target solutions that consume as few regis-
ters as possible while keeping high performance.

Variability of the allocation requests. For many applica-
tions it is sufficient to allocate memory chunks of a single or
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similar size. This is also usually the case for generic tests for
the allocators. Some applications, however, exhibit highly
varying sizes of allocation requests. One of such applica-
tions is the construction of the k-d tree data structure we use
in this paper as a real workload. The allocator should be able
to serve even such allocation requests efficiently to be gen-
erally useful.

Some of the design goals presented in the work of Stein-
berger et al. [SKKS12] are also not as important on the cur-
rent generation of hardware as they were on the previous
generations.

Scalability. Steinberger et al. try to avoid atomic access to a
single location by multiple threads, because it results in lin-
ear performance decrease. While this is true in theory, the
problem is much less profound in practice. With the upgrade
of atomic operations in the Kepler architecture, atomic op-
erations are handled very efficiently. Moreover, because the
threads are usually doing computations other than just al-
locating memory, all threads are seldomly accessing a sin-
gle location at the same time. This can be observed on the
performance of the AtomicMalloc allocator that demon-
strates worst case atomic operations scalability in both the
generic tests and real workloads. Despite this, it is usually
one of the fastest allocators even on a GPU with a very high
number of concurrently running threads.

False sharing. Accessing data in the same cache line by sev-
eral processors, is also not much of an issue on current GPUs
because the L1 caches are usually incoherent. Thus, no shar-
ing of cache lines occurs and these need not be exchanged
between the processors.

4. Existing Allocators

We use five existing allocators with available source codes or
binaries for our comparison. We do not use XMalloc as it
was shown [SKKS12] to be slower than ScatterAlloc.
From the results given in the corresponding papers, these five
allocators should include the fastest allocators for GPUs. In
this section, we describe in more detail how these allocators
operate and highlight their strengths and weaknesses.

4.1. AtomicMalloc

The simplest allocator can be implemented by using a single
atomic instruction (see Algorithm 1). This allocator has been
hinted at in several publications (e.g. Tzeng et al. [TPO10]),
but to the best of our knowledge it has never been for-
mally described or tested for performance. The atomic ad-
dition (atomicAdd(L,N)) function takes two arguments: a
memory address A and an integer N. It atomically performs
A← A + N and returns the value previously stored at ad-
dress A.

An atomic addition to a single global variable memOffset

Algorithm 1: AtomicMalloc allocation.

1 mallocAtomicMalloc(size) begin
2 offset← atomicAdd(memOffset, size);
3 return mem + offset;

gives each allocating thread a unique offset to the begin-
ning of a memory chunk of size size. The allocated pointer
is computed by adding the pointer to the start of the mem-
ory pool mem and the returned offset. This kind of memory
allocation, consisting of a single instruction, should be the
fastest possible. However, due to a single point of conflict
caused by the hardware executing this instruction atomically,
threads are serialized in their execution, slowing down the
allocator. Moreover, memory cannot be deallocated because
the returned offset only increases. Nevertheless, some tasks,
e.g. allocation of a new node of a data structure, do not re-
quire deallocation of the memory.

4.2. CudaMalloc

Another allocator we use in our comparison is the one built
into the CUDA toolkit [NBGS08]. This allocator uses an un-
published algorithm and was reported by several authors to
be rather slow [SKKS12, HRJ∗13, WWWG13].

4.3. ScatterAlloc

Further, we use the allocator ScatterAlloc of Stein-
berger et al. [SKKS12] which is targeted towards many par-
allel allocations with roughly the same size. Their method
pre-splits the memory pool into pages of regular size and
groups them into blocks. During allocation, hashing is used
to select a page from the currently used block, which causes
the allocations to be distributed in memory and prevents con-
flicts of atomic operations. The page itself can then be split
into a maximum of 210 chunks, which are individually allo-
cated and deallocated. If memory larger than the page size
is requested, the allocating thread tries to lock successive
pages to serve the request. If the thread fails to acquire all
the needed pages, it unlocks the pages already locked and
restarts the search in another location. To lower the proba-
bility of restarting, only a single thread may try to allocate a
large memory chunk. This serializes all allocation requests
of large memory chunks and is only efficient when a few
threads are allocating large chunks of memory concurrently.

4.4. FDGMalloc

We also use the FDGMalloc of Widmer et al. [WWWG13].
In their allocator, each warp requests large blocks (su-
perblocks) of memory from a global memory pool using the
built-in CudaMalloc similar to the method of Huang et
al. [HRJ∗13]. Each warp manages its own list of allocated
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superblocks without any synchronization with other warps.
For the allocation inside these superblocks no header infor-
mation is used, only the pointer to the unoccupied memory is
updated. This limits the memory overhead of individual allo-
cations but at the same time prevents the allocations from be-
ing deallocated separately. The allocated memory can only
be deallocated all at once. If only a single allocation or an al-
location larger than the superblock size is requested, the allo-
cator’s behavior is determined by the CudaMalloc serving
these requests. However, when multiple allocations smaller
than the superblock size are requested by a warp, these are
served very quickly.

4.5. Halloc

The last allocator that we use is the Halloc allocator, re-
cently proposed by Adinetz and Pleiter [AP14]. This alloca-
tor splits the assigned size of the dynamic memory pool into
two parts. One part is served by CudaMalloc and handles
allocations larger than 3 kilobytes. The other part is preallo-
cated in the GPU memory in the form of slabs. These slabs
of fixed size handle small memory allocations. The slabs are
assigned during runtime to a particular size of allocation re-
quests. When the slab is freed it is allowed to be reinitialized
for another size of requests. The information about the us-
age of each slab is stored in a bitmap and is updated using
atomic operations. Hashing is utilized in finding a free block
of memory in the bitmap to reduce the conflicts of atomic
operations.

5. Proposed Allocators

All of the allocators summarized in the previous section have
some limitations. AtomicMalloc cannot reuse memory,
CudaMalloc is generally very slow, and ScatterAl-
loc, FDGMalloc and Halloc are biased towards small
and repetitive allocations. In this section, we propose alloca-
tors that alleviate some of these limitations.

5.1. AtomicWrapMalloc (AWMalloc)

We propose a variant of AtomicMalloc that is capable
of memory reuse. This modification allocates memory in a
circular memory pool (see Algorithm 2).

If there is enough contiguous memory, the allocator works
the same way as AtomicMalloc. On the other hand, when
the new allocation does not fit into the memory pool (re-
turned offset plus the requested size is larger than the size of
the memory pool memorySize), a wrapped allocation from
the beginning of the memory pool is attempted using atomic-
CAS. The atomic Compare-and-Swap (atomicCAS(A,E,N))
function takes three arguments: a memory address A, a
value E expected to be stored at the location, and a value N to
replace the expected value. If E is indeed stored at address A,
it is atomically replaced with N. In any case, the value stored

Algorithm 2: AWMalloc allocation.

1 mallocAWMalloc(size) begin
2 offset← atomicAdd(memOffset, size);
3 newOffset← offset + size;
4 while (newOffset > memorySize) do
5 newOffset← atomicCAS(memOffset,

newOffset, size);
6 if (newOffset = offset + size) then
7 return mem;

8 else if (newOffset + size) ≤ memorySize then
9 offset← atomicAdd(memOffset, size);

10 newOffset← offset + size;

11 else
12 offset← newOffset − size;

13 return mem + offset;

at memory given by address A at the time of the atomic op-
eration is returned. If the wrap is not successful due to some
other thread modifying the memOffset, two cases may occur.
Either the memOffset was already wrapped by some other
thread, in which case a new allocation using atomicAdd is
attempted, or the wrapped allocation is attempted again us-
ing the returned offset newOffset.

The wrap may result in an overwrite of the previously allo-
cated memory, breaking the correctness of the computation.
However, if a large enough memory pool is used and the
threads use the allocated memory only for brief periods, this
allocator can provide the performance of AtomicMalloc
with significantly reduced memory requirements.

Given the memory reuse limitations of AtomicMalloc
and AWMalloc they cannot be considered as full alloca-
tors. We include their measurements in this study mostly for
comparison to other allocators since their performance can
be considered as a lower bound.

5.2. CircularMalloc (CMalloc)

Our second proposed allocator organizes the memory pool as
a singly linked list. We also attempted to organize the mem-
ory pool as a doubly linked list, but it proved slightly slower
in our measurements.

Similar to AWMalloc we allocate memory from a circu-
lar memory pool. Since we want to design an allocator that
is also able to deallocate memory, each allocated chunk of
memory is prefixed with a header. This header consists of
two 4-byte words: the allocation flag and the offset of the
next chunk. Allocating from a memory pool consisting of a
single free chunk would require serialization of the threads
locking the chunk’s flag as in AWMalloc but with a much

submitted to COMPUTER GRAPHICS Forum (5/2015).



M. Vinkler & V. Havran / Register Efficient Memory Allocator for GPUs 5

Flag
Free

Next NextFlag
Used

NextFlag
Set

Data Flag
Free

Next NextFlag
Used

NextFlag
Set

NextFlag
Used

NextFlag
Set

Data Flag
Free

Next NextFlag
Used

NextFlag
Set

NextFlag
Used

Flag
Free

NextNextFlag
Set

NextFlag
Used

Data

malloc and split

malloc

NextFlag
Set

Flag
Free

Next NextFlag
Used

NextFlag
Set

NextFlag
Free

Flag
Free

NextNextFlag
Set

NextFlag
Used

Data

free

NextFlag
Set

NextFlag
Used

NextFlag
Set

NextFlag
Free

NextFlag
Set

NextFlag
Free

free and concatenate

Flag
Free

NextFlag
Free

Next

Flag
Free

NextFlag
Free

Next

mem memOffset

mem memOffset

mem memOffset

mem memOffset

mem memOffset

Figure 1: CMalloc allocation and deallocation. The header
for each allocation consists of the flag and the next pointer.
The memory pool is pre-split into arbitrarily sized chunks
and the end of the memory pool is marked with a header that
stores a used flag and a pointer to the beginning of the mem-
ory pool, making the memory pool circular. Depending on
the size of the allocation request and of the current chunk, a
new chunk may be created during allocation. During deallo-
cation, a chunk may be merged with the next free chunk.

slower time for a single allocation. An example of allocation
and deallocation using CMalloc is shown in Figure 1.

We propose pre-splitting the memory pool into many free
chunks as in ScatterAlloc. However, in our allocator
the chunk sizes need not be uniform and can be optimized for
the algorithm that uses the allocator. We pre-split the mem-
ory pool into chunks of size C(i):

C(i) = R/2blog2(i)c, (1)

where C(1) is the size of the first, largest chunk. This for-
mula for the chunk sizes creates a structure similar to a bi-
nary heap, where R is the size of the root node (see Fig-
ure 2). The R is computed so that the largest binary heap fits
into the memory pool. In other words, for every k = 2x there
are k consecutive chunks of size R/k. The memory not used
by the heap forms the last chunk. This pre-splitting may be
viewed as the partitioning of memory after a single alloca-
tion request of the smallest chunk size in the buddy memory
allocator [Kno65]. In our tests, such division in most cases

provided the best performance while having high flexibility
in the size of the allocation requests that can be served by
the allocator.

mem memOffset
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Figure 2: Memory pool pre-split into a binary heap.

The pseudocode for the CMalloc allocator is shown in Al-
gorithm 3. The offset to the beginning of the allocated mem-
ory of size size is acquired by finding the first large enough
free chunk starting from a chunk at the offset stored in the
shared global variable memOffset. This chunk has to be large
enough to contain both the requested size bytes and the allo-
cation header of size HEADER_SIZE (8 bytes). Within this
header, the pointer to the next chunk is stored at position
NEXT_OFS (4 bytes) after the header start.

During allocation, we use the atomic Compare-and-Swap
function on the chunk’s flag in an attempt to set it as used. If
the acquired chunk is larger than the requested size times the
maximum allowed fragmentation MAX_FRAG, the chunk is
split into two. Once the newly created chunk header has been
written to the memory pool, the allocating thread has to wait
for the memory write to be visible to the other threads be-
fore linking the chunk. The __threadfence [NVI12] function
from the pseudocode blocks the executing thread until the
memory writes performed by this thread prior to calling the
function are guaranteed to be visible to all other launched
threads. Without this call the list might be in an incoher-
ent state for the other threads. Then the memOffset is set
to the chunk following the recently allocated one. The fi-
nal pointer to the allocated memory is computed by adding
the pointer to the start of the memory pool mem, the off-
set of the allocated chunk offset and the size of the header
HEADER_SIZE.

When the memory is deallocated, the chunk can possibly
be merged with the following memory chunk. If the follow-
ing chunk is free and can be set as used (so that no other
thread may use it), the next pointer of the chunk being deal-
located is set to the next pointer of the following chunk.
Again, we have to wait for the memory write to be visi-
ble to other threads before setting the chunk’s flag as free.
The concatenation of chunks cannot cause the offset variable
in mallocCMalloc to point to a header that was already
overwritten by something else. This is because the allocating
thread cannot be stalled for long enough to let this overwrite
happen. After the free operation, the memOffset is moved
past the concatenated chunk and the following allocations
will thus take place there as well. It would take a significant
number of global memory accesses to move the allocation
offset to the beginning of the concatenated chunk.

For some sequences of allocations and deallocations, merg-
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ing only with the following chunk may lead to a very frag-
mented memory pool. In such a case, the doubly linked list
is a better option, or the buddy allocator scheme of Knowl-
ton [Kno65] can be used.

Algorithm 3: CMalloc allocation and deallocation.

1 mallocCMalloc(size) begin
2 offset← memOffset;
3 size← size + HEADER_SIZE;
4 while (true) do
5 lock← atomicCAS(mem[offset], Free, Used);
6 next← mem[offset + NEXT_OFS];
7 csize← next − offset; // Chunk size
8 if (lock = Free) then
9 if (size ≤ csize) then

10 break;

11 mem[offset]← Free;

12 offset← next;

13 newNext← next;
14 if (size + HEADER_SIZE ≤ csize and
15 size·MAX_FRAG ≤ csize) then
16 newNext← offset + size;
17 mem[newNext]← Free;
18 mem[newNext + NEXT_OFS]← next;
19 __threadfence();
20 mem[offset + NEXT_OFS]← newNext;

21 memOffset← newNext;
22 return mem + offset + HEADER_SIZE;

23 freeCMalloc(ptr) begin
// Access the header before the
// data pointed to by ptr

24 next← ptr[−HEADER_SIZE + NEXT_OFS];
25 if (atomicCAS(mem[next], Free, Used) = Free)

then
26 next← mem[next + NEXT_OFS];
27 memOffset← next;
28 ptr[−HEADER_SIZE + NEXT_OFS]← next;
29 __threadfence();

30 ptr[−HEADER_SIZE]← Free;

Although list-based allocators have previously been
tested [HRJ∗10, SKKS12], our approach uses GPU re-
sources efficiently leading to high performance. Compared
to the allocator of Huang et al. [HRJ∗10] our allocator
uses a simpler implementation of a linked list. In particular,
we utilize only one level of allocations and no custom
caches are used for deallocated items. This is possible
thanks to advances in graphics hardware, mainly the addi-
tion of hardware cache hierarchies and improved atomic
instructions.

5.3. Circular Fused Malloc (CFMalloc)

Given that the flag for each chunk holds just the free/used
information, it can be contained in a single bit of data. If
fewer than 231 words need to be allocated, the flag can be
fused with the offset of the next chunk (a 32-bit value). This
allows only one word of memory to be read or written to
during allocation and deallocation, leading to a simpler code.
Such fusion supports up to 8 GB of allocable space with 4-
byte words, which is usually sufficient even on current high-
end GPUs (12 GB of RAM) because not all of the device
memory needs to be dynamically allocable.

5.4. Circular Multi Malloc (CMMalloc) & Circular
Fused Multi Malloc (CFMMalloc)

The two previous allocators can be further extended to
achieve higher performance at the cost of increased mem-
ory fragmentation. The single offset into the memory pool
memOffset can be replaced with an array of offsets (one for
each streaming multiprocessor) pointing initially to differ-
ent chunks. This technique corresponds to the hashing used
in ScatterAlloc and reduces the number of conflicts in
atomic operations during the allocation and deallocation.

We also change the sizes of the pre-split chunks in the mem-
ory pool. Each of the offsets in the array initially points to
the first chunk of a heap-like structure created according to
equation 1. The individual heaps use the size of the root
chunks R′ = R/#SM, where #SM is the number of streaming
multiprocessors on the GPU. These smaller heaps are linked
together in a singly linked list, keeping the same structure of
the memory pool as in the two previous allocators.

6. Evaluation Tests

To test the allocators, we implemented three generic evalua-
tion tests introduced in previous papers on dynamic memory
allocation on GPUs. In addition to these, we developed a real
workload for the memory allocation.

[AD] Alloc Dealloc. This simple test kernel allocates mem-
ory for each warp and then immediately deallocates the
memory [HRJ∗10, p. 5] .

[ACD] Alloc Cycle Dealloc. This test kernel [WWWG13,
p. 5] is an extension of the previous one. Inside a single ker-
nel, multiple iterations of allocation are requested followed
by deallocation of all of the allocated memory. Multiple al-
locations increase the load on the allocator and show the al-
locators’ ability to optimize these subsequent allocations.

[P] Probability. This test [SKKS12, p. 7] is again a variant
of the first test. Each kernel launches a memory allocation
with probability pAlloc = 0.75 if there is no currently allo-
cated memory, and deallocates the memory with probability
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pFree = 0.75 if there is an allocated memory. The same ker-
nel is called multiple times so that a more complex mix of
allocations and deallocations emerges.

[DS] Data structure build. We build a spatial data structure
(k-d tree [Hav00,WH06,ZHWG08]) on the GPU. In this data
structure, geometric primitives straddling the splitting plane
may be duplicated in both the left and right children of the
split node. To solve this duplication of geometric primitives,
two new chunks of memory have to be allocated to hold the
geometric primitives in the left and right child nodes. This
scenario is highly challenging since a large number of geo-
metric primitive arrays of varying size needs to be allocated
and deallocated during the build and the order of the alloca-
tions is unknown. In our k-d tree builder a warp is the unit of
computation and thus only a single thread of a warp dynam-
ically allocates memory.

Using dynamic memory allocation directly on the GPU
slightly increases the footprint of the memory pool com-
pared to static allocation of GPU memory independently for
each level, as done by, e.g., Wu et al. [WZL11]. The mem-
ory pool for dynamic allocation has to be large enough to
accommodate the allocation requests of all currently pro-
cessed nodes, not just the ones of the nodes being split on
the current level. On the other hand, building the entire k-
d tree in a single kernel significantly decreases the kernel
launch overhead and thus achieves lower build times than
even hybrid CPU-GPU builders [RPC12]. The single ker-
nel k-d tree builder is 25 – 45% faster than the reference
method [VHBS14].

Test considerations. We decided to let a single thread of
each warp allocate memory in all of these evaluation tests.
The techniques for coalescing memory allocations inside a
SIMD unit are well researched and used in all of the pre-
viously published methods for dynamic memory allocations
on the GPU. The same or similar code may thus be used
for the other allocators with the same benefit of decreasing
the number of allocation requests. For each of the compared
allocators we have implemented one variant with and with-
out coalescing. In our tests where just one thread is allocat-
ing memory, these two variants do not differ in their per-
formance because the coalescing does not incur slow global
memory accesses. However, they can differ in the number of
used registers (see Table 1).

The memory requested in each allocation is padded to a
multiple of 16 bytes in our tests to have the same re-
quest sizes for all allocators since ScatterAlloc, FDG-
Malloc and Halloc are doing so internally [SKKS12,
WWWG13, AP14].

7. Results

We evaluated the allocators on a PC with Intel Core i7-2600,
8 GB of RAM and NVIDIA GTX TITAN Black running
64-bit Windows 7 and CUDA Toolkit 4.2. The compared

Allocator Register usage

Uncoalesced Coalesced

AtomicMalloc* 4 9

CudaMalloc 6 17

ScatterAlloc 38 45

FDGMalloc 23 26

Halloc 48 56

AWMalloc* 6 9

CMalloc 18 18

CFMalloc 14 16

CMMalloc 18 22

CFMMalloc 16 21

Table 1: Register usage of the allocators with and without
support for coalescing allocation requests inside a warp. For
each allocator the number of registers used in a kernel con-
sisting of a single allocation and deallocation is reported.
The allocators marked with an asterisk contain no dealloca-
tion code.

existing allocators should represent the fastest solutions to
this date. We measured the entire GPU time of a test using
CUDA events [NVI12]. Each test was run five times, with
the median of the test times reported. Figure 3 shows several
properties of the compared allocators using the generic tests.

The setting for all generic tests is given in Table 2. The num-
ber of launched threads is #Blocks× 256, where #Blocks
usually equals 120 to fully saturate the GPU. Only the first
thread of each warp however allocates memory, thus the
number of allocations is 32 times smaller. This reduction
of allocation requests is possible even for real applications
through coalescing of the allocation requests.

[AD] Alloc Dealloc. First, we tested the influence of in-
creasing the size of memory requested by the threads (see

Test #Iters [-] #Blocks [-] Heap Size [B] Payload [B] Figure

[AD] 1 120 2GB 4B – 128KB 3(a)

[ACD] 10 120 2GB 4B – 128KB 4

[ACD] 10 120 128KB – 2GB 4B 3(b)

[ACD] 10 – 100 120 2GB 4B 3(c)

[P] 10 1 – 120 2GB 4B 3(d)

Table 2: The setting of our tests. The number of allocations
(and deallocations) performed by all threads is #Blocks×
8 (warps per block)× #Iters except for the Probability test
where the number of allocations is 1450 and the number of
deallocations is 986 when launching 120 blocks.
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(b) Alloc Cycle Dealloc test.
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Figure 3: Graphs showing the properties of the allocators in various benchmarks. (a) Alloc Dealloc test — increasing the size
of memory requested in each allocation, (b) Alloc Cycle Dealloc test — increasing the size of the memory pool, (c) Alloc
Cycle Dealloc test — increasing the number of allocations per thread before the memory is deallocated, (d) Probability test —
increasing the number of allocating threads (8× the number of blocks).

Figure 3(a)). CudaMalloc and FDGMalloc are by far
the slowest allocators in this test, with FDGMalloc being
slower than CudaMalloc. This is because FDGMalloc
also allocates its header data using CudaMalloc. While
for most allocators the performance is nearly constant, for
ScatterAlloc it is not. When the request size exceeds
the page size there is a sharp decrease in performance. Simi-
lar behavior can be observed for the Halloc since for larger
allocations the CudaMalloc is used instead of hashing.

[ACD] Alloc Cycle Dealloc. Since the performance of
ScatterAlloc depends on the size of its pages, we eval-
uated this influence in Figure 4. The resulting graph shows
several properties of the allocator. If the request size exceeds
the page size and a special allocation path for large requests
is used (that inludes a lock), the length of the evaluation test
becomes prohibitively high. Using a larger page size is not
always a solution since this increases the allocation times
for all request sizes. Also, no available chunk may be found
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for very large request sizes, as indicated by the missing data
point for the highest page size. Moreover, for page sizes
greater than 64 MB the test fails completely.

Figure 3(b) shows the dependence of the length of the Al-
loc Cycle Dealloc test on the size of the memory pool.
The performance of CudaMalloc degrades with the in-
creasing size of the memory pool and so does FDGMalloc
which uses CudaMalloc. FDGMalloc is slightly faster
than CudaMalloc in this test since the first allocation of
a superblock is reused in the nine subsequent allocations.
ScatterAlloc is slower for smaller sizes of memory
pool than for larger ones as conflicts of atomic instructions
are more likely to occur due to imperfect hashing. For Hal-
loc, with the default size of the slabs the memory pool has
to be larger than 256 MB, otherwise the memory pool fails
to initialize. For smaller slab sizes, smaller memory pools
are possible, but at the cost of decreased performance. The
performance of the other allocators stays nearly the same re-
gardless of the size of the memory pool.

The graph in Figure 3(c) shows the influence of increas-
ing the number of successive allocations in the Alloc Cycle
Dealloc test. While the test time for most of the allocators in-
creases linearly, the time for FDGMalloc stays almost con-
stant. This is caused by successive allocations being handled
separately by each warp in its own superblock without any
synchronization with other warps. More than 70 iterations
are needed for FDGMalloc to surpass the performance of
allocators other than CudaMalloc. However, FDGMal-
loc may use any of the faster allocators for the allocation
of superblocks, while maintaining constant performance in
iterative allocations. Halloc also deals with subsequent al-
locations well, eventually surpassing the CMalloc and its
variants.

[P] Probability. Last, we tested the behavior under an in-
creasing number of threads allocating memory in the Proba-
bility test (see Figure 3(d)). We launched an increasing num-
ber of thread blocks containing 256 threads each. Since only
the first thread of a warp allocates memory (as discussed in
the previous section), 8 allocating threads are added with
each added block. All allocators show nearly linear scal-
ing in this test, with AtomicMalloc, AWMalloc, Scat-
terAlloc and Halloc having an almost flat slope.

The performance of ScatterAlloc can approach that of
AtomicMalloc and sometimes even slightly surpass it
because there are fewer conflicts of atomic operations due
to hashing. For the same reason, AWMalloc is faster than
AtomicMalloc in all of the generic tests; the extra code
causes variations in the time allocating threads access the
shared variable, alleviating the serialization. Limiting the
number of conflicts of atomic operations by using multiple
offsets also makes CMMalloc and CFMMalloc faster than
CMalloc and CFMalloc.

Comparing our fastest allocator, CFMMalloc to Scat-
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Figure 4: Dependence of ScatterAlloc on the page size
(the individual curves) in the Alloc Cycle Dealloc test. The
exact setting of the test is shown in Table 2.

terAlloc in these generic tests, we observe that our al-
locator is 1.57× to 2.09× slower as shown in Figures 3(c)
and 3(d). This is likely due to the conflicts of atomic opera-
tions.

[DS] Data structure build. Generic tests where only al-
location and deallocation operations are performed and all
threads allocate memory at the same time may not represent
real workloads well. For this reason, we also compare the k-d
tree build times when using different allocators (see Table 3).
The size of the memory pool is set to 200 times the size of
the root node, which is sufficient to run the build even with
AtomicMalloc. FDGMalloc is excluded from this test
because it can only deallocate all of the memory at the end
of the computation. Moreover, the memory is tied to a par-
ticular warp, requiring synchronization with other warps be-
fore the memory can be deallocated. Although the memory
cannot be deallocated for AtomicMalloc and AWMalloc
as well, we chose to add results for them since their perfor-
mance can be considered as a lower bound on the k-d tree
build time.

From Table 3 we can observe that ScatterAlloc which
proved to be almost as fast as AtomicMalloc in the
generic tests, is significantly slower in this real workload.
There are two reasons for this. First, the allocation sizes vary
by several orders of magnitude in this test, which is prob-
lematic for the fixed page size of ScatterAlloc. Sec-
ond, ScatterAlloc consumes significantly more regis-
ters than AtomicMalloc and even CMalloc. When not
enough registers are present for the entire kernel, the com-
piler optimizes the code to use fewer registers, slowing down
the computation. However, this does not seem to be the main
bottleneck in the k-d tree build, as demonstrated by Halloc
which consumes even more registers. The influence of regis-
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Scene

Hand Fairy Crytek Happy
Stand Sponza Sibenik Forest Sponza Conference Armadillo Dragon Buddha Blade Sodahall

Ntris [−] 20K 76K 80K 174K 262K 283K 307K 871K 1,087K 1,765K 2,169K

Nre f [−] 6.12 6.79 4.7 5.42 6.3 5.96 6.63 7.95 8.84 8.35 5.28

Nalloc [−] 65K 141K 101K 240K 509K 251K 943K 3,740K 5,635K 7,286K 2,982K

X̄|alloc| [B] 45.8 81.8 100.8 101.8 79.8 167.8 51.9 44.5 40.2 45.7 113.2

σ|alloc| [B] 335.6 594.4 734.7 791.1 638.1 989.5 458.1 388.3 362.1 394.1 721.1

Allocator Tbuild [ms]

AtomicMalloc* 8.55 18.40 16.0 27.3 46.1 31.2 70.1 384.7 944.7 2243.2 305.2

Slowdown [−]
CudaMalloc 5.45 2.95 2.50 3.19 4.11 2.59 4.91 20.62 18.72 11.17 3.80

ScatterAlloc4096 1.66 1.73 1.50 1.80 2.16 2.47 2.24 1.75 2.05 0.94 4.92

ScatterAlloc8192 1.73 1.72 1.32 1.46 2.04 1.86 2.73 8.72 1.76 1.03 2.91

ScatterAlloc16384 1.83 2.02 1.64 2.09 2.71 1.83 3.58 6.75 6.57 4.75 1.97

Halloc 1.04 1.10 1.02 1.11 1.22 1.13 1.39 1.15 1.06 1.12 1.41

FDGMalloc* – – – – – – – – – – –

AWMalloc* 1.00 0.88 0.94 0.87 0.96 0.83 1.00 0.90 1.07 0.96 0.95

CMalloc 1.48 1.24 1.25 1.28 1.32 1.25 1.25 1.39 1.21 0.99 1.19
CFMalloc 1.14 1.20 1.16 1.23 1.28 1.22 1.23 1.36 1.16 0.92 1.22

CMMalloc 1.30 1.23 1.26 1.24 1.33 1.30 1.36 1.42 1.49 0.97 1.21

CFMMalloc 1.27 1.25 1.24 1.25 1.32 1.28 1.34 1.25 1.24 0.97 1.24

Table 3: The allocation properties and build times of k-d trees when using the compared allocators. Ntris is the number of scene
triangles, Nre f is the number of triangle references from leaves, Nalloc is the number of allocation (and deallocation) requests
during the build, X̄|alloc| is the mean of the allocation sizes and σ|alloc| is the standard deviation of the allocation sizes. For
AtomicMalloc the build times of k-d trees are given in milliseconds and this allocator is taken as the reference. For the other
allocators the ratio of their build times and the build time of the reference is reported. The fastest allocator for each scene is
typeset in boldface. The allocators marked with an asterisk are not full allocators and are not considered as being the fastest.

ter utilization on the allocators’ performance is hard to eval-
uate precisely since artificially lowering register utilization
influences both the allocator and the k-d tree build algorithm.

The CMalloc and Halloc which were not among the
fastest allocators in the generic tests, performed very well
for the k-d tree build, with Halloc usually being faster
for the scenes in Table 3. This is caused by the allocation
properties of the build, with most of the allocation requests
being issued for nodes near the leaves. These requests are
usually small, playing on the strengths of Halloc. This is
supported by the fact that the minimum size of the mem-
ory pool for Halloc is 256 MB, which is more than for
the other allocators on most of the scenes (up to 336K trian-
gles). A larger memory pool makes it easier for Halloc to
find a free memory chunk using hashing. For larger scenes,
the same size of memory pool is used for all allocators. In
our measurements Halloc also had larger variance of build
times, being sometimes faster and sometimes slower than

CMalloc for the same scene. We think this may be caused
by the hashing used in Halloc. The reported times show
its faster performance.

For the scenes in Table 4, 20 times the size of the root node
is used as the memory pool size, requiring the freed memory
to be reused. Moreover, there is a higher number of large al-
location requests because the scenes are larger. In such con-
ditions, CMalloc becomes the fastest allocator. Notice that
AtomicMalloc and AWMalloc cannot be used to build
the k-d trees for these scenes since the size of the memory
pool is insufficient for their operation, and a larger memory
pool cannot be used due to the size of the GPU DRAM.

Contrary to the generic tests, CMMalloc and CFMMalloc
allocators are often slower than CMalloc and CFMalloc
when used in the k-d tree build. In this test, the warps are not
requesting memory allocations at the same time during the
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Scene

House Asian San MPII Power-
3×3 Dragon Miguel subset plant

Ntris [−] 3,275K 7,219K 7,881K 10,762K 12,749K

Nre f [−] 9.37 7.16 7.03 6.67 5.99

Nalloc [−] 13M 25M 17M 18M 15M

X̄|alloc| [B] 55.6 46.0 78.6 101.7 144.3

σ|alloc| [B] 452.1 442.5 581.9 723.5 799.8

Allocator Tbuild [s]

Halloc 4.94 20.83 7.94 9.04 8.45

Slowdown [−]
CudaMalloc 2.38 2.33 2.28 2.02 1.53

ScatterAlloc4096 3.06 1.04 2.66 8.58 5.81

ScatterAlloc8192 2.52 0.61 0.92 2.97 2.14

ScatterAlloc16384 3.26 1.65 4.30 1.10 2.53

CMalloc 0.64 0.43 0.63 0.64 0.63

CFMalloc 0.65 0.47 0.69 0.67 0.63

CMMalloc 0.65 0.48 0.67 0.65 0.66

CFMMalloc 0.67 0.53 0.64 0.67 0.61

Table 4: The allocation properties and build times of k-d
trees when using the allocators on large scenes. The legend
is the same as for Table 3. For Halloc the build times of
k-d trees are given in seconds and this allocator is taken as
the reference. For the other allocators the ratio of their build
times and the build time of the reference is reported. The
fastest allocator for each scene is type-setted in boldface.

build, canceling the usefulness of multiple offsets into the
memory pool.

We also tested the allocators on a different GPU: the
NVIDIA GeForce GTX 680. This GPU has 8 SMs (stream-
ing multiprocessors) while the NVIDIA GTX TITAN Black
features 15 SMs. This reduction in the number of proces-
sors results in fewer conflicts of atomic operations on a
shared variable. In the generic tests the GTX 680 was almost
twice as fast for all of the allocators except ScatterAl-
loc which is less prone to these conflicts.

8. Fragmentation

For our newly proposed allocators we also analyze their
memory properties, in particular, their memory fragmenta-
tion. We do not analyze memory fragmentation for the other
allocators because this would require changes in their source
codes. In particular, this is impossible for CudaMalloc for
which the source code is not available. We follow the defini-
tions provided in the paper by Steinberger et al. [SKKS12].

We suppose the memory is split into a set of regions R and

define two functions, alloc and size. The function alloc :
R→ N maps a region r to the size of the memory request
that caused its allocation, or 0 for a free region. This func-
tion divides the set R into two disjoint subsets: A = {r ∈
R | alloc(r) 6= 0} is the set of all allocated regions and
F = R \ A is the set of all free regions. The other function,
size : R→ N, returns the size of a region r.

Internal fragmentation and external fragmentation is defined
as:

Finternal =
1
|A| · ∑r∈A

size(r)−alloc(r)
size(r)

, (2)

Fexternal = 1−
max f∈F size( f )

∑r∈F size(r)
. (3)

The internal fragmentation is the measure of the unusable
memory caused by the memory alignment requirements
(16 bytes in our measurements) or the allocator design. The
Finternal may thus vary with the allocation pattern of the ap-
plication. The external fragmentation is the measure of the
ability of the allocator to serve large allocation requests. If
the memory is too fragmented due to the allocator’s design
or because of the strategy used to find the free memory re-
gion, the allocator may be unable to serve such requests. The
value of Fexternal = 0 means that all of the free memory can
be allocated in a continuous block of memory while a value
close to 1 means that the memory is heavily fragmented.

AWMalloc has by definition a very low internal fragmen-
tation caused only by the memory alignment, and the sole
overhead is the 4 byte atomic counter memOffset. The exter-
nal fragmentation during the launch of the kernel using this
allocator depends on the order of the allocation and deallo-
cation requests. At the end of the kernel launch it is 0, con-
sidering all allocated memory has been freed.

The memory properties for CMalloc and its variants are
more interesting. The memory overhead is the 4-byte mem-
Offset and N headers, which divide the memory pool. The
size of the header is 8 bytes for CMalloc and CMMalloc
and 4 bytes for CFMalloc and CFMMalloc. To measure
the external fragmentation, we scan the memory pool when
the test is finished. While all of the allocations are freed at
this point in our tests, the memory pool is still fragmented
into smaller regions by means of the headers.

The internal fragmentation for CMalloc and its variants in
the Alloc Dealloc test when changing the size of the alloca-
tion requests is given in Figure 5(a). It is the same for all vari-
ants of CMalloc since they follow the same design regard-
ing memory alignment and the maximum internal fragmen-
tation allowed. The internal fragmentation for the first data
point is very high (0.75) because only 4 bytes are used of the
minimum allocable chunk of 16 bytes. With increasing size
of the allocation requests, the header size and the memory
alignment become insignificant and the internal fragmenta-
tion quickly drops towards zero. This is consistent with the
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(a) Internal fragmentation.
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(b) External fragmentation.

Figure 5: Dependence of (a) internal and (b) external frag-
mentation of CMalloc and its variants on the allocation size
in the Alloc Dealloc test. The internal fragmentation is the
same for all variants of CMalloc since they follow the same
design regarding memory alignment and the maximum inter-
nal fragmentation allowed.

design targeting large allocations. There is no difference be-
tween the fused and unfused variants because it is usually
masked by the memory alignment. The external fragmenta-
tion in Figure 5(b) is much more varied, ranging from 0.3
up to almost 1. Still, it is usually much lower than for the
methods that uniformly pre-split the memory pool such as
ScatterAlloc or Halloc. We have verified this by us-
ing a pre-splitting strategy with uniform sizes of the chunks
for CMalloc as well. Using this pre-splitting the external
fragmentation was consistently very close to 1.

For the k-d tree build test the internal fragmentation is al-
ways lower than 0.01, confirming the allocator’s benefit for

large allocations. The external fragmentation is usually be-
tween 0.94 and 0.995, because the build finishes with a large
number of small memory allocations that are not recursively
concatenated.

For both generic and real workloads, the external fragmen-
tation may be improved by a different pre-splitting strategy,
e.g. by leaving a large free chunk of memory at the end of the
memory pool, or by recursive concatenation of free chunks
as in the buddy memory allocator [Kno65].

9. Conclusions and Future Work

In this paper we have proposed a new dynamic memory al-
locator designed for GPUs and its variants, and compared
them to five existing dynamic memory allocators using three
generic and one real workload evaluation tests.

We can provide these recommendations for applications
with allocation properties similar to our generic tests:
AtomicMalloc or AWMalloc should be used if dealloca-
tion of memory is not needed. ScatterAlloc should be
used if the allocation requests have similar sizes, the mem-
ory pool is large and enough registers are present for the
kernel. FDGMalloc should be used if each thread performs
a large number of successive allocation requests. Halloc
should be used when there is a very large number of allocat-
ing threads or successive allocation requests and CMalloc
or its variants should be used if the allocation properties are
unknown.

We showed that the limitations of existing dynamic mem-
ory allocators, which may not manifest in generic tests,
cause significant slowdown in real workloads. For applica-
tions with large variability in allocation sizes or high regis-

Allocator Register
usage

Variable
requests

Succ. re-
quests

Scaling Overall
Speed

CudaMalloc + + 0 0 -

AtomicMalloc* + + + + +

CMalloc +† + 0 0‡ +

ScatterAlloc - - 0 + 0

FDGMalloc* 0 + + 0 -

Halloc - 0 + + 0

Table 5: Property summary for the dynamic memory al-
locators. The ’+’ symbol represents that the allocator per-
forms well in the property, ’0’ is for average performance
and ’-’ for poor performance. The dynamic memory alloca-
tors marked with an asterisk are not full memory allocators
since they cannot deallocate individual chunks of memory. †
’+’ or ’0’ for different variants. ‡ ’+’ when not all allocations
take place at the same time or multiple offsets to the pool are
used for different multi-processors.
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ter utilization, our proposed simple dynamic memory alloca-
tor CMalloc and its variants are capable of outperforming
state-of-the-art dynamic memory allocators. For the memory
allocation/deallocation pattern of the parallel k-d tree build-
ing algorithm, the speedup computed from the whole run-
ning time when using CMalloc compared to Scatter-
Alloc with tuned page size is between 1.4× and 4.6× on
large scenes. In addition, our CMalloc does not need any
parameters to be set. Compared to Halloc our allocator is
between 7.7× and 49.0× faster on large scenes, but up to
13% slower on small scenes.

The characteristics of the dynamic memory allocators com-
pared in this paper are summarized in Table 5 for both
generic and real workloads. CMalloc (the method pro-
posed in this paper) is a good all-round allocator.

To ease the use of the new dynamic memory alloca-
tors, we provide their source codes in the form of a li-
brary that can be accessed at http://dcgi.fel.cvut.cz/
projects/CMalloc. In future work we would like to in-
vestigate the efficiency of recursive concatenation of free
chunks in CMalloc and hybrid allocation strategies. The
techniques typically employed on CPUs may behave quite
differently under the memory hierarchy of GPUs.
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