
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS (PREPRINT), 2017 1

Parallel Locally-Ordered Clustering for Bounding
Volume Hierarchy Construction

Daniel Meister, Jiřı́ Bittner
Faculty of Electrical Engineering, Czech Technical University in Prague, Czech Republic

Abstract—We propose a novel massively parallel construction algorithm for Bounding Volume Hierarchies (BVHs) based on
locally-ordered agglomerative clustering. Our method builds the BVH iteratively from bottom to top by merging a batch of cluster pairs
in each iteration. To efficiently find the neighboring clusters, we keep the clusters ordered along the Morton curve. This ordering allows
us to identify approximate nearest neighbors very efficiently and in parallel. We implemented our algorithm in CUDA and evaluated it in
the context of GPU ray tracing. For complex scenes, our method achieves up to a twofold reduction of build times while providing up to
17% faster trace times compared with the state-of-the-art methods.

Index Terms—Ray Tracing, Object Hierarchies, Three-Dimensional Graphics and Realism

F

1 INTRODUCTION

Ray tracing stands at the core of most image synthesis
algorithms simulating light propagation. The elementary
task in ray tracing is to find the nearest intersection of a
given ray with the scene. To achieve high-quality results,
many rays have to be traced. For example, stochastic ray
tracing algorithms trace thousands of rays per pixel to
reduce the noise in the synthesized image. Contemporary
displays consist of millions of pixels, which in turn results
in billions of rays that are tested against millions of triangles
comprising the scene. Hence to solve ray tracing efficiently,
we have to arrange the scene into a spatial data structure
that allows accelerating ray tracing by several orders of
magnitude.

One of the most common spatial data structures is the
bounding volume hierarchy (BVH). The BVH is a tree-like
structure containing scene primitives in leaves. Every node
of the BVH contains a bounding volume of the geometry
stored in its subtree. The most common form of the BVH
for ray tracing purposes is a binary tree with axis aligned
bounding boxes used as bounding volumes. There are three
main approaches how to construct a BVH: incremental (by
insertion), top-down (by subdivision), and bottom-up (by
agglomeration). In general, the bottom-up algorithms are
able to produce high-quality BVHs measured by the SAH
cost [1].

Walter et al. [2] proposed the first BVH construction
algorithm based on agglomerative clustering. Their method
uses an auxiliary kD-tree to accelerate the nearest neighbor
search. Despite the use of the kD-tree, the algorithm is not
competitive with other state-of-the-art BVH construction
methods regarding speed. Gu et al. [3] proposed the Ap-
proximate Agglomerative Clustering (AAC) – an efficient
BVH construction algorithm using approximate agglom-
erative clustering that combines top-down and bottom-
up approaches. This method, which uses a divide-and-
conquer approach based on the Morton codes, is suitable
for multi-core CPUs. Until now, it has been unclear how

to apply a similar strategy on many-core architectures such
as GPU. We employ a similar idea of using the Morton
codes for identifying approximate clustering. However, we
use a scan-based approach combined with locally-ordered
clustering to design a new GPU friendly agglomerative
clustering algorithm. Our algorithm combines the idea of
locally-ordered clustering with spatial sorting using the
Morton codes [4]. We show that our method has low com-
putational overhead, and it can find enough parallel work
to fully utilize many cores of contemporary GPUs. As a
result, the algorithm can construct a high-quality BVH faster
than previous state-of-the-art methods of GPU-based BVH
construction (see Figure 1). Another important feature of
the method is its simplicity: the method consists of several
simple steps that are executed iteratively as GPU kernels.

2 RELATED WORK

Already in the early 80s, Rubin and Whitted [6] used
manually created BVHs. Weghorst et al. [7] proposed to
build BVHs using the modeling hierarchy. The very first
BVH construction algorithm using spatial median splits was
introduced by Kay and Kajiya [8]. Goldsmith and Salmon [9]
proposed the cost function known as the surface area heuristic
(SAH). This function can be used to estimate the efficiency
of a BVH during its construction, and thus it is used in most
of the state-of-the-art BVH builders. The BVH construction
methods require sorting and exhibit O(n log n) complexity
(n is the number of scene primitives). Several techniques
have been proposed to reduce the constants behind the
asymptotic complexity. For example, Havran et al. [10],
Wald et al. [11], [12], and Ize et al. [13] used an approximate
SAH cost evaluation based on the concept of binning. Hunt
et al. [14] suggested to use the structure of the scene graph
to speed up the BVH construction process. Doyle et al. [15]
designed a hardware solution for the BVH construction
based on the SAH.
High-quality BVH Great effort has also been devoted to
methods which are not limited to the top-down BVH con-

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS (PREPRINT), 2017 2

Fig. 1. GPU path tracing of the Power Plant scene (12.8M triangles) using a BVH constructed by our method (left). Visualization of the number of ray
intersection operations for our method (middle) and the state-of-the-art ATRBVH method [5] (right). The red color corresponds to 325 intersections
(both bounding volume and triangle intersections are counted). In this case, our method achieves 32% reduction of build time (210 ms vs. 309 ms)
and 17% speedup in ray tracing performance (88 MRays/s vs. 75 MRays/s) compared with ATRBVH.

struction. These approaches allow decreasing the expected
cost of a BVH below the cost achieved by the traditional
top-down approach. Ng and Trifonov [16] proposed the
BVH construction based on a stochastic search. Walter et
al. [2] proposed to use bottom-up agglomerative clustering
for constructing high-quality BVHs. Kensler [17], Bittner et
al. [18], and Karras and Aila [19] proposed to optimize a
BVH by performing topological modifications of an existing
BVH. Aila et al. [20] identified that particularly for the
methods not using the top-down approach the SAH cost
metric can be corrected to correlate better with the actual
trace times.
BVH modifications Dammertz et al. [21], Wald et al. [22],
Ernst and Greiner [23], and Tsakok [24] proposed to use the
BVH with a higher branching factor to better exploit SIMD
units in modern CPUs. Ernst and Greiner [25], Popov et
al. [26], Stich et al. [27], Ganestam and Doggett [28], and
Fuetterling et al. [29] employed spatial splits to combine the
advantages of object hierarchies and spatial subdivisions.
Wachter and Keller [30], Eisemann et al. [31] devoted an
effort to decrease the size of the BVH. Gu et al. [32] proposed
to improve the BVH performance by adapting it to a partic-
ular ray distribution using view-dependent contraction.
Parallel BVH construction In the last decade, both multi-
core CPU and many-core GPU BVH construction methods
have been investigated. Wald [33] studied the possibil-
ity of fast rebuilds from scratch on the Intel architecture
with many cores. Gu et al. [3] proposed parallel approx-
imative agglomerative clustering (AAC) for accelerating
the bottom-up BVH construction. Recently, Ganestam et
al. [34] introduced the Bonsai method performing a two-
level SAH-based BVH construction on multi-core CPUs.
These two methods are considered the state-of-the-art CPU-
based methods for BVH construction regarding the build
time and the BVH quality.

Lauterbach et al. [35] proposed a GPU method known
as LBVH based on the Morton code sorting. Pantaleoni
and Luebke [36], Garanzha et al. [37] extended LBVH into
the method known as HLBVH, which employs SAH for
constructing the top part of the BVH. Vinkler et al. [38]
proposed a GPU-based method which employs a task pool
with persistent warps building a BVH in a single kernel
launch. Karras [39] and Apetrei [40] further improved the
LBVH algorithm; as a result, these methods are considered
the fastest available GPU BVH builders. However, due to

its simplicity, the LBVH methods generally build trees of
a lower quality. Karras and Aila [19] showed that a good
balance between the build time and the tree quality could
be achieved by a combination of LBVH and subsequent
treelet optimization. This method was further improved
by Domingues and Pedrini [5] in their ATRBVH method.
Recently, Meister and Bittner [41] combined the k-means
and agglomerative clustering in another GPU friendly BVH
construction algorithm. We use the LBVH, HLBVH, and
ATRBVH methods as references for the method proposed
in this paper. We show that for large scenes our method
improves upon the previous state-of-the-art in both the BVH
build time and the corresponding trace speed.

3 BVH CONSTRUCTION VIA AGGLOMERATIVE
CLUSTERING

We propose an algorithm using parallel locally-ordered clus-
tering (PLOC) for BVH construction. The algorithm employs
two main ideas: (1) We perform locally-ordered clustering
on large numbers of clusters in parallel. (2) To identify
suitable nearest neighbors for the clustering, we use sorting
based on the Morton codes with local exploration of the
neighborhood in the sorted sequence.

We first describe these two ideas in more depth and then
provide the description of the complete algorithm and its
implementation details.

3.1 Parallel Locally-Ordered Clustering
The agglomerative clustering algorithm starts with the scene
triangles trivially forming n clusters with a single triangle
per cluster (n is the number of triangles). These clusters
correspond to the leaves of the BVH. Then the algorithm
builds the higher levels of the BVH by merging the clusters
from the lower levels.

We define a distance function d between two clusters C1

and C2 as the surface area A of an axis aligned bounding
box tightly enclosing C1 and C2 [2]:

d(C1, C2) = A(B(C1 ∪ C2)) = A(B(∪(C1, C2)), (1)

where ∪(C1, C2) is the clustering operator and B(C) is
the axis aligned bounding box tightly enclosing the geom-
etry corresponding to cluster C . Function d obeys a non-
decreasing property:

d(C1, C2) ≤ d(C1 ∪ C3, C2) : ∀ C1, C2, C3. (2)

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS (PREPRINT), 2017 3

Fig. 2. Illustration of the nearest neighbor search for r = 2. Two clusters
(red triangles) search for their nearest neighbors (blue triangles) in
the neighborhood (red curve). Notice how the algorithm adapts to the
density of clusters in the neighborhood.

The non-decreasing property was explored by Walter et
al. [2], who proposed the locally-ordered agglomerative clus-
tering algorithm. If the nearest neighbors of two clusters
mutually correspond (these two clusters are the nearest neigh-
bors to each other), then we know that no better neighbor
will emerge in the future. Thus, we can merge the mutu-
ally corresponding clusters together. In our algorithm, we
exploit this property and apply it on all pairs of mutually
corresponding clusters in parallel.

3.2 Approximate Nearest Neighbor Search

The agglomerative clustering algorithm needs to identify
the nearest neighbors to all current clusters. A naı̈ve eval-
uation would take O(n2) time for n clusters, which makes
this approach very inefficient for large n. Walter et al. [2]
use an auxiliary kD-tree to identify the nearest neighbors.
This accelerates the algorithm, but a generalization of this
approach to a parallel algorithm is difficult.

We propose a simple yet efficient way to identify the
nearest neighbors for all clusters. We sort the clusters based
on the Morton codes of their centroids. Then for each cluster,
we use a 1D range search along the Morton curve to identify
the nearest neighbors. In particular, for a cluster Ci with
index i in the sorted sequence we search for its nearest
neighbor in the interval 〈i − r, i + r〉, where r is the search
radius. For every candidate Cj , j ∈ 〈i − r, i + r〉 \ {i}, we
evaluate the distance of the two clusters d(Ci, Cj). We select
the candidate Cj with the smallest distance value as the
nearest neighbor. An illustration of this method for a 2D
example is shown in Figure 2.

Note that this method only finds approximate nearest
neighbors. However, this seems sufficient as the actual clus-
ter pairs are found using the mutual cluster correspondence
described in Section 3.1. As the Morton codes provide
implicit spatial subdivision corresponding to hierarchical
spatial median splits, the approximate nearest neighbor
search can actually have a slightly positive influence on
the BVH trace performance for some scenes. This follows
from a better cluster separation for the top part of the tree
that resembles top-down methods, and thus provides better
correlation of the SAH cost and the trace time [20].

iteration 5

1 cluster

2 clusters

4 clusters

6 clusters

8 clusters

iteration 3

iteration 2

iteration 1

iteration 4

Fig. 3. Illustration of the proposed algorithm. In each iteration, we merge
mutually corresponding nearest neighbors (green nodes connected by a
dotted line). New clusters and not merged clusters (red nodes) enter the
next iteration. The process is repeated until only one cluster remains.

3.3 Algorithm Details

The algorithm uses two buffers for storing the clusters
(input and output buffer), one buffer for storing the nodes of
the resulting BVH, one buffer for storing the triangle indices,
and several temporary buffers.

The algorithm starts by computing the bounding boxes
and the Morton codes of scene triangles. By sorting the
Morton codes, we order the triangles along the Morton
curve. Initially, each triangle corresponds to a single initial
cluster. These initial clusters are then placed into the input
buffer.

The algorithm then enters the main loop that runs
through a number of iterations. In each iteration, all cluster
pairs that successfully found their mutual nearest neighbor
are merged. The main loop consists of three phases: nearest
neighbor search, merging, and compaction. After each iter-
ation, the input and output buffers are swapped. The main
loop repeats until a single cluster remains. To guarantee that
the algorithm always terminates, we prioritize the nearest
neighbor with the lower index which solves a potential rare
case of completely equidistant clusters (this issue will be
discussed in the next section). An illustration of several
iterations of the algorithm is depicted in Figure 3.

The pseudocode of the method is given in Algorithm 1.
It highlights the three main phases of the algorithm:

• In the nearest neighbor search (shown in red), each
cluster searches for its nearest neighbor in parallel
using the 1D interval of clusters in the input buffer.
This interval is given by the parameter r and it is
clipped to prevent accessing the memory outside the
buffer. Each cluster keeps the nearest neighbor found
so far (based on distance function d).

• In the merging phase (shown in green), each cluster
checks in parallel if it is equal to the nearest neigh-
bor of its nearest neighbor. If so, both clusters are
merged. To avoid conflicts, merging is performed by
a thread processing the cluster with the lower index.
The first cluster is replaced with the new cluster and
the second cluster is marked as invalid. Simultane-
ously, we create an interior node corresponding to
the new cluster. To determine the indices of the new

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS (PREPRINT), 2017 4

interior nodes in the node buffer, we perform a paral-
lel prefix scan on the new clusters. We determine the
actual node indices by adding the prefix scan value
to the node counter.

• In the compaction phase (shown in magenta), we
perform an exclusive parallel prefix scan to remove
invalid clusters. According to the prefix scan values,
we determine the positions of node indices and write
them to the output buffer. It is necessary to perform
a global prefix scan to remove the gaps along the
Morton curve of the active clusters after some of the
clusters have been merged. Note that we do not sort
the new clusters according to the Morton codes of
their centroids. Sorting the clusters is rather costly,
and we observed that the clusters keep ordering
which is sufficient for the approximate nature of our
nearest neighbor search algorithm.

Algorithm 1 Pseudocode of the main loop of our massively
parallel agglomerative clustering algorithm. The input of
the algorithm is a sequence of n clusters C0, C1, . . . , Cn−1
sorted along the Morton curve. The algorithm uses two
auxiliary arrays: N (for the nearest neighbor indices) and
P (for the prefix scan). Symbol ♣ denotes an invalid cluster.
We assume that the prefix scan is exclusive.

1: Cin ← Cout ← [C0, C1 . . . , Cn−1]
2: N ← P ← [0, 1 . . . , n− 1]
3: c← n
4: while c > 1 do
5: for i← 0 to c− 1 in parallel do
6: /* NEAREST NEIGHBOR SEARCH */
7: dmin ←∞
8: for j ← max(i− r, 0) to min(i + r, c− 1) do
9: if i 6= j ∧ dmin > d(Cin[i], Cin[j]) then

10: dmin ← d(Cin[i], Cin[j])
11: N [i]← j
12: end if
13: end for
14: BARRIER()
15: /* MERGING */
16: if N [N [i]] = i ∧ i < N [i] then
17: Cin[i]←CLUSTER(Cin[i], Cin[N [i]])
18: Cin[N [i]]← ♣
19: end if
20: BARRIER()
21: /* COMPACTION */
22: P[i]← PREFIXSCAN(Cin[i] 6= ♣)
23: if Cin[i] 6= ♣ then
24: Cout[P[i]]← Cin[i]
25: end if
26: BARRIER()
27: end for
28: c← P[c− 1]
29: if Cin[c− 1] 6= ♣ then
30: c← c + 1
31: end if
32: SWAP(Cin, Cout)
33: end while

3.4 Algorithm Correctness
The proposed algorithm combines the approximate neigh-
bor search with locally-ordered clustering. This poses a
question on the finiteness of the algorithm, i.e. will the
algorithm always find at least two clusters to be merged
in the given iteration?

We show that at least two clusters are merged in each
iteration: We represent the relation of the nearest neighbors
as a directed graph G = (V,E), where V is a set of vertices
corresponding to n clusters and E is a set of n edges
corresponding to nearest neighbor relation. Our goal is to
show that the graph G always contains a directed cycle of
length two, i.e. two vertices are pointing to each other.

We obtain an undirected graph G′ from the graph G by
dropping orientation of the edges E. The graph G′ has to
contain a cycle C ′ since |E| ≥ |V |. Cycle C ′ must also be a
directed cycle C in G because each vertex has exactly one
outgoing edge. Trivially, C cannot contain cycles of length 1
(by definition of the nearest neighbor search). It remains to
show that the length of C cannot be greater than 2. Suppose
that the graph G contains a cycle v1, v2, . . . , vk, v1 for k > 2.
The procedure of searching nearest neighbors implies:

d(v1, v2) ≤ d(v2, v3) ≤ · · · ≤ d(vk, v1) ≤ d(v1, v2). (3)

This is true only if all distances are the same. In this case, we
force the cycle to be of length two by preferring the neighbor
with the lowest index as mentioned in Section 3.3. Thus, the
graph G has to contain at least one cycle C of length two.
Therefore in each iteration, at least one pair of clusters is
merged.

3.5 Complexity Analysis
It is difficult to estimate the expected running time of Al-
gorithm 1 for general input data. However, we can estimate
the best and worst case running times of our algorithm. Let
n denote the number of input clusters, r the search radius,
and p the number of processors working in parallel. Below,
we analyze the best and the worst cases for sequential and
parallel versions.

In the worst case, we merge only one pair of clusters in
each iteration. We perform n− 1 iterations; in i-th iteration,
we execute n − i + 1 nearest neighbor search queries.
Each query takes linear time with respect to r. The prefix
scan takes O(n − i) time in i-th iteration. The worst case
sequential complexity is thus O(rn2). The parallel prefix
scan takes O(n−i

p + log p) time in i-th iteration. The parallel

complexity is then O(rn2

p + n log p) assuming p ≤ n.
In the best case, we assume that n is a power of two

and all clusters find their neighbors in each iteration. Thus,
we perform log2 n iterations and i-th iteration performs
n

2i−1 nearest neighbor search queries. The prefix scan takes
Ω(n

2i) time in i-th iteration. Thus, in the best case the
sequential complexity is Ω(rn). In the parallel case, we need
Ω(n

2ip + log p) time for parallel prefix scan in i-th iteration.
The parallel complexity is then Ω(r(n

p +log n)+log n log p).
The first occurrence of log n term in the complexity follows
from the necessity of performing log2 n even for large num-
ber of processors. The log n log p is due to the lower bound
on performing log2 n parallel prefix scans.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS (PREPRINT), 2017 5

The experimental results indicate that the actual running
times exhibit behavior close to the best case complexity
bounds, i.e. linear dependence on the search radius r and
the number of input clusters n.

3.6 Implementation Details

We implemented the algorithm in CUDA [42]. We use 30-
bit Morton codes computed using the expanded bounding
box of the scene. The expanded bounding box is computed
by taking the largest extent of the scene bounding box and
creating circumscribed cube around the scene. To sort the
triangles along the Morton curve, we use the radix sorting
algorithm proposed by Merrill and Grimshaw [43]. The
main loop consists of five kernels. The first kernel corre-
sponds to the nearest neighbor search phase. The second
kernel corresponds to the merging phase. The last three
kernels correspond to the compaction phase (prefix scan).
In the nearest neighbor search phase, we use a shared
memory cache to minimize the number of transfers of
cluster bounding boxes from the global memory. This cache
consists of B + 2r bounding boxes, where B is the number
of block threads and r is the radius mentioned above. At
the beginning, threads in the block fill the cache. Then we
use this cache to search for the nearest neighbors. The bank
conflicts should be avoided because the size of the bounding
boxes is 24 B and memory accesses are coalesced. In the
merging phase, we perform a warp-wide prefix scan on the
number of new clusters using the __ballot function. We
determine the node indices for a new cluster by atomically
adding the number of new clusters within a warp to the
node counter. This is done by adding the values of the warp-
wide prefix scan and the original value of the node counter
returned by the atomic addition.
Collapsing Subtrees The resulting BVH contains exactly
one triangle per leaf. Collapsing some subtrees to leaf nodes
may decrease the total SAH cost [18], [20]. A GPU imple-
mentation of subtree collapsing is not trivial and therefore
we briefly describe our implementation of this method.
We use several passes of the parallel bottom-up traversal
proposed by Karras [39]. The procedure was originally
used to refit bounding boxes. We suppose that each node
has a parent index, and each internal node has a counter
(initially set to 0). Threads proceed up from the leaves using
parent indices. In each interior node, a thread atomically
increments the corresponding counter. If the original value
of the counter was 0 then the thread is killed. Otherwise,
it proceeds to the parent. In other words, the first thread is
killed and second continues up to the root. It is guaranteed
that each node is processed by a single thread, and both
subtrees are already processed.

In the first pass, we perform a bottom-up traversal
that marks each node as leaf or interior depending on the
associated BVH cost. We compare the SAH cost of the node
as a subtree and the SAH cost of the node being a leaf. If
collapsing pays off, we mark the node as a leaf, otherwise as
an interior node. In the second pass, we have to determine
the roots of the collapsed subtrees. We perform a bottom-up
traversal and track the highest leaf found so far. In the third
pass, we mark all nodes in the collapsed subtree as invalid.
Again we perform a bottom-up traversal until we reach the

node identified in the previous pass and mark all visited
nodes as invalid. In the fourth pass, we perform a prefix
scan on valid nodes to determine the new node indices. We
remap the child and parent indices using the values of the
prefix scan.

We determine the leaf sizes by atomically incrementing
a counter associated with the leaf. Each leaf knows the
offset within its segment of triangle indices as the atomic
operation returns the original value of the counter. Then
we perform a prefix scan on the leaf sizes to determine the
bounds of continuous segments of triangle indices. Finally,
we write triangle indices to the appropriate continuous
segments in the triangle index buffer. The implementation of
our BVH builder can be downloaded from the PLOC project
site1.

4 RESULTS AND DISCUSSION

We have evaluated the PLOC method using nine test scenes
of different complexity. As reference methods, we used
the LBVH builder proposed by Karras [39], the HLBVH
builder proposed by Garanzha et al. [37], the ATRBVH
builder proposed by Domingues [5], and the AAC builder
proposed by Gu et al. [3]. For LBVH as well as HLBVH,
we used 30-bit Morton codes, HLBVH used 15 bits for the
SAH-based top-tree construction. For ATRBVH, we used the
publicly available implementation of treelet restructuring
using treelets of size nine with two iterations. For AAC, we
used the publicly available sequential implementation (the
comparison with AAC is presented in a dedicated section
below).

For our method, we use three settings with different
radius r: PLOCr=10, PLOCr=25, and PLOCr=100. In all
cases, we use an adaptive leaf size based on collapsing
subtrees discussed in Section 3.6. We evaluated the con-
structed BVH using a high-performance ray tracing kernel
of Aila et al. [44]. All measurements were performed on a
PC with Intel Core I7-3770 3.4 GHz (4 physical cores), 16
GB RAM, GTX TITAN X GPU with 12 GB RAM (Maxwell
architecture, CUDA 7.5), Windows 7 OS. For all methods,
we used customized version of radix sort from CUB 1.1.1 to
sort the Morton codes.

The results are summarized in Table 1. For each method,
we report the SAH cost of the constructed BVH (using
traversal and intersection constants cT = 3 and cI = 2), the
average trace speed, the build time, and the time-to-image
(total time) for two different application scenarios. The first
time-to-image measurement corresponds to 8 samples per
pixel; the second measurement corresponds to 128 samples
per pixel, both using 1024×768 image resolution. Our path
tracing implementation uses the next event estimation with
two light source samples per hit and the Russian roulette
for path termination. The reported times are an average of
three different representative camera views to reduce the
influence of view dependency. For the build time, we report
the real execution time measured on the CPU side as well
as the sum of kernel times (in brackets). The build time also
includes a conversion to the data representation needed by
the ray tracing kernel.

1. http://dcgi.felk.cvut.cz/projects/ploc

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS (PREPRINT), 2017 6

BVH quality From the results, we can see that our
PLOC and ATRBVH are quite competitive. PLOC has lower
SAH cost and higher trace speed for six scenes compared
with ATRBVH. PLOC has lower trace speed than ATRBVH
for Happy Buddha (−5%), Soda Hall (−3%), and Hairball
(−16%). However, PLOC performs better for large complex
architectural scenes. PLOC has higher trace speed than ATR-
BVH for Conference (+5%), Manuscript (+5%), Pompeii
(+13%), San Miguel (+14%), Vienna (+14%), and for Power
Plant (+17%). We can observe that the SAH costs stabilize
quite fast even for small radii (see Figure 4).

SAH cost build time

75

80

85

90

95

100

105

10 20 30 40 50 60 70 80 90 100

150

200

250

300

350

S
A

H
 c

os
t [

-]

bu
il

d
ti

m
e

[m
s]

radius [-]

75

80

85

90

95

100

105

10 20 30 40 50 60 70 80 90 100

150

200

250

300

350

S
A

H
 c

os
t [

-]

bu
il

d
ti

m
e

[m
s]

radius [-]

Fig. 4. The dependence of the SAH cost and build on the radius r for the
Power Plant scene. Note that the build time exhibits linear dependence
on r.

Build time LBVH is the fastest builder overall. HLBVH
is the second fastest method for seven scenes. PLOCr=10

and PLOCr=25 are faster than ATRBVH for all scenes
except Conference and Happy Buddha. Compared with
ATRBVH, PLOCr=10 achieves the following speedups: Soda
Hall (+31%), Hairball (+24%), Manuscript (+53%), Pom-
peii (+47%), San Miguel (+42%), Vienna (+55%), and
Power Plant (+46%). Kernel times of different phases of the
algorithm are shown in Figure 5.

0

50

100

150

200

250

300

350

PLOCr=10 PLOCr=25 PLOCr=100

ti
m

e
[m

s] sort
nearest neighbor search
merging
compaction
collapse
other computation

Fig. 5. Kernel times of different phases of the BVH construction for the
Power Plant scene and three different radii.

Time-to-image For the low quality rendering, PLOC has
lower times for six scenes compared with ATRBVH. We ob-
serve speedups for Soda Hall (+12%), Manuscript (+34%),
Pompeii (+29%), San Miguel (+22%), Vienna (+39%), and
Power Plant (+24%). PLOC is slightly slower than ATRBVH
for Conference (−1%), Happy Buddha (−7%), and Hairball
(−8%). For the high-quality rendering, PLOC is faster than
ATRBVH for six scenes. We observe speedups for Con-
ference (+4%), Manuscript (+9%), Pompeii (+13%), San
Miguel (+11%), Vienna (+14%), and Power Plant (+15%).

PLOC is slower for the object-like scenes, namely Happy
Buddha (−6%), Soda Hall (−2%) and Hairball (−19%).
Iterations We measured the number of iterations for
various radii (see Figure 6). We observed that the number of
iterations is approximately 2−3 times higher than the depth
of the BVH. For almost all scenes the number of iterations
slowly grows with increasing radius, and it almost stabilizes
for r > 20. An exception is the Power Plant scene. There is
a significant step down at r = 6. We expect this is caused
by large variance in triangle sizes and subsequent need for
larger neighborhood for the nearest neighbor search.

Conference Happy Buddha Soda Hall Hairball

Manuscript Pompeii San Miguel Vienna Power Plant

0
50

100
150
200
250
300
350
400
450

10 20 30 40 50 60 70 80 90 100

it
er

at
io

n
[-

]

radius [-]

Fig. 6. Plots of the number of iterations needed to construct the whole
BVH depending on the setting of the radius r.

Algorithm visualization To provide better insight into the
behavior of the algorithm, we visualized the neighboring
triangles determined by the 1D interval along the Morton
curve (see Figure 7). We also visualized the active clusters
for different phases of the BVH construction (see Figure 8).
Comparison with AAC We have conducted a comparison
of our method with the state-of-the-art CPU builder – the
AAC method proposed by Gu et al. [3]. Both algorithms
use the Morton codes for performing approximate nearest
neighbor search combined with the clustering phase. There-
fore we can expect that the BVH they produce will be sim-
ilar. Note, however, that the algorithms use very different
computation strategies designed to follow the capabilities
of different architectures, multi-core CPU vs. many-core
GPU. AAC uses top-down partitioning phase while keeping
relatively large computation state on the stack (including
distance matrices). PLOC uses iterative parallel bottom-
up locally-ordered clustering while keeping minimal state
information to support efficient GPU execution.

For the comparison, we used the publicly available
implementation of AAC provided by Gu et al. [3]. This

Fig. 7. Visualization of the neighboring triangles. The heat value corre-
sponds to the distance from the white triangle along the Morton curve.
Blue triangles are beyond the radius (r = 100).

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS (PREPRINT), 2017 7

Fig. 8. Visualization of the active clusters for the Happy Buddha scene
in iteration 20 (left) and 55 (right). In total, 70 iterations were needed to
construct the whole BVH. The bounding boxes highlight those clusters
which were formed during the depicted iteration.

implementation is sequential, and therefore we divided
the running times by the number of physical cores in the
testing PC (4 physical cores) to get optimistic bound on the
AAC running times on this architecture. The comparison is
summarized in Table 2.

Regarding the cost of the BVH, we can observe that the
results are indeed very similar. An exception is the Power
Plant scene for which the AAC implementation constructs a
tree with significantly higher cost, possibly due to a bug
in the implementation related to the size of the scene.
The build times for PLOC are significantly lower than for
AAC, particularly for larger scenes (e.g. 3x for PLOCr=25

vs. AAC-Fast for San-Miguel). This can also be observed
from Figure 9 that shows the dependence of build time on
the number of triangles. PLOC seems to provide slightly
better scalability towards very large scenes. The results
indicate that for application involving GPU ray tracing our
method would be the method of choice whereas for CPU
ray tracing AAC is still a good option, particularly when
using a powerful CPU with many cores.

AAC-Fast AAC-HQ PLOCr=10 PLOCr=25 PLOCr=100

0

500

1000

1500

2000

2500

2x106 4x106 6x106 8x106 1x107 1.2x107

bu
il

d
ti

m
e

[m
s]

#triangles

Fig. 9. Dependence of build time on the scene size (number of triangles)
for the method by Gu et al. [3] (AAC-Fast, AAC-HQ) and our method
(PLOCr=10, PLOCr=25, PLOCr=100).

Limitations The proposed method achieves superior re-
sults for large scenes. For smaller scenes, though, it is less
efficient than the tested reference methods regarding build
time (e.g. for the Conference scene with 331k triangles);
this mainly follows from the larger kernel management
overhead. We launch several kernels for each iteration of the
method, which leads to a larger number of kernels that need

to be executed compared with the reference methods. While
for large scenes this overhead becomes almost negligible
due to the longer kernel execution times, it remains an issue
for smaller scenes. This behavior may improve in the future
as the hardware vendors aim at further reduction of kernel
management overhead. For now, our method provides best
results for scenes larger than roughly million triangles.

Note that the available implementations of LBVH,
HLBVH, and ATRBVH do not represent all state-of-the-
art GPU builders. It would be interesting to compare our
method also with the original implementation of the TRBVH
method [19], which achieves very good build times and
BVH quality. However, a direct comparison is problematic
as the original implementation of TRBVH is not publicly
available.

5 CONCLUSION AND FUTURE WORK

We proposed a new GPU-oriented BVH construction algo-
rithm using agglomerative clustering based on the Morton
curve ordering. The algorithm uses fast scan-based ap-
proximate nearest neighbor search combined with locally-
ordered clustering. We implemented our algorithm in
CUDA and compared it with the LBVH, HLBVH, ATRBVH,
and AAC methods. The results show that our algorithm
competes favorably with the state-of-the-art methods. In the
worst cases, our algorithm is very close to the ATRBVH
method; in the best cases, our algorithm achieves speedups
up to 39% (time-to-image). This indicates that the proposed
method is probably the fastest available BVH builder for
constructing high-quality BVHs. Our algorithm is simple
yet scalable and efficient. Setting a single parameter, i.e. the
radius, we can easily trade the BVH construction speed for
the rendering performance.

In the future, we would like to conduct a deeper study
of the influence of the radius parameter r on the build
times and the trace speed. Varying this parameter across
the scene and also across different iterations might provide
the optimal balance between the construction time and the
trace time for a particular rendering scenario. The PLOC
method uses standard parallel constructs, and thus it would
be interesting to modify it also for the context of many-core
CPUs.

6 ACKNOWLEDGEMENTS

We would like to thank our colleague Jakub Hendrich
for proposing the proof of the algorithm correctness and
providing other valuable comments. This research was sup-
ported by the Grant Agency of the Czech Technical Univer-
sity in Prague, grant No. SGS16/237/OHK3/3T/13.

REFERENCES

[1] J. D. MacDonald and K. S. Booth, “Heuristics for Ray Tracing
Using Space Subdivision,” Visual Computer, vol. 6, no. 6, pp. 153–
65, 1990.

[2] B. Walter, K. Bala, M. Kulkarni, and K. Pingali, “Fast Agglomer-
ative Clustering for Rendering,” in IEEE Symposium on Interactive
Ray Tracing, 2008, pp. 81–86.

[3] Y. Gu, Y. He, K. Fatahalian, and G. Blelloch, “Efficient BVH
Construction via Approximate Agglomerative Clustering,” in Pro-
ceedings of High-Performance Graphics, 2013, pp. 81–88.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS (PREPRINT), 2017 8

Conference Happy Buddha Soda Hall
#triangles #triangles #triangles
331k 1087k 2169k

SAH trace build total total SAH trace build total total SAH trace build total total
cost speed time time1 time2 cost speed time time1 time2 cost speed time time1 time2

[-] [MRays/s] [ms] [ms] [ms] [-] [MRays/s] [ms] [ms] [ms] [-] [MRays/s] [ms] [ms] [ms]
LBVH 154 210 3 (3) 248 3932 204 128 11 (10) 109 1573 252 220 18 (17) 115 1572
HLBVH 118 257 11 (6) 211 3222 184 134 22 (16) 116 1518 219 252 33 (26) 118 1389
ATRBVH 87 287 10 (9) 190 2888 169 144 34 (33) 121 1425 173 260 62 (60) 145 1376
PLOCr=10 85 298 19 (6) 192 2786 175 135 36 (21) 129 1517 179 251 43 (28) 128 1408
PLOCr=25 84 299 22 (8) 195 2784 175 137 39 (25) 131 1507 176 243 50 (35) 138 1457
PLOCr=100 85 300 31 (15) 202 2778 179 133 63 (47) 157 1575 177 242 88 (71) 177 1503

Hairball Manuscript Pompeii
#triangles #triangles #triangles
2880k 4305k 5632k

SAH trace build total total SAH trace build total total SAH trace build total total
cost speed time time1 time2 cost speed time time1 time2 cost speed time time1 time2

[-] [MRays/s] [ms] [ms] [ms] [-] [MRays/s] [ms] [ms] [ms] [-] [MRays/s] [ms] [ms] [ms]
LBVH 1233 55 23 (22) 297 4426 182 150 40 (39) 153 1843 428 81 47 (46) 293 3980
HLBVH 1225 56 43 (35) 314 4383 134 164 64 (55) 166 1689 314 99 76 (65) 277 3289
ATRBVH 1073 64 83 (82) 319 3869 106 194 132 (130) 217 1497 234 119 168 (167) 333 2804
PLOCr=10 1092 54 63 (43) 344 4606 91 203 62 (51) 143 1363 175 132 89 (72) 237 2462
PLOCr=25 1085 48 76 (51) 405 5285 96 199 77 (64) 160 1409 172 134 105 (88) 252 2452
PLOCr=100 1081 50 124 (92) 426 4961 101 192 134 (120) 220 1509 170 135 203 (184) 348 2516

San Miguel Vienna Power Plant
#triangles #triangles #triangles
7880k 8637k 12759k

SAH trace build total total SAH trace build total total SAH trace build total total
cost speed time time1 time2 cost speed time time1 time2 cost speed time time1 time2

[-] [MRays/s] [ms] [ms] [ms] [-] [MRays/s] [ms] [ms] [ms] [-] [MRays/s] [ms] [ms] [ms]
LBVH 252 61 64 (63) 561 8017 302 92 79 (78) 317 3902 127 55 93 (92) 746 10551
HLBVH 184 87 100 (86) 455 5733 217 105 120 (105) 330 3483 114 65 136 (119) 685 8958
ATRBVH 146 97 221 (219) 537 5269 147 164 262 (259) 396 2402 81 75 304 (300) 775 7909
PLOCr=10 144 105 128 (108) 420 4784 111 179 119 (103) 242 2086 80 84 163 (140) 588 6965
PLOCr=25 141 107 151 (129) 438 4718 110 183 141 (123) 261 2060 78 88 210 (174) 611 6699
PLOCr=100 138 111 287 (262) 561 4671 110 187 259 (241) 377 2138 77 85 375 (338) 793 7081

TABLE 1
Performance comparison of the tested methods. The reported numbers are averaged over three different viewpoints for each scene. The best

results are highlighted in bold. For computing the SAH cost, we used cT = 3 and cI = 2. Build times in parentheses correspond to kernel times.

Conference Happy Buddha Soda Hall Hairball Manuscript Pompeii San Miguel Vienna Power Plant
SAH build SAH build SAH build SAH build SAH build SAH build SAH build SAH build SAH build
cost time cost time cost time cost time cost time cost time cost time cost time cost time
[-] [ms] [-] [ms] [-] [ms] [-] [ms] [-] [ms] [-] [ms] [-] [ms] [-] [ms] [-] [ms]

AAC-Fast 84 18 178 74 179 125 1135 205 98 241 179 324 140 462 113 481 164 669
AAC-HQ 84 56 179 203 177 377 1112 543 103 751 171 1019 137 1523 109 1607 215 2620
PLOCr=10 85 19 175 36 179 43 1092 63 91 62 175 89 144 128 111 119 80 163
PLOCr=25 84 22 175 39 176 50 1085 76 96 77 172 105 141 151 110 141 78 210
PLOCr=100 85 31 179 63 177 88 1081 124 101 134 170 203 138 287 110 259 77 375

TABLE 2
Comparison of AAC by Gu et al. [3] and our method. We report two different quality settings for AAC (AAC-Fast, AAC-HQ) and three settings for

PLOC. The table shows the SAH cost and the corresponding build times. AAC was measured on a CPU with 4 physical cores.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS (PREPRINT), 2017 9

[4] G. M. Morton, “A computer oriented geodetic data base and a new
technique in file sequencing,” Tech. Rep., 1966.

[5] L. R. Domingues and H. Pedrini, “Bounding Volume Hierarchy
Optimization through Agglomerative Treelet Restructuring,” in
Proceedings of High-Performance Graphics, 2015, pp. 13–20.

[6] S. M. Rubin and T. Whitted, “A 3-dimensional Representation for
Fast Rendering of Complex Scenes,” SIGGRAPH Comput. Graph.,
vol. 14, no. 3, pp. 110–116, Jul. 1980.

[7] H. Weghorst, G. Hooper, and D. P. Greenberg, “Improved Compu-
tational Methods for Ray Tracing,” ACM Transactions on Graphics,
vol. 3, no. 1, pp. 52–69, Jan. 1984.

[8] T. L. Kay and J. T. Kajiya, “Ray Tracing Complex Scenes,” SIG-
GRAPH Comput. Graph., vol. 20, no. 4, pp. 269–278, Aug. 1986.

[9] J. Goldsmith and J. Salmon, “Automatic Creation of Object Hier-
archies for Ray Tracing,” IEEE Comput. Graph. Appl., vol. 7, no. 5,
pp. 14–20, May 1987.

[10] V. Havran, R. Herzog, and H.-P. Seidel, “On the Fast Construction
of Spatial Data Structures for Ray Tracing,” in Proceedings of IEEE
Symposium on Interactive Ray Tracing 2006, Sept 2006, pp. 71–80.

[11] I. Wald, “On Fast Construction of SAH-based Bounding Volume
Hierarchies,” in Proceedings of Symposium on Interactive Ray Tracing,
2007, pp. 33–40.

[12] I. Wald, S. Boulos, and P. Shirley, “Ray Tracing Deformable
Scenes Using Dynamic Bounding Volume Hierarchies,” ACM
Trans. Graph., vol. 26, no. 1, Jan. 2007.

[13] T. Ize, I. Wald, and S. G. Parker, “Asynchronous BVH Construction
for Ray Tracing Dynamic Scenes on Parallel Multi-Core Archi-
tectures,” in Proceedings of Symposium on Parallel Graphics and
Visualization, 2007, pp. 101–108.

[14] W. Hunt, W. R. Mark, and D. Fussell, “Fast and Lazy Build of
Acceleration Structures from Scene Hierarchies,” in Proceedings of
Symposium on Interactive Ray Tracing, Sept 2007, pp. 47–54.

[15] M. J. Doyle, C. Fowler, and M. Manzke, “A Hardware Unit for Fast
SAH-optimised BVH Construction,” ACM Trans. Graph., vol. 32,
no. 4, pp. 139:1–139:10, Jul. 2013.

[16] K. Ng and B. Trifonov, “Automatic Bounding Volume Hierarchy
Generation Using Stochastic Search Methods,” in CPSC532D Mini-
Workshop ”Stochastic Search Algorithms”, April 2003.

[17] A. Kensler, “Tree Rotations for Improving Bounding Volume Hi-
erarchies,” in Proceedings of Symposium on Interactive Ray Tracing,
2008, pp. 73–76.

[18] J. Bittner, M. Hapala, and V. Havran, “Fast Insertion-Based Op-
timization of Bounding Volume Hierarchies,” Computer Graphics
Forum, vol. 32, no. 1, pp. 85–100, 2013.

[19] T. Karras and T. Aila, “Fast Parallel Construction of High-Quality
Bounding Volume Hierarchies,” in Proceedings of High Performance
Graphics. ACM, 2013, pp. 89–100.

[20] T. Aila, T. Karras, and S. Laine, “On Quality Metrics of Bounding
Volume Hierarchies,” in Proceedings of High Performance Graphics.
ACM, 2013, pp. 101–108.

[21] H. Dammertz, J. Hanika, and A. Keller, “Shallow Bounding Vol-
ume Hierarchies for Fast SIMD Ray Tracing of Incoherent Rays,”
Computer Graphics Forum, vol. 27, pp. 1225–1233(9), 2008.

[22] I. Wald, C. Benthin, and S. Boulos, “Getting rid of packets -
Efficient SIMD single-ray traversal using multi-branching BVHs
-,” in Symposium on Interactive Ray Tracing, 2008, pp. 49–57.

[23] M. Ernst and G. Greiner, “Multi bounding volume hierarchies,” in
Symposium on Interactive Ray Tracing, 2008, pp. 35–40.

[24] J. A. Tsakok, “Faster Incoherent Rays: Multi-BVH Ray Stream
Tracing,” in Proceedings of High Performance Graphics, 2009, pp. 151–
158.

[25] M. Ernst and G. Greiner, “Early Split Clipping for Bounding
Volume Hierarchies,” in Symposium on Interactive Ray Tracing, 2007,
pp. 73–78.

[26] S. Popov, I. Georgiev, R. Dimov, and P. Slusallek, “Object par-
titioning considered harmful: Space subdivision for bvhs,” in
Proceedings of High Performance Graphics, 2009, pp. 15–22.

[27] M. Stich, H. Friedrich, and A. Dietrich, “Spatial Splits in Bounding
Volume Hierarchies,” in Proceedings of the Conference on High Per-
formance Graphics 2009, ser. HPG ’09. New York, NY, USA: ACM,
2009, pp. 7–13.

[28] P. Ganestam and M. Doggett, “SAH Guided Spatial Split Partition-
ing for Fast BVH Construction,” Comp. Graphics Forum, 2016.

[29] V. Fuetterling, C. Lojewski, F.-J. Pfreundt, and A. Ebert, “Parallel
Spatial Splits in Bounding Volume Hierarchies,” in Eurographics
Symposium on Parallel Graphics and Visualization, 2016, pp. 21–30.

[30] C. Wächter and A. Keller, “Instant Ray Tracing: The Bounding
Interval Hierarchy,” in Proceedings Eurographics Symposium on Ren-
dering, 2006, pp. 139–149.

[31] M. Eisemann, C. Woizischke, and M. Magnor, “Ray Tracing with
the Single Slab Hierarchy,” in VMV, 2008, pp. 373–381.

[32] Y. Gu, Y. He, and G. E. Blelloch, “Ray Specialized Contraction on
Bounding Volume Hierarchies,” Computer Graphics Forum, 2015.

[33] I. Wald, “Fast Construction of SAH BVHs on the Intel Many Inte-
grated Core (MIC) Architecture,” IEEE Transactions on Visualization
and Computer Graphics, vol. 18, no. 1, pp. 47–57, 2012.

[34] P. Ganestam, R. Barringer, M. Doggett, and T. Akenine-Möller,
“Bonsai: Rapid Bounding Volume Hierarchy Generation using
Mini Trees,” Journal of Computer Graphics Techniques (JCGT), vol. 4,
no. 3, pp. 23–42, 2015.

[35] C. Lauterbach, M. Garland, S. Sengupta, D. Luebke, and
D. Manocha, “Fast BVH Construction on GPUs,” Comput. Graph.
Forum, vol. 28, no. 2, pp. 375–384, 2009.

[36] J. Pantaleoni and D. Luebke, “HLBVH: Hierarchical LBVH Con-
struction for Real-Time Ray Tracing of Dynamic Geometry,” in
Proceedings of High Performance Graphics, 2010, pp. 87–95.

[37] K. Garanzha, J. Pantaleoni, and D. McAllister, “Simpler and Faster
HLBVH with Work Queues,” in Proceedings of High Performance
Graphics, 2011, pp. 59–64.

[38] M. Vinkler, J. Bittner, V. Havran, and M. Hapala, “Massively Paral-
lel Hierarchical Scene Processing with Applications in Rendering,”
Computer Graphics Forum, vol. 32, no. 8, pp. 13–25, 2013.

[39] T. Karras, “Maximizing Parallelism in the Construction of BVHs,
Octrees, and k-d Trees,” in Proceedings of High Performance Graphics,
2012, pp. 33–37.

[40] C. Apetrei, “Fast and Simple Agglomerative LBVH Construction,”
in Computer Graphics and Visual Computing (CGVC), 2014.

[41] D. Meister and J. Bittner, “Parallel BVH Construction using k-
means Clustering,” The Visual Computer (Proceedings of Computer
Graphics International), 2016.

[42] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable Parallel
Programming with CUDA,” Queue, vol. 6, no. 2, pp. 40–53, 2008.

[43] D. Merrill and A. Grimshaw, “High Performance and Scalable
Radix Sorting: A case study of implementing dynamic parallelism
for GPU computing,” Parallel Processing Letters, vol. 21, no. 02, pp.
245–272, 2011.

[44] T. Aila and S. Laine, “Understanding the Efficiency of Ray Traver-
sal on GPUs,” in Proceedings of High Performance Graphics, 2009, pp.
145–149.

Daniel Meister is a Ph.D. candidate at the
Czech Technical University in Prague. His re-
search interests include data structures for ray
tracing, GPGPU, and parallel computing.

Jiřı́ Bittner is an associate professor at the De-
partment of Computer Graphics and Interaction
of the Czech Technical University in Prague. He
received his Ph.D. in 2003 from the same in-
stitution. For several years he worked as a re-
searcher at the Vienna University of Technology.
His research interests include visibility compu-
tations, real-time rendering, spatial data struc-
tures, and global illumination. He participated in
a number of national and international research
projects and also several commercial projects

dealing with real-time rendering of complex scenes.

