
DOI: 10.1111/cgf.13265 COMPUTER GRAPHICS forum
Volume 37 (2018), number 1 pp. 273–287

Improved Corners with Multi-Channel Signed Distance Fields

V. Chlumský1, J. Sloup2 and I. Šimeček1

1Faculty of Information Technology, Czech Technical University in Prague, Czech Republic
viktor.chlumsky@gmail.com, ivan.simecek@fit.cvut.cz

2Faculty of Electrical Engineering, Czech Technical University in Prague, Czech Republic
sloup@fel.cvut.cz

Abstract
We propose an extension to the state-of-the-art text rendering technique based on sampling a 2D signed distance field from
a texture. This extension significantly improves the visual quality of sharp corners, which is the most problematic feature to
reproduce for the original technique. We achieve this by using a combination of multiple distance fields in conjunction, which
together provide a more thorough representation of the given glyph’s (or any other 2D shape’s) geometry. This multi-channel
distance field representation is described along with its application in shader-based rendering. The rendering process itself
remains very simple and efficient, and is fully compatible with previous monochrome distance fields. The introduced method of
multi-channel distance field construction requires a vector representation of the input shape. A comparative measurement of
rendering quality shows that the error in the output image can be reduced by up to several orders of magnitude.

Keywords: curves and surfaces, modelling, texture synthesis, rendering

ACM CCS: I.3.3 [Computer Graphics]: Picture/Image Generation-Line and curve generation

1. Introduction

The problem of text rendering is among the most prevalent in com-
puter graphics. Sometimes, an expensive method can be used to
pre-render the text once in high quality, and the result is reused for
the remainder of its time on screen. In other situations, however,
such as when the appearance of the text rapidly changes along with
perspective or due to other factors, a more efficient method has to
be employed.

One of the much used state-of-the-art methods of rendering text
and other vector-based two-dimensional (2D) art efficiently is the
technique of sampling a pre-computed signed distance field (SDF)
from a texture, as presented by Green [Gre07]. This technique is
especially powerful in real-time rendering of 3D scenes, but its
extraordinary quality to performance ratio makes it more than viable
in many other settings as well. Because of very low video memory
consumption and simple implementation, it is a popular choice even
for 2D text in computer games (e.g. Team Fortress 2 by Valve as
stated in [Gre07]). Due to the availability of 3D transformations in
HTML 5 and CSS3, it has recently been, for example, adopted into
the rendering engine of Google Chrome (see [tC15]).

The aforementioned technique, however, suffers from an inabil-
ity to correctly reproduce sharp corners. Although this can be miti-
gated by increasing the resolution of the distance field texture (see
Figure 1—left and middle), using up more video memory and low-
ering performance, the imperfection can never be eliminated com-
pletely. We have developed an extension to Green’s technique, which
is capable of rendering sharp corners precisely. We achieve this by
using a combination of several distance fields instead of only one,
which are stored together in a colour texture—as a multi-channel
distance field (see Figure 1—right).

In the rest of the paper, we first briefly review the related
state-of-the-art text rendering techniques based on sampling a
2D SDF from a texture and several alternative methods used in
practice in Section 2. Section 3 explains the nature of the multi-
channel distance field representation. The proposed method and its
building blocks are presented in Section 4. Section 5 goes further
into the implementation details of multi-channel distance field con-
struction, with Section 6 covering how the SDFs can be used to
draw text or other vector shapes. Experimental results are shown in
Section 7 and summarized in Section 9.

c© 2017 The Authors
Computer Graphics Forum c© 2017 The Eurographics Association and
John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

273

http://orcid.org/0000-0003-3745-2126

274 V. Chlumský et al. / Improved Corners with Multi-channel Signed Distance Fields

Figure 1: Rendering of the glyph ‘A’ using conventional distance fields at different resolutions (16 × 16 on the left, 32 × 32 in the middle),
and using our multi-channel distance field method at distance field resolution 16 × 16 (right).

2. Previous Work

There has been a lot of work done to perfect text and 2D vector ren-
dering and many different technologies have been developed, each
with specific use cases, advantages and drawbacks. We summarize
the most significant ones and compare them to the distance field
technique. Apart from the simplest, yet widely used methods, of us-
ing raster glyphs or triangle meshes, there are very few alternatives
to SDFs used in practice.

Raster glyphs This is the simplest method, where character glyphs
are treated as regular images. When the glyphs are magnified, they
will become blurry or pixelated. Compare middle and right images
in Figure 2 as a good example of the quality difference. It is only
marginally faster than the distance field method, but this is negated
by the need for higher image resolution.

Triangle meshes Another possibility is converting the vector
glyphs into triangle meshes. However, since modern font formats
define their glyph shapes using parametric curves, this conversion
has to be approximate, and depending on the original complexity of
the glyph’s shape and the desired quality, the number of triangles
can become impractically high, especially considering that plenty of
characters may be needed to be displayed at the same time. There-
fore, the quality to performance ratio is generally much worse than
what distance fields have to offer.

Exact vector rendering A more advanced version of the triangle
mesh rendering method is the possibility of using programmable
shaders to draw parametric curves exactly [LB05, LB07]. This is an

Figure 2: Demonstration of reconstructing the original shape (left)
from a low-resolution distance field (middle) and from a low-
resolution image (right).

Figure 3: An illustration of a TrueType font outline triangulation
is shown on the left. As stated by [LB05] “The green triangles are
interior to the shape and are entirely filled. The red (convex) and
blue (concave) curves within triangles are rendered using a pixel
shader program. The resulting shape on the right can be arbitrarily
transformed projectively and remains resolution independent.”

exact method, and therefore provides higher quality than distance
fields, but its performance cost is even higher than that of the trian-
gle mesh method. The glyphs also have to be divided into a lot of
triangles, but additionally, complex shader calculations must be per-
formed in the rendering process (see Figure 3). A similar, resolution
independent ‘stencil then cover’ approach intended for path render-
ing [KB12] was implemented directly as an NVIDIA-proprietary
OpenGL extension. Stand-alone direct implementation in OpenGL
leads to a high command overhead and results in a higher number
of stencil operations growing with screen resolution [YKB*14].

Advanced texture-based methods There are other more advanced
niche techniques which attempt to eliminate the need for large trian-
gle meshes and encode the geometry of the shapes in textures. One
such technology is [RCL05], which reconstructs the shape using
functions whose coefficients it looks up from texture data. Another
one is the experimental library called GLyphy [Esf14], which ap-
proximates the shape geometry using circular arcs, and also stores
their definitions as texture data. Alternatively, a piece-wise linear
representation of the glyph’s boundary could be encoded in a sepa-
rate silhouette map [SCH03].

c© 2017 The Authors
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

V. Chlumský et al. / Improved Corners with Multi-channel Signed Distance Fields 275

Pre-existing solutions All of the aforementioned methods offer
higher quality than distance fields; however, they require complex
shader computations, including multiple texture lookups, making
them far less efficient. Because of this, they are rarely used in
practice. However, we will focus solely on the state-of-the-art tech-
nique based on SDFs and its derivatives.

The main concepts of the distance field technique have been
presented most notably by [QMK06], including SDFs and pseudo-
distance fields, as well as a method of anti-aliasing and render-
ing special effects, such as outlines and shadows. With the advent
of a programmable graphics pipeline, [Gre07] demonstrated how
the technique can be applied in real-time graphics with minimal
performance and memory cost, while at the same time, retaining
some compatibility with older hardware, where the programmable
pipeline is not available. Both of these articles hint at possible im-
provements in corner reconstruction by utilizing multiple distance
fields in conjunction, but no concrete method is given.

As of May 2016, to our best knowledge, no satisfactory solu-
tion to this problem has been published. Although Green hinted at
the possible improvement of adding more channels to the distance
field in 2007, a working solution for multi-channel distance field
construction has not been published until November 2014 [Pat14].
This only somewhat successful attempt, which also features multi-
channelled distance fields, takes an approach very different to ours.
The author himself mentions problems with artefacts and lower ro-
bustness, as well as having to treat several special cases. He also
uses four colour channels, while our method only needs three for the
same task. Based on this limited information about the method, we
believe that our final solution is more effective and more reliable,
as well as faster and simpler.

3. Multi-Channelled Representation

As [Gre07] suggests, a sharp convex corner can be represented as the
intersection of two half-planes. Similarly, a concave corner can be
represented as the union of two half-planes. If these half-planes are
encoded in two SDFs, the intersection operation can be facilitated
as the minimum of the signed distances, and union as the maximum
(see Figure 12). However, in general, many corners are present in
a single shape or glyph, both convex and concave (e.g. glyph ‘A’ on
Figure 1), and therefore a more versatile model for the composition
of SDFs is necessary to capture both cases simultaneously. Further-
more, we want to keep the number of distance field components as
low as possible since they will be encoded as texture channels. In
that sense, we build upon Green’s suggestion to arrive at a general
working solution which is presented in the rest of this section.

3.1. Corner analysis

Sampling of a SDF texture during shape reconstruction introduces
artefacts which are a consequence of bilinear interpolation, and
depending on the alignment of the distance field grid, it may cause
corners to appear rounded to a varying degree, as shown in Figure 4.

In order to correctly adjust the distance field to accommodate
for sharp corners, we must first understand what exactly happens
in their proximity. Let us divide the plane into four quadrants, with
the ones lying inside the shape filled. Figure 5 shows the average

Figure 4: The average of all possible results of corner reconstruc-
tion with varying distance field grid alignment.

case behaviour of the image reconstructed from an SDF. Figure 5(a)
corresponds to a convex corner of the shape, Figure 5(b) to a straight
edge and Figure 5(c) to a concave corner. The correct border is shown
hatched. There is, however, one other case. When only the opposite
quadrants are filled, the result can be one of several possibilities
depending on the alignment with the grid of the distance field. The
possibilities include the cases (d)–(f) illustrated in Figure 5 and
anything in-between.

The amount of rounding off at the corner also depends on the
alignment with the distance field’s grid and therefore is essentially
random. What is important is that some quadrants are guaranteed
to remain homogeneous. Using the observations from Figure 5, we
can divide any corner into eight roughly homogeneous areas, as
illustrated in Figure 6 on the left.

(a) (b) (c)

(d) (e) (f)

Figure 5: The average resulting image of filled quadrants from an
SDF—top-left only quadrant (a), top-left and top-right quadrants
(b), all quadrants except bottom-right (c) and the possible results of
filled opposing quadrants (d, e, f).

A B

C D

A′ B′

C′ D′

Figure 6: Dividing the plane into quadrants and subquadrants
(left). Example of quadrant alignment of a non-orthogonal corner
(right).

c© 2017 The Authors
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

276 V. Chlumský et al. / Improved Corners with Multi-channel Signed Distance Fields

Table 1: Truth table of the filling of subquadrant areas.

Intended filling of quadrants Resulting filling of subquadrants

A B C D A′ B ′ C′ D′

0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 1 1 0 0 1 1
0 1 0 0 0 0 0 0
0 1 0 1 0 1 0 1
0 1 1 0 ? ? ? ?
0 1 1 1 1 1 1 1
1 0 0 0 0 0 0 0
1 0 0 1 ? ? ? ?
1 0 1 0 1 0 1 0
1 0 1 1 1 1 1 1
1 1 0 0 1 1 0 0
1 1 0 1 1 1 1 1
1 1 1 0 1 1 1 1
1 1 1 1 1 1 1 1

All of the previous illustrations only capture the case of an axis
aligned and orthogonal corner. Of course, a corner can be oriented
in any way and can form any angle. The quadrants would then also
be aligned differently, always along the two edge segments at the
corner, as illustrated in Figure 6 on the right.

Based on whether the shape is filled (1) or not (0) in a given
quadrant A through D, it can be determined if the areas A′ through
D′ will appear filled in the resulting image. This is captured in
Table 1. The derived filling of subquadrants can be expressed by a
Boolean function f (Q1, Q2, Q3, Q4, r) that determines whether the
subquadrant Q′

1 is filled depending on the intended filling of the
quadrants Q1, Q2, Q3 and Q4. Its first parameter Q1 is the fill of
the local quadrant, the following two Q2 and Q3 are the neighbour-
ing quadrants, the fourth one Q4 is the opposite quadrant, and the
last one, r , is a random bit, which has a role in the two uncertain
scenarios. Taking into account the symmetry of the problem, with
respect to each quadrant, we get

A′ = f (A, B, C, D, r), (1)

B ′ = f (B, A, D, C, r), (2)

C ′ = f (C, A, D, B, r), (3)

D′ = f (D, B, C, A, r). (4)

Using a Karnaugh map to represent values in truth table 1 the
function f (Q1, Q2, Q3, Q4, r) can be defined as follows:

f (Q1, Q2, Q3, Q4, r) = f (A, B, C, D, r), (5)

f (A, B, C, D, r)
def= AB + AC + BCD + rABCD + rABCD.

(6)

3.2. Switching to multiple channels

Using more than one channel in the distance field, the same rules
apply for the values in each channel. Instead of using a binary
value to denote the filling of an area, we will use binary vectors,

Figure 7: The two possible corner types and their quadrants.

Table 2: The required differentiation of binary vectors that denote the inside
and outside of the shape as deduced from Figure 7.

Inside the shape Outside the shape

quadrant A fn(A, B, C, D, 0) fn(B, A, D, C, 0) quadrant B

fn(A, B, C, D, 1) fn(B, A, D, C, 1)

quadrant E fn(E, F,G,H, 0) fn(C, A, D, B, 0) quadrant C

fn(E, F,G,H, 1) fn(C, A, D, B, 1)

quadrant F fn(F, E,H, G, 0) fn(D, B, C, A, 0) quadrant D

fn(F, E,H, G, 1) fn(D, B, C, A, 1)

quadrant G fn(G,E, H, F, 0) fn(H, F,G,E, 0) quadrant H

fn(G,E, H, F, 1) fn(H, F,G,E, 1)

where each dimension corresponds to a certain channel. For any
such vector A∈ B

n, a function F(A) ∈ B will determine if it marks
an area inside the shape (with value 1) or outside (with value 0).

The function f can also be generalized to accept and return
binary vectors, performing the original operation separately for each
channel:

fn(A, B, C, D, r)
def= (f (a1, b1, c1, d1, r), ..., f (an, bn, cn, dn, r))

: A, B, C, D ∈ B
n, r ∈ B. (7)

All that is left to do is assign the correct binary vectors (interpreted as
colour combinations) for quadrants of convex and concave corners
(Figure 7).

To ensure the corners are sharp, the channels must be chosen in
such a way that the areas that are supposed to be filled are distin-
guishable from those that are not. Therefore, the values of vectors
A, B, C, D, E, F,G, H ∈ B

n must be chosen so that function F
may be evaluated as 1 for all vectors in the left column of Table 2
and as 0 for all vectors in the right column.

3.3. Three distance fields model

By enumeration of all possible values of binary vectors A through
H , we have found that the minimum dimension n, for which the
vectors in the two columns of Table 2 can be reliably told apart, is 3.

Our proposed model is based on median of three. It uses not
two but three distance fields, which are combined using the me-
dian function. This function can, indeed, simulate both minimum
(intersection) and maximum (union) since for any signed distances

c© 2017 The Authors
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

V. Chlumský et al. / Improved Corners with Multi-channel Signed Distance Fields 277

(1,1,0) (1,0,0)

(0,1,0) (0,0,0)

(a) A convex corner

(1,1,1) (1,0,1)

(1,1,0) (1,0,0)

(b) A concave corner

Figure 8: Possible colour encoding of a corner’s quadrants using
the median of three model.

d1 < d2, the median of (d1, d1, d2) is the minimum, and the median
of (d1, d2, d2) is the maximum.

F(A)
def= median(a1, a2, a3). (8)

An example of this is shown in Figure 8, where the first dimension
of the binary vectors is encoded using the red colour channel, the
second dimension with green channel and the third one with blue
channel.

The individual dimensions in this model are interchangeable be-
cause median disregards the order of arguments. For a convex corner
with inner quadrant A, outer border quadrants B and C and outer
opposite quadrant D, it must hold that:

B + C ≤ A, (9)

BC = D = �0, (10)

F(B) = F(C) = 0. (11)

For any concave corner with inner core quadrant E, inner border
quadrants F and G and outer quadrant H , it must hold that:

FG ≥ H. (12)

F + G = E = �1, (13)

F(F) = F(G) = 1. (14)

The median of three function can be implemented using four
min/max operations, which are natively supported by current graph-
ics hardware:

median(d1, d2, d3) = max(min(d1, d2), min(max(d1, d2), d3)).

(15)

The three-channel distance field representation can be supplied to
the fragment shader in the form of an RGB texture, and the me-
dian evaluated immediately after sampling it. From that point on,
the median value can be used in exactly the same fashion as the
value sampled from an ordinary single-channel distance field in the
original method [Gre07]. For distance fields constructed using our
method described further on, the median value still corresponds to
an approximation of the signed pseudo-distance in all parts of the
image, but additionally, it possesses a significantly greater precision
near corners.

4. Building Blocks of Proposed Method

Before moving on to the construction of our multi-channel distance
field, we need to establish some preliminary concepts—the format
of the input, different types of distances and distance fields and the
way they are constructed.

4.1. Input representation

Unlike the original technique, we need information about the
shape’s geometry. Therefore, a vector representation is necessary
for the construction of our multi-channel distance field. If it is un-
available only for some shapes or some of its parts, a single-channel
distance field can be incorporated into a multi-channel one, using
the same value for each channel. This is perfectly compatible with
the median model.

The vector representation of each shape consists of closed con-
tours, and each contour is composed of oriented edge segments,
which are oriented so that the inside of the shape is always on the
same side (see Figure 9). This is the standard representation used by
OpenType Font and TrueType Font typeface formats (see [Con00,
Ado06]), as well as SVG (see [Gro11]), and other vector formats.
A single edge segment can be either a line segment, or a parametric
curve (a quadratic or cubic Bézier curve).

We also require that there are no self-intersections in the shape
(edges crossing one another). If this is the case, the input repre-
sentation has to be first transformed by the user to eliminate such
occurrences.

4.2. Signed distance and pseudo-distance

By distance, we refer to Euclidean distance in 2D space throughout
the text. Although it is normally non-negative, we use a generalized
signed distance, which can be negative. The absolute value of the
signed distance between a point P and a shape is the minimum
distance between P and a point on the shape’s edge, and its sign
is positive if P lies inside the shape, and negative if it lies outside.
Note that this is often defined the opposite way, but our formulation
translates better to the distance field representation.

Since all shape’s edges are oriented with one side always facing
the inside, the signed distance can be determined simply as the

Shape Contours Edge segments

Figure 9: The structure of a glyph’s vector representation. Note that
negative contours (cut-outs) are oriented in the opposite direction.

c© 2017 The Authors
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

278 V. Chlumský et al. / Improved Corners with Multi-channel Signed Distance Fields

P

a
b

Figure 10: The signed pseudo-distance from point P to edge a.

Figure 11: Contour graph of a regular distance field (left) and
a pseudo-distance field (right) near a corner.

absolute distance to the closest edge, with a sign depending on
which side of the edge the point of origin lies on.

A special variant is the signed pseudo-distance, introduced by
[QMK06]. It is the signed distance from the shape’s edges and their
infinite continuations, i.e. unlike before, the distance to endpoints
is not considered. For parametric curves, there are at least two pos-
sible ways this continuation may be formed. Either as straight lines
continuing from the endpoints in the curve’s immediate direction,
or by extending the range of the curve’s parameter. Both are feasible
with slight visual differences but the former is much less prone to
unpredictable results.

An example of pseudo-distance is shown in Figure 10, which
also demonstrates that edge pseudo-distances would not be enough
to find the shape pseudo-distance. Note that at point P , the minimum
pseudo-distance is to the edge a and is positive, which would place
P inside the shape. It is clear, however, that edge a is completely
irrelevant in this area and that P is, in fact, outside. The correct
pseudo-distance to the shape is therefore the pseudo-distance to the
edge segment that is closest in terms of true distance (edge b).

The visual difference between the true distance and pseudo-
distance metric is that pseudo-distance forms sharp mitres around
corners, as demonstrated in Figure 11. The key property of the
pseudo-distance metric, however, is that in the distance field repre-
sentation, it essentially extends the edge segments, as demonstrated
in Figure 12.

4.3. Voronoi analysis

To determine which edges affect a certain area of the distance field,
one can perform a Voronoi analysis of the shape. The Voronoi
diagram is a well-known concept (see [AK00, dBvKOS08]). In its
basic form defined by a set of points in the plane, called sites, it
partitions the plane into regions, where each region is the set of
all points sharing the common closest site in terms of absolute
Euclidean distance. In our case, we consider a generalization of
the Voronoi diagram, where sites are not zero-dimensional points,
but one-dimensional edge segments of the shape—line segments or

convex
corner d1 d2 min(d1,d2)

concave
corner

d1 d2 max(d1,d2)

Figure 12: Preservation of sharp corners utilizing two pseudo-
distance fields. The concave corner is created as the maximum
of two pseudo-distance fields (top row) and the convex corner as
the minimum (bottom row). Note that red colour encodes positive
distances and blue negative distances.

Figure 13: A generalized Voronoi diagram of the letter ‘A’ gener-
ated by dividing the plane by the closest edge. Note that even though
all of the sites are straight lines in this case, the borders between
regions become curved.

splines. An example of a generalized Voronoi diagram generated by
dividing the plane by the closest edge is shown in Figure 13.

We do not construct a generalized Voronoi diagram directly, but
instead determine the Voronoi site, the closest edge segment, inde-
pendently at each discrete point of the distance field.

As is expected of edge segments, one usually begins exactly
where another ends. If we use nothing more than distance as the
metric, there will be ambiguous areas, where two neighbouring edge
segments are equally distant. This area is marked red in Figure 14.
Our goal is to divide the plane between the two edge segments
equally, along the axis p. To resolve this, we use a secondary metric
when distances are equal, which we will call the dot metric. It
is the absolute dot product of the direction towards the nearest
point of the edge, and the edge’s direction at that point. In other
words, it says how slanted in respect to the edge the shortest path
to that point is. By choosing the closest edge segment with the
lowest dot, we arrive at a partitioning that will divide the area
between the two edges exactly along the axis of their common
vertex.

c© 2017 The Authors
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

V. Chlumský et al. / Improved Corners with Multi-channel Signed Distance Fields 279

a

b p

Figure 14: All points in the red area are equally distant to edges
a and b. Axis p splits this area in two equal parts to determine the
unique closest edge segment.

Here, we would like to emphasize that since the computation
involves floating point arithmetic, extra care has to be taken to
ensure that equal distances are identified. In our implementation, we
made sure that the common endpoints of adjacent edges are exactly
equal, and that under these circumstances, the distance is computed
precisely as the distance between the origin and the endpoint. This
guarantees that the result will be exactly the same for both edges.

4.4. Distance fields

Now we need to establish distance fields and their variants. A 2D
Euclidean distance field is used as a representation of the input
shape. It is a uniform discrete grid of samples of the distance trans-
form function that yields for each point in the plane the signed
distance between that point and the shape (see Figure 16 on the
left). Since this function usually behaves very predictably, applying
bilinear interpolation on the discrete distance field provides a very
good approximation of this function. The only areas where the func-
tion changes unpredictably are the corners, which is the root of our
problem.

A distance field can be constructed simply by evaluating the
distance from the shape at each point of the grid, using the desired
metric. The true distance field will use the true distance metric, and
in a similar way, the pseudo-distance field will utilize the pseudo-
distance metric.

Discontinuous distance fields So far, the values in the distance
field have been continuous, as is intuitive—when moving in a plane,
the distance to some stationary object will always change gradually.
This property of the distance field was guaranteed by the fact that the
oriented edge segments of a shape always form a continuous closed
path. We introduce a new type of distance field, called discontinu-
ous, a generalization of the pseudo-distance field, where the edge
segments do not need to meet this requirement. In the space where
edges are ‘missing’, areas with vastly different distance values may
meet, forming discontinuous ‘fronts’. A disconnected path and its
distance transform function can be seen in Figure 16 (middle), as
well as a distance field constructed from it (right).

5. Method of Construction

Having established all necessary concepts, the method of creation of
the multi-channel distance field itself is rather simple and involves

Figure 15: A valid edge colouring of the lowercase ‘e’ glyph.

the following three steps: (1) edge colouring, (2) distance field
construction and (3) error correction. These steps are described in
detail in the rest of the section.

5.1. Edge colouring

First of all, each edge of the shape must be assigned to which of the
three channels it belongs to. The assignment rules are:

1. Every edge segment must belong to at least two channels.
2. Two edges meeting at a corner must have only one channel in

common.
3. Two smoothly connected edge segments must have at least two

channels in common.

We can see these rules applied on an example of the lowercase ‘e’
glyph in Figure 15. The red channel, for instance, contains all yellow
(red+green) and magenta (red+blue) edges, but not the single cyan
(green+blue) edge.

Edges of most shapes can be coloured according to these rules
in many different ways. A trivial way is to start for each contour
with one secondary colour at an arbitrary edge, and then continue
along the contour, alternating between the remaining two, switching
the colour at every corner (see Algorithm 1). This strategy works
for any path except one special case, when a single smooth edge
connects to itself with a sharp corner, as in a teardrop-like shape. In
this case, we simply split the edge into three segments, and proceed
to colour them according to the rules, which implies the middle
segment being white. The white colour should also be used for any
completely smooth contours.

Algorithm 1 A simple edge colouring procedure satisfying the
established rules.
1: procedure EDGECOLOURING(s)
2: for each contour

has only one edge then
c of shape s do

3: if c
4: current ← (1,1,1)
5: else
6: current ← (1,0,1)
7: for each edge e of contour c do
8: colour(e)←current
9: if current = (1,1,0) then

10: current ← (0,1,1)
11: else
12: current ← (1,1,0)

Since the distance field is only an approximate representation,
some colour configurations may yield better results than others.

c© 2017 The Authors
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

280 V. Chlumský et al. / Improved Corners with Multi-channel Signed Distance Fields

−4.0 −3.5 −3.0 −2.8 −2.7 −2.7 −2.8 −3.0 −3.4 −3.9 −4.5 −5.1 −5.1 −5.2 −5.5 −5.9

−3.2 −2.6 −2.1 −1.8 −1.7 −1.7 −1.8 −2.1 −2.5 −3.1 −3.7 −4.1 −4.1 −4.3 −4.6 −5.0

−2.5 −1.8 −1.2 −0.8 −0.7 −0.7 −0.8 −1.2 −1.7 −2.3 −3.0 −3.1 −3.1 −3.3 −3.6 −4.1

−1.9 −1.1 −0.4 +0.1 +0.3 +0.3 +0.1 −0.3 −0.9 −1.6 −2.3 −2.1 −2.1 −2.4 −2.8 −3.3

−1.4 −0.5 +0.3 +1.0 +1.3 +1.3 +1.1 +0.5 −0.2 −0.9 −1.3 −1.1 −1.1 −1.4 −1.9 −2.6

−1.1 −0.1 +0.8 +1.7 +2.3 +2.3 +1.9 +1.2 +0.5 −0.3 −0.4 −0.1 −0.1 −0.5 −1.2 −2.0

−0.9 +0.1 +1.1 +2.1 +3.0 +3.3 +2.7 +1.9 +1.1 +0.6 +0.6 +0.9 +0.8 +0.2 −0.6 −1.5

−0.8 +0.2 +1.2 +2.2 +3.2 +4.1 +3.3 +2.6 +1.9 +1.5 +1.5 +1.8 +1.6 +0.8 −0.2 −1.1

−0.8 +0.1 +1.1 +2.1 +2.9 +3.3 +2.8 +2.4 +2.1 +2.1 +2.3 +2.8 +2.0 +1.0 −0.0 −1.0

−1.1 −0.2 +0.7 +1.5 +2.1 +2.4 +1.9 +1.4 +1.1 +1.1 +1.4 +1.9 +1.7 +0.8 −0.2 −1.1

−1.5 −0.7 +0.1 +0.7 +1.2 +1.4 +1.1 +0.6 +0.1 +0.1 +0.5 +1.1 +1.1 +0.4 −0.5 −1.4

−2.1 −1.3 −0.7 −0.1 +0.2 +0.4 +0.2 −0.3 −0.8 −0.8 −0.3 +0.2 +0.2 −0.3 −1.0 −1.8

−2.7 −2.1 −1.5 −1.1 −0.8 −0.6 −0.8 −1.1 −1.6 −1.7 −1.1 −0.8 −0.8 −1.1 −1.7 −2.4

−3.5 −2.9 −2.4 −2.0 −1.7 −1.6 −1.7 −2.0 −2.5 −2.5 −2.0 −1.8 −1.8 −2.1 −2.5 −3.1

−4.3 −3.7 −3.3 −2.9 −2.7 −2.6 −2.7 −3.0 −3.4 −3.4 −3.0 −2.8 −2.8 −3.0 −3.4 −3.9

−5.1 −4.6 −4.2 −3.9 −3.7 −3.6 −3.7 −3.9 −4.3 −4.3 −3.9 −3.8 −3.8 −4.0 −4.3 −4.7

−4.0 −3.5 −3.1 −2.8 −2.7 −2.7 −2.8 −2.9 −3.1 −3.2 −5.2 −5.1 −5.1 −5.2 −5.5 −5.9

−3.2 −2.6 −2.1 −1.8 −1.7 −1.7 −1.8 −1.9 −2.1 −2.2 −4.2 −4.1 −4.1 −4.3 −4.6 −5.0

−2.5 −1.8 −1.2 −0.8 −0.7 −0.7 −0.8 −0.9 −1.1 −3.5 −3.2 −3.1 −3.1 −3.3 −3.7 −4.1

−1.9 −1.1 −0.4 +0.1 +0.3 +0.3 +0.2 +0.0 −0.1 −2.6 −2.3 −2.1 −2.1 −2.4 −2.8 −3.3

−1.4 −0.5 +0.3 +1.0 +1.3 +1.3 +1.2 +1.0 −1.9 −1.6 −1.3 −1.1 −1.1 −1.4 −1.9 −2.6

−1.1 −0.1 +0.8 +1.7 +2.3 +2.3 +2.2 +2.0 −1.0 −0.7 −0.4 −0.1 −0.1 −0.5 −1.2 −2.0

−0.9 +0.1 +1.1 +2.1 +3.0 +3.3 +3.2 +3.0 −0.0 +0.3 +0.6 +0.9 +0.8 +0.2 −0.6 −1.5

−0.8 +0.2 +1.2 +2.2 +3.2 +4.2 +3.7 +3.3 +3.1 +1.2 +1.5 +1.8 +1.6 +0.8 −0.2 −1.2

−0.8 +0.1 +1.1 +2.1 +2.9 +3.3 +2.8 +2.4 +2.1 +2.1 +2.3 +2.8 +2.0 +1.0 −0.0 −1.0

−1.1 −0.2 +0.7 +1.5 +2.1 +2.4 +2.0 +1.4 +1.1 +1.1 +1.4 +1.9 +1.7 +0.8 −0.2 −1.1

−1.5 −0.7 +0.1 +0.7 +1.2 +1.4 +1.1 +0.6 +0.1 +0.1 +0.5 +1.1 +1.1 +0.4 −0.5 −1.4

−2.1 −1.3 −0.7 −0.1 +0.2 +0.4 +0.2 −0.3 −0.8 −0.8 −0.3 +0.2 +0.2 −0.3 −1.0 −1.8

−2.7 −2.1 −1.5 −1.1 −0.8 −0.6 −0.8 −1.1 −1.7 −1.7 −1.1 −0.8 −0.8 −1.1 −1.7 −2.4

−3.5 −2.9 −2.4 −2.0 −1.7 −1.6 −1.7 −2.0 −2.5 −2.5 −2.0 −1.8 −1.8 −2.1 −2.5 −3.1

−4.3 −3.7 −3.3 −2.9 −2.7 −2.6 −2.7 −3.0 −3.4 −3.4 −3.0 −2.8 −2.8 −3.0 −3.4 −3.9

−5.1 −4.6 −4.2 −3.9 −3.7 −3.6 −3.7 −3.9 −4.3 −4.3 −3.9 −3.8 −3.8 −4.0 −4.3 −4.7

Figure 16: Example of a (continuous) signed distance field values (left). A discontinuous distance function (middle) and a distance field
generated from it (right).

Inventing an optimal colouring strategy may be the objective of
further research.

5.2. Distance field construction

For each of the three colour channels, a discontinuous pseudo-
distance field must be constructed, considering only edge segments
assigned to that channel. It may be advantageous to generate all
three distance fields simultaneously, since at each point, the value
will be the same in at least two of them.

Algorithm 2 Evaluation of a pixel of a corner preserving multi-
channel distance field.
1: function GENERATEPIXEL(P)
2: dRed←∞,dGreen←∞,dBlue←∞
3: for each contour c of shape s do
4: for each edge e of contour c do
5: d← EDGESIGNEDDISTANCE(P,e)
6: if colour(e) · (1,0,0) �= 0 and CMP(d,dRed) < 0 then
7: dRed← d,eRed← e
8: if colour(e) · (0,1,0) �= 0 and CMP(d,dGreen) < 0 then
9: dGreen← d,eGreen← e
10: if colour(e) · (0,0,1) �= 0 and CMP(d,dBlue) < 0 then
11: dBlue← d,eBlue← e
12: dRed← EDGESIGNEDPSEUDODISTANCE(P,eRed)
13: dGreen← EDGESIGNEDPSEUDODISTANCE(P,eGreen)
14: dBlue← EDGESIGNEDPSEUDODISTANCE(P,eBlue)
15: return distanceToColour((dRed,dGreen,dBlue))

The signed distance at each point of the distance field shall be
evaluated in the following way (see Algorithm 2). First, using the
Voronoi tessellation described in Section 4.3, determine the closest
edge segment to this point. One may use a spatial search algorithm
for this task. Then, determine the closest point on that edge. If it
is an endpoint, compute the signed pseudo-distance by finding the
minimum distance to the infinite extension of the edge segment from
that endpoint. Otherwise, use the true signed distance.

As described in Section 4.3, to determine which edge is the clos-
est, the distance measure has to include two values—the actual

distance, and a measure of orthogonality, the dot metric. All signed
distance values in the presented algorithm hold both of these com-
ponents, and the comparison function CMP correctly takes both into
account to determine which distance value is factually closer. EDGE-
SIGNEDDISTANCE function returns the correct signed distance from an
edge segment (line, quadratic or cubic Bézier curve) in this format.
Considering that cubic Bézier curves require solving a fifth-degree
polynomial equation, we utilize Henrik Vestermark’s implementa-
tion of the Jenkins–Traub algorithm [JT70], which is a globally
convergent approximate solution method.

An example of the multi-channel distance field of the lower-
case ‘e’ glyph is shown in Figure 18. The same method can be
applied to construct a conventional signed pseudo-distance field as
well.

5.3. Error correction

Unfortunately, certain rare scenarios may cause artefacts. Although
the ‘fronts’ of discontinuity in the three distance fields never cross,
they often converge towards one another, and at some point become
too close due to the limited resolution of the distance field. In such
a case, the area of the shape may transition from being represented,
e.g. by channels R and G to channels R and B. Due to the impre-
cise bilinear interpolation of the distance field, there might arise a
small area where neither G nor B is evaluated as filled, causing
a small gap in the output image. This transition is illustrated in
Figure 17.

R+G

R+B

R+G

R+B

R R+G+B

Figure 17: The transition between areas represented by different
pairs of channels (left) and a possible result after reconstruction
(right).

c© 2017 The Authors
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

V. Chlumský et al. / Improved Corners with Multi-channel Signed Distance Fields 281

Figure 18: The three channels of the multi-channel distance field of the lowercase ‘e’ glyph.

Any such errors can be easily corrected though, as long as they
are identified. The median function can be applied to any cell in
the multi-channel distance field in advance, equalizing its three
components to the median value, which corresponds to the actual
pseudo-distance that would be found in a single-channel pseudo-
distance field. Of course, this negates the improved fidelity of cor-
ners in that area, but more importantly any artefacts arising from this
method.

To detect such potential errors, we have used the follow-
ing procedure: Consider all pairs of four-connected neighbour-
ing cells in the multi-channel distance field. If the difference in
their value is greater than the distance between them in at least
two channels, indicating two discontinuities in the area, flag the
cell with the greater absolute distance value in the remaining
channel—that one lies further away from any edges or corners.
Afterwards, apply the median equalization on all flagged cells
at once.

6. Shape Reconstruction and Rendering

The intended usage of this rendering method is in real-time graph-
ics, where a graphics library such as OpenGL [Khr15] is commonly
used. With these libraries, the SDF has to be loaded into a 2D
texture, and its evaluation happens in a fragment shader. The graph-
ics library is capable of performing the bilinear sampling routine
by itself since it is a very common task in 3D graphics. This is
one of the reasons why distance fields are a natural choice in this
context.

We will look at the complete procedure of reconstructing a raster
image of the original shape from an SDF. This is done by determin-
ing at each pixel of the raster image, whether or not it lies inside
the shape. Let us assume that using the correct transformation, we
have computed that the current pixel lies at point P in the coordi-
nate system of the distance field’s grid. Now, we need to sample a
value from that position in the distance field utilizing bilinear sam-
pling. Having sampled a value from the distance field, we can con-
vert it back to a signed distance, using the inverse of the distance-
ToColour function:

colourToDistance(distanceToColour(x)) = x, (16)

colourToDistance(colour)
def=

(
colour

maxColour
− 1

2

)
· distanceRange.

(17)

With the median of three model, the reconstruction process is almost
equally simple, with only one additional step. In this case, the result
of the sampling would not be a scalar value, but a vector, where each
component is the sample of one colour channel. Immediately after
acquiring this vector, its median component can be extracted and
used the same way as the scalar value in the single-channel distance
field.

Instead of always using either the inside colour or the outside
colour, we could smoothly blend from one to the other at the
edge, thereby eliminating hard pixelated edges and achieving anti-
aliasing. For this, a threshold value t should be chosen so that the
interval 〈−t, t〉 in signed distance units is about as wide as a single
pixel in the target bitmap. In a 3D scene, the scale of the distance
field in the resulting image might not be constant throughout, and
therefore the threshold t cannot be determined globally before ren-
dering. Instead, it has to be computed separately for each pixel or
fragment. Fortunately, the OpenGL shading language (GLSL) of-
fers the fwidth function for this task, which returns the amount of
change of a variable between adjacent pixels.

Assuming that the correct position P has been computed in the
vertex shader, a complete OpenGL fragment shader is available in
Listing 1 which renders a shape encoded by a multi-channel distance
field stored in a texture and applies anti-aliasing. The shader can
be easily modified or expanded in many ways, for example, to
make some parameters adjustable, or to support the visual effects
mentioned further down.

The shader is also backwards compatible with single-channel
distance fields, where all three components of s would be equal,
and although the call to the median function would be unnecessary,
the result would be the same. This again shows that one simple
median calculation is the only additional operation required in our
multi-channel distance field rendering method.

Visual effects By using a different transformation from the signed
distance d to the pixel colour, a number of different visual effects

c© 2017 The Authors
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

282 V. Chlumský et al. / Improved Corners with Multi-channel Signed Distance Fields

in vec2 P;
uniform sampler2D msdf;
uniform vec2 msdfUnit;
uniform vec4 outsideColour;
uniform vec4 insideColour;
out vec4 fragColour;

// Median value using minima and maxima
float median(float a, float b, float c) {
return max(min(a, b), min(max(a, b), c));

}

void main() {
// Bilinear sampling of the distance field
vec3 s = texture(msdf, P).rgb;
// Acquire the signed distance
float d = median(s.r, s.g, s.b) - 0.5;
// Convert the distance to screen pixels
d *= dot(msdfUnit, 0.5/fwidth(P));
// The anti-aliased measure of how "inside" the

fragment lies
float w = clamp(d+0.5, 0.0, 1.0);
// Combine the two colours
fragColour = mix(outsideColour, insideColour, w);

}

Listing 1: Example fragment shader for multi-channel distance
field evaluation.

− +0

(a) Thickness adjustment

− +0

(b) Outline

− +0

(c) Soft shadow

Figure 19: Examples of distance-based visual effects.

can be achieved. Some examples of such transformations are shown
in Figure 19. The used transformation from signed distance to colour
can be seen at the bottom.

Text rendering So far, we have covered how to reconstruct the
image of a single shape from its distance field representation. To
display text, however, the images of individual glyphs have to be
composed together.

In real-time graphics, the distance fields of glyphs of the entire
character set will be typically compiled into a single texture. Each
glyph will be located at a known position in this texture. Examples
of such textures are shown in Figure 20. Note that much of the space
in these textures is empty due to a regular but inefficient distribution
of the glyphs. To utilize the maximum possible available space of
the texture, a 2D bin packing algorithm may be used.

A text can be rendered as a sequence of rectangles whose ver-
tices are correctly positioned and mapped to glyph positions inside
the texture. All of the necessary metrics can be retrieved from the

(a) Single-channel (b) Multi-channel

Figure 20: SDF textures, from which individual glyphs can be
mapped.

Lorem ipsum
Figure 21: A string of text as a textured triangle mesh.

definition of the font. Figure 21 shows an example application of
this principle in the form of a triangle mesh.

7. Results

We provide a multi-channel SDF generator implementation based
on the proposed approach in the form of an open-source GitHub
project [Chl15]. In this section, we evaluate the outputs of the de-
vised algorithm and measure the factual improvement in quality
of rendering using our multi-channel distance field technique, and
compare the results with the original single-channel version. We
also discuss the performance of the algorithm, namely the cost of
using its outputs to render images and the artefacts it may produce.

7.1. Rendering quality

We have tested our multi-channel distance fields on several widely
used typefaces. Below are presented results for Open Sans, a typi-
cal sans-serif typeface, the regular weight, non-italic variant. First,
we have rendered the entire ASCII character set into ultra-high-
resolution bitmaps using the original distance field method, and our
multi-channel method, and counted the portion of pixels that do not
match the exact image of each glyph. We have done this using dif-
ferent distance field resolutions, ranging from 16 × 16 to 48 × 48
per glyph. The average results are listed in Table 3.

However, when we only look at characters that do not include
any curves, the difference becomes much greater. The results for
those characters only are listed in Table 4. Figure 22 demonstrates
the range of distance field resolutions we used in our tests. The
shape in the leftmost image (resolution 7 × 8 pixels) is already
disintegrating, and therefore going any lower would be point-
less. The rightmost image (43 × 50 pixels), on the other hand,
seems to possess a satisfying precision, apart from the sharpness of
corners.

c© 2017 The Authors
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

V. Chlumský et al. / Improved Corners with Multi-channel Signed Distance Fields 283

Table 3: A comparison of average rendering error of the original and our
technique for the ASCII character set glyphs.

Average error

SDF size Original Multi-channel

16 7.55 · 10−3 ± 3.1 · 10−3 3.25 · 10−3 ± 2.6 · 10−3

24 3.22 · 10−3 ± 1.2 · 10−3 8.57 · 10−4 ± 8.8 · 10−4

32 1.71 · 10−3 ± 6.4 · 10−4 4.65 · 10−4 ± 4.8 · 10−4

48 7.41 · 10−4 ± 3.0 · 10−4 2.04 · 10−4 ± 2.1 · 10−4

Table 4: A comparison of average rendering error for non-curved glyphs
only from the ASCII character set.

Average error

SDF size Original Multi-channel

16 7.24 · 10−3 ± 4.1 · 10−3 1.45 · 10−3 ± 2.0 · 10−3

24 3.22 · 10−3 ± 1.5 · 10−3 2.43 · 10−5 ± 5.6 · 10−5

32 1.71 · 10−3 ± 7.8 · 10−4 7.63 · 10−6 ± 2.8 · 10−5

48 7.09 · 10−4 ± 3.8 · 10−4 3.80 · 10−7 ± 1.3 · 10−6

(a) Size 8 (b) Size 12 (c) Size 16

(d) Size 24 (e) Size 32 (f) Size 48

Figure 22: Reconstruction of the letter ‘e’ from a single-channel
pseudo-distance field of varying resolutions.

For non-curved glyphs, the error is several orders of magnitude
lower with our method, meaning that in the previous case, most
of the error has accumulated from an imprecise reconstruction of
parametric curves, at which our method performs the same as the
original. However, this has far lower impact on image quality than
the appearance of corners, since a slightly different appearance of
a curve is indistinguishable to the human eye. Therefore, we will
observe another property of the rendered images—the weighted
error.

The weighted error, listed in Table 5, should serve as a bet-
ter indicator of subjective quality. In it, errors further away from
the actual edge of the glyph have greater weight, directly propor-
tional to this distance. This means that shifting a large portion of
the outline slightly will have a lesser impact on the result than

Table 5: A comparison of weighted rendering error for all glyphs from the
ASCII character set.

Average weighted error

SDF size Original Multi-channel

16 4.62 · 10−2 ± 2.5 · 10−2 1.26 · 10−2 ± 1.8 · 10−2

24 1.39 · 10−2 ± 8.0 · 10−3 6.52 · 10−4 ± 9.7 · 10−4

32 5.22 · 10−3 ± 3.2 · 10−3 1.96 · 10−4 ± 2.9 · 10−4

48 1.55 · 10−3 ± 1.0 · 10−3 3.70 · 10−5 ± 6.0 · 10−5

Table 6: Comparison of the error in sampled distance values throughout
the entire plane.

Average weighted distance difference

SDF size Original Multi-channel

12 2.180 ± 0.607 1.434 ± 0.654
16 1.281 ± 0.320 0.7575 ± 0.337
24 0.6016 ± 0.163 0.3290 ± 0.157
32 0.3198 ± 0.0864 0.1699 ± 0.0840
48 0.1447 ± 0.0400 0.07638 ± 0.0374

a short portion straying greatly. A visual comparison of the ren-
dering quality can be seen in Figure 1 on the title page and in
Figure 24.

Preservation of distance information To evaluate the distance
field’s precision in other areas than just around the outline, which is
important for visual effects that use signed distance values, we use
the weighted distance difference metric that measures the difference
in reported and actual signed distance. Since the distance values are
less likely needed further away from the outline, the difference will
be given a greater weight the closer to the outline it is. The value is
computed as

∑
P

|d − dS |e− |d|
k , (18)

where P are the sampled points, d is the correct signed dis-
tance, dS is the signed distance sampled from the distance field
and k is an adjustable weight distribution parameter, which we set
to 60.

The measured data in Table 6 show that the multi-channel
method encodes the signed distance with approximately half the
original error. The signed pseudo-distance reconstruction of a sin-
gle glyph in the form of equidistant contour lines is shown in
Figure 23. At the outline and in its vicinity, the distance is rep-
resented accurately by our multi-channel technique. It even pre-
serves the sharp corners further outside the shape but gradually loses
precision.

c© 2017 The Authors
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

284 V. Chlumský et al. / Improved Corners with Multi-channel Signed Distance Fields

(a) Reference (b) Original (c) Multi-channel

Figure 23: Contour diagram of the letter ‘A’ constructed exactly (a), and reconstructed from distance fields by the original (b) and our
multi-channel method (c).

Figure 24: Comparison of the reconstruction of several glyphs of
varying thickness using the original (top) and our multi-channel
distance field method (bottom).

7.2. Real-time rendering performance

Since rendering performance is the original distance field tech-
nique’s primary advantage, it is extremely important that this advan-
tage is not lost. To test this, we have created an OpenGL program,
where an enormous amount of text is drawn on the screen from
a distance field. We have designed it so that as little extra time as
possible is spent on other tasks than the rendering itself. The text
is drawn in batches of about 32 characters per draw call, and no
uniform variables or other states are changed in between, only the
vertex array object. The vertex shader only performs a single ma-
trix transformation of the coordinates and for the fragment shader,
variants of the implementation from Section 6 have been used.

The measured frame rates (frames per second) are shown in
Table 7. Since the measurements have been performed on a spe-
cific machine (NVIDIA GTX760), only the differences are of

Table 7: Comparison of text rendering frame rates when using single-
channel and multi-channel distance field textures.

Distance field dimensions

Distance field type 256 512 1024 2048

Single channel (R) 30.81 28.60 26.44 21.02
Single channel (RGB) 29.08 26.20 20.15 9.18
Multi-channel 27.18 24.76 19.56 9.16
Single channel (R) + AA 28.43 26.33 24.22 18.98
Single channel (RGB) + AA 26.65 23.98 18.43 8.42
Multi-channel + AA 25.05 22.86 17.96 8.41

importance. The test has been performed with both single-channel
and multi-channel distance fields in several resolutions, and with and
without anti-aliasing (AA). Furthermore, the single-channel variant
has been tested storing the texture both as only one channel (R), and
as a regular 3-channel image (RGB).

It is evident that the performance impact of using a multi-channel
distance field varies by the size of the distance field texture. For small
resolutions, the decrease in frame rate is only about 12%. For higher
resolutions, it seems that the sampling of the texture is a significantly
slower operation, and interestingly, a very noticeable difference can
be seen just in sampling a monochrome (R) versus a colour (RGB)
texture. The cost of the additional median computation is negligible
in these cases, but the increase in the number of texture channels
brings up to a 56% drop in the performance. The anti-aliasing routine
seems like a relatively inexpensive addition to the rendering process,
causing a slowdown of 8–10%.

In conclusion, the performance of the multi-channel distance
field rendering method is approximately 12–56% worse than
that of single-channel distance field rendering depending on the
distance field resolution. An interesting observation is that since

c© 2017 The Authors
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

V. Chlumský et al. / Improved Corners with Multi-channel Signed Distance Fields 285

(a) MSDF with artefacts (b) MSDF with error correction (c) MSDF in high resolution

Figure 25: Comparison of the reconstruction of the asterisk glyph from MSDF of resolution 16 × 16 with and without the application of the
described error correction.

(a) Contour discontinuities (b) Reconstructed shape stroke

Figure 26: Contour discontinuities and resulting artefact in recon-
structed shape stroke.

texture sampling is the most expensive operation, the original
method is almost just as slow as the improved one when the
single-channel distance field is needlessly stored as and sampled
from a three-channel texture.

8. Limitations of the Method

The error correction method described in Section 5.3 is not perfect
but has been able to eliminate a vast majority of the artefacts we
have encountered, an example of which is illustrated in Figure 25.
It can be observed that while the correction has repaired the holes
within the glyph, it has worsened the appearance of the lower corner
as a side effect, which happens since the error correction locally
degrades the multi-channel SDF to a plain SDF. If the distance
field has a sufficient resolution, however, the areas where the errors
occur tend to lie away from any corners. Figure 25(c) captures the
distance field at a higher resolution, which reveals the origin of the
errors—the sharp interfaces between yellow and magenta colours,
where the pairs of channels that represent the inside of the glyph
alternate. Similarly, the potential risk also exists at the green and
blue interfaces in the outer part, where surplus islands could form,
but this was not the case.

We have shown that our method provides a good signed dis-
tance approximation at any point in the distance field, making it

(a) Single-channel (b) Multi-channel (c) Multi-channel (flat)

Figure 27: Reconstruction of the glyph ‘A’ with thin strokes using specialized distance fields.

c© 2017 The Authors
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

286 V. Chlumský et al. / Improved Corners with Multi-channel Signed Distance Fields

suitable for rendering additional visual effects. Nevertheless, the
algorithm, as presented, has at least one known issue with cor-
rectly determining distance from sharp mitres. This is demonstrated
in Figure 26, where you can see the mitre being cut-off at a cer-
tain distance, due to the pseudo-distance vastly diverging from
the Euclidean distance, which determines the closest segment. We
believe that the algorithm could be adjusted to account for such
cases.

9. Conclusions

We have presented an improvement to the state-of-the-art tech-
nique for rendering text and other 2D shapes. By utilizing three
distance field channels instead of just one, we have significantly
improved the precision of rendering sharp corners, and reduced
the rendering error for these features by up to several orders of
magnitude.

Future work may involve inventing an optimal colouring strategy
that may yield better results for some colour configurations and
improving the error correction method, which is not perfect but
has been able to eliminate a vast majority of the artefacts we have
encountered.

Thickening decomposition There are other disadvantages of the
distance field rendering technique that could be solved by a multi-
channel decomposition. One of them is the representation of thin
features. If a stroke is thinner than about two cells of the distance
field grid across, it cannot be encoded properly and will probably
be heavily distorted if at all visible in the reconstructed image (see
Figure 27a). However, if the thin feature were to be represented as
a union of two much thicker strokes (one on each side) encoded in
multiple channels, the issue could be resolved. This would reduce
the minimum required resolution of the distance field to properly
encode thinner fonts.

Figure 27 shows an example of this idea. On the left, you can see
the result of using a low-resolution single-channel distance field on
a thin typeface. The centre image demonstrates the reconstruction of
the image using a thickening multi-channel decomposition. In addi-
tion to the white parts, which represent areas where all three colour
components are evaluated as inside, we can also use the yellow,
cyan, and magenta areas, where only two components are. The final
result after applying the median function is seen in Figure 27(c).
Even though it is not perfect, it certainly makes the character
readable.

Although we have primarily used the median of three colour-
ing model, we theorize that a higher number of channels could
be utilized for an even higher reconstruction precision. One pos-
sibility would be the combination of corner preservation and
thickening.

Acknowledgements

We thank Ondřej Jamriška for many insightful remarks that improve
the clarity of the presentation as well as the reviewers for their valu-
able comments. This research has been supported by CTU internal
grant SGS17/215/OHK3/3T/18.

References

[Ado06] Adobe Systems Incorporated: Font formats. https://www.
adobe.com/type/browser/info/formats.html, 2006.

[AK00] AURENHAMMER F., KLEIN R.: Voronoi diagrams. In
Handbook of Computational Geometry. J.-R. Sack and J.
Urrutia (Eds.). North-Holland, Amsterdam, (2000), pp. 201–
290.

[Chl15] CHLUMSKÝ V.: Multi-channel signed distance field
generator. online, 2015. URL: https://github.com/Chlumsky/
msdfgen.

[Con00] CONSTABLE P.: Understanding multilingual software on
MS Windows: The answer to the ultimate question of fonts,
keyboards and everything. https://scripts.sil.org/cms/scripts/
page.php?site_id=nrsi&id=IWS-Chapter08, 2000. Available in
CTC Resource Collection 2000 CD-ROM, by SIL International.

[dBvKOS08] DE BERG M., CHEONG O., VAN KREVELD M.,
OVERMAR M.: Computational Geometry: Algorithms and Ap-
plications (3rd edition). Springer-Verlag Berlin Heidelberg,
2008.

[Esf14] ESFAHBOD B.: GLyphy – high-quality glyph rendering using
OpenGL ES2 shading language. https://glyphy.org, 2014.

[Gre07] GREEN C.: Improved alpha-tested magnification for vector
textures and special effects. In ACM SIGGRAPH 2007 Courses
(2007), ACM, pp. 9–18.

[Gro11] W3C SVG Working Group: Scalable Vector Graph-
ics (SVG) 1.1. (2nd edition). https://www.w3.org/TR/SVG11/,
2011.

[JT70] JENKINS M. A., TRAUB J. F.: A three-stage algorithm for real
polynomials using quadratic iteration. SIAM Journal on Numer-
ical Analysis 7, 4 (1970), 545–566.

[KB12] KILGARD M. J., BOLZ J.: GPU-accelerated path rendering.
ACM Transactions on Graphics 31, 6 (November 2012), 172:1–
172:10.

[Khr15] Khronos Group: OpenGL overview. https://www.opengl.
org/about/, May 2015.

[LB05] LOOP C., BLINN J.: Resolution independent curve rendering
using programmable graphics hardware. ACM Transactions on
Graphics (TOG) 24 (2005), 1000–1009.

[LB07] LOOP C., BLINN J.: Rendering vector art on the GPU. GPU
Gems 3 (2007), 543–562.

[Pat14] PATAI G.: Playing around with distance field font render-
ing. https://lambdacube3d.wordpress.com/2014/11/12/playing-
around-with-font-rendering/, November 2014.

[QMK06] QIN Z., MCCOOL M. D., KAPLAN C. S.: Real-time texture-
mapped vector glyphs. In Proceedings of the 2006 Symposium
on Interactive 3D Graphics and Games (2006), ACM, pp. 125–
132.

c© 2017 The Authors
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

V. Chlumský et al. / Improved Corners with Multi-channel Signed Distance Fields 287

[RCL05] RAY N., CAVIN X., LÉVY B.: Vector Texture Maps on the
GPU. Tech. Rep. ALICE-TR-05-003, INRIA Research Centre
Nancy - Grand Est, 2005.

[SCH03] SEN P., CAMMARANO M., HANRAHAN P.: Shadow silhouette
maps. ACM Transactions on Graphics 22, 3 (July 2003), 521–
526.

[tC15] TEN CATE T.: Distance field fonts. https://github.com/
libgdx/libgdx/wiki/Distance-field-fonts/, December 2015.

[YKB*14] YOO J.-J., KRISHNADASAN S., BROTHERS J., JUNG S., RYU

S., KIM J.: Path rendering for high resolution mobile device. In
SIGGRAPH Asia 2014 Mobile Graphics and Interactive Appli-
cations (2014), ACM, pp. 13:1–13:5.

c© 2017 The Authors
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

