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Figure 1: The San Miguel scene and a sample ray corresponding to the central pixel (left), the visualization of tracing the ray using the
standard BVH traversal and our method (right). The red nodes are visited only by the standard traversal from the root. The green nodes are
entry points of our traversal algorithm. The yellow nodes are visited by neither traversal method and only denote the path to candidate list
elements. The white nodes are visited by both types of traversal. In this particular case, our method skips 44% of nodes, both on the path
from the BVH root and in lateral branches.

Abstract
For ray tracing based methods, traversing a hierarchical acceleration data structure takes up a substantial portion of the
total rendering time. We propose an additional data structure which cuts off large parts of the hierarchical traversal. We use
the idea of ray classification combined with the hierarchical scene representation provided by a bounding volume hierarchy.
We precompute short arrays of indices to subtrees inside the hierarchy and use them to initiate the traversal for a given ray
class. This arrangement is compact enough to be cache-friendly, preventing the method from negating its traversal gains by
excessive memory traffic. The method is easy to use with existing renderers which we demonstrate by integrating it to the PBRT
renderer. The proposed technique reduces the number of traversal steps by 42% on average, saving around 15% of time of
finding ray-scene intersection on average.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Raytracing—I.3.5 [Computer Graph-
ics]: Object Hierarchies—I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism—

1. Introduction

Bounding volume hierarchies (BVHs) provide an efficient means
of organizing the spatial distribution of a 3D scene. In the con-
text of ray tracing, they are used to determine quickly which
parts of the scene are possibly hit by a ray. Many efforts have
pushed the performance of BVHs forward [SFD09; Wal12; KA13;
GHFB13; GBDA15], which offer fast build/update/query opera-
tions, low memory demands, and ease of implementation. Some

techniques are tailored for specific scenarios, such as rendering dy-
namic scenes [WBS03; LYMT06; WBS07; PL10].

Most efficient BVH methods use the Surface Area Heuristic
(SAH) [GS87] during the BVH construction to determine efficient
hierarchical object partitioning. This heuristic is however only a
static guidance which does not take into account the nature of sub-
sequent ray queries. The question is how to leverage the known
ray’s properties for faster traversal through a BVH.
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Depending on the scene structure, the expected ray distribution,
and other possible influences taken into account, the hierarchy is
about logn deep on average, which is also proportional to the num-
ber of traversal steps needed to descend from the tree root (repre-
senting the whole scene) to the leaves, where the scene geometry
is referenced. To find the intersection, the traversal typically vis-
its multiple leaf nodes and thus it branches into several subpaths.
There are millions of elements in contemporary scenes, resulting in
trees where the distance from the root to the leaves is in the order
of several tens of nodes. Combined with millions of rays cast, this
takes a considerable amount of time spent by the traversal, so any
optimization here has the potential of making a significant impact
on the total rendering time.

In this paper, we use the concept of frustum shafts as a tool to
quickly determine which parts of the scene geometry can be po-
tentially intersected by a given ray. While a BVH organizes scene
regions hierarchically into AABBs, shafts are topologically similar
to rays, so the volume of a shaft contains those scene parts which
are relevant for the corresponding rays. For each frustum shaft we
precompute a short list of BVH nodes that are used as entry points
for the ray traversal. We describe the necessary criteria for com-
puting these lists so that the ray traversal skips large parts of the
root–leaf traversal sequences, thus saving a lot of traversal steps
(see Figure 1).

Our method builds on the ray classification idea that has a long
history [AK87]. However, until now the technique has been con-
sidered impractical for contemporary rendering techniques. We
propose a new algorithm which connects ray classification (direct
lookup) with contemporary BVHs (hierarchical traversal), demon-
strating that an efficient combination is possible.

2. Related Work

In their classical paper, Arvo and Kirk [AK87] proposed the notion
of 5D space of rays (three spatial and two directional dimensions)
and its subdivision into beams which are assigned only a limited set
of candidate objects. A ray is first classified as belonging into one
of these beams, followed by intersecting only the relevant candidate
objects. Similar ideas gained much attention in other contexts and
under different names, where the beams were often referred to as
shafts or frusta.

Haines and Wallace [HW94] came up with the idea of shaft
culling. They decrease the time spent on determining the mutual
visibility of two surfaces in the radiosity method by generating a list
of possible occluders between these surfaces. Bala et al. [BDT99]
use shaft-culling to (1) accelerate shading: to find occluders that
may introduce discontinuities in radiance interpolation; (2) accel-
erate visibility: exploiting temporal coherence by reprojecting al-
ready existing radiance samples, assuming they have not become
occluded in the current viewpoint.

When constructing local illumination environments, Fernandez
et al. [FBPG00] determine the blocker list between two objects
lazily and iteratively only by sampling the shaft connecting them.
This approach may miss some blockers at first, but over time, with
more samples taken, it converges to the correct state with the guar-
antee of maintaining the minimal set of blockers. Schaufler et al.

[SDDS00] construct the shafts not to query the space occlusion be-
tween two elements but rather behind an occluder with respect to
the viewing point. They attempt to perform a fusion of multiple
occluders into one, possibly incorporating occluded empty space
as well. Bittner [Bit02] uses shafts to optimize the computation of
from-region visibility. For Brière and Poulin [BP96], shafts (here
sections) are the building blocks of a ray-tree structure for quickly
determining what has changed in a scene in order to rerender only
the necessary parts of it.

Dmitriev et al. [DHS04] group rays into pyramidal shafts, which
are then traversed simultaneously using SIMD instructions. Con-
trary to the approach of Haines and Wallace, they use kd-trees and
boundary/extremal rays instead of BVHs and plane testing. Havran
and Bittner [HB00] introduced a technique for efficient traversal of
rays within a given shaft: the initial empty subpath common to all
the rays can be skipped safely. A simpler version of this technique
involves only the leaf nodes traversal. Havran et al. [HBŽ98] of-
fer additional means for traversing a hierarchical spatial structure,
which they call the ropes (generalized to rope trees). Ropes intro-
duce other paths within the tree to reach a leaf node, which do not
start from the root (i.e., climbing on a rope from a branch to an-
other), successfully exploiting the coherence of rays.

Van der Zwaan et al. [vdZRJ95] construct pyramids for coherent
rays with the same origin (e.g., primary rays or shadow rays to area
light sources) instead of general shafts; then they classify the nodes
of a spatial bintree as inside or outside a pyramid using a vari-
ant of the Cohen-Sutherland clipping algorithm. Brière and Poulin
[BP01] enclose light beams within the shafts. As a side effect, they
are able to squeeze down the memory used by the shafts drastically
while only slightly affecting the rendering times. Reshetov et al.
[RSH05] group the primary and shadow rays into a hierarchy of
beams, effectively forming a frustum. This allows to start tracing
all participating rays simultaneously from a node deep within a kd-
tree representing the whole scene. The depth of the starting node
depends on the chosen level within the beam hierarchy – the nar-
rower beam, the deeper the starting node could lie. Following this,
Wald et al. [WBS07] apply the frustum traversal to BVHs with the
addition of applying it on deformable scenes.

Schröder and Drucker [SD92] build a candidate list for a ray in-
tersection as a union of lists contained in precomputed voxelization
of the scene. More recently, Keul et al. [KML16] precompute vis-
ibility in a scene using shaft culling, which is then stored in a line
space structure. This data structure then terminates the traversal of
a ray through a regular n-tree once it is clear that the ray cannot
hit the currently traversed subnode content. Recently, Müller et al.
[MGN17] used a 5D tree structure to guide the Monte Carlo pro-
cess into highly contributing pathspace regions. They use a binary
tree spatially partitioning the 3D scene, which references 2D direc-
tional partitioning quadtrees from its leaf nodes.

Our method takes advantage of the classical ideas of ray classifi-
cation [AK87; MGN17], shaft culling [HW94; RSH05], and scene
structuring using BVHs [GS87; WBS07; GBDA15]. This combina-
tion offers substantial performance gain in ray traversal while pro-
viding control over the memory consumption as well as seamless
integration of the method into existing ray tracing implementations.

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.



J. Hendrich et al. / Ray Classification for Accelerated BVH Traversal

3. Efficient BVH Traversal

In this section, we discuss in detail how the standard traversal of a
BVH progresses down the tree, and identify its weak spots. Then
we briefly introduce the idea of culling the scene geometry with
shafts, which is able to cut the traversal costs substantially.

3.1. Standard Traversal

Having a spatial index built above the geometry of a scene, we
need to traverse it to determine the nearest intersection for primary
or secondary rays, or any intersection for shadow rays, which test
visibility between a surface and a light source. This is usually done
by descending the tree. We start with pushing the root node id onto
the stack; the topmost stack entry is then popped repeatedly to be
processed further. If it represents a leaf node, the referenced geom-
etry is checked for an intersection; for inner nodes, the bounding
boxes of its children are checked for an intersection. All the chil-
dren of an inner node which have been hit by the ray (if any) are
pushed back onto the stack, usually after depth-sorting them along
the ray for efficiency. The running closest intersection with geom-
etry is maintained for primary and secondary rays throughout the
traversal, effectively pruning the search tree even more.

In scenes with large and complex geometry, the path length from
the root to the geometry elements amounts in tens of traversal steps.
The actual traversal is even more complex as it visits many lateral
branches, which in most cases do not advance the results of the
search. This is because the hierarchical index is a general spatial
structure with no information about the properties of the rays being
traced in the scene; it does not take into account the restricted part
of the scene only relevant to a given ray.

3.2. Algorithm Overview

Our method assumes there is already a BVH built which organizes
the scene geometry. We construct a set of convex frustum shafts,
which extend from a scene voxel in a (narrow) interval of direc-
tions. The voxels are elements of a 3D regular grid and the direc-
tion intervals are constructed on a regular 2D grid subdividing the
space of directions. For each shaft, we identify the parts of the BVH
which are intersected by its volume and represent these subtrees as
a short array of indices to them (a candidate list). The sorted list
associated with a shaft thus represents a combination of the hier-
archical nature of the BVH and the directionality of the shaft, as
shown in Figure 2.

The tracing of a ray starts with identifying the shaft which con-
tains the ray. The traversal algorithm is then seeded with the node
ids in the associated candidate list. With these ids pushed onto
stack, the traversal proceeds as usual. As the list contains only a
very limited subset of the scene geometry, the traversal process
does not have to take unnecessary steps through the usual initial
parts. Most importantly, it does not have to roam through many lat-
eral subtrees, thus saving significant effort both in terms of traversal
steps and memory traffic.

The light transport in the scene is usually distributed very un-
evenly and there are many shafts which do not contain a significant
number of rays. The construction can be therefore guided by the

Figure 2: A simple scene with one selected frustum shaft (orange
box and dashed lines) and several intersected bounding volumes
(left) and corresponding situation in the associated candidate list
(orange array of node ids) referring to base BVH (right). The shaft
contains only a small subset of the scene geometry, which can be
represented by a few nodes inside the BVH. The traversal of nodes
above them (dotted lines) and in many parallel branches not inter-
secting the shaft (grey subtrees) can be skipped altogether.

result of an optional preprocessing step, in which we sample the
ray distribution in the scene. Only those shafts which hold the most
rays will have their candidate lists built in the end.

4. Shaft Culling in BVH Traversal

Here we describe and discuss the proposed method in detail, start-
ing with the underlying data structures and their setup followed by
their usage during the ray tracing phase.

4.1. Collection of Shafts

We subdivide the scene AABB into a regular 3D grid, where ev-
ery single voxel forms a base for individual frustum shafts and
groups together the origins of contained rays (see Figure 3). For
each voxel, we subdivide the ray directions into the six major in-
tervals of directions corresponding to standard cube mapping. Each
face of the directional cube map is further subdivided into a regular
2D grid.

Figure 3: Spatial subdivision using a regular grid with a sample
frustum shaft originating at the selected voxel. In most scenes, the
grid resolution differs among the three axes in order to form cube-
like voxels.

There are different ways to set up the spatial and directional res-
olutions. It turns out a single spatial resolution in all three axes does
not often fit well, especially in scenes with largely non-cubic pro-
portions; so we allow all the three axes to be divided into a different
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number of equal intervals. On the other hand, for most scenes there
are no substantially dominant directions of rays (or at least they are
not known in advance), so we use uniform resolution for directional
subdivision.

To easily determine the spatial grid resolution, a convenient op-
tion is to derive it automatically from the allowed memory budget
for the shaft collection (given either in absolute amount or relative
to the memory occupied by the scene geometry). We force the vox-
els to be as close to cube shape as possible, which aligns well with
the SAH preference for cube-like nodes. These soft-constraints are
limiting the useful values for resolution from both sides: the shafts
should not be too wide, in which case they do not cut off much
of the scene geometry and thus do not save much traversal costs.
They should not be too thin either as this induces high memory con-
sumption, caused by both increased redundancy of content among
adjacent shafts and the vast number of shaft structures themselves.

The collection consists of two parts: the list area, which is a con-
catenation of all candidate lists, and the shaft lookup table, which
maps each shaft’s id to the corresponding offset of the associated
candidate list in the list area. The node ids are just 4-byte indices
to the main BVH node array. An example of a BVH with a shaft
collection is shown in Figure 4.

base BVH

... ...S1 S2 Sk

shaft lookup table

CL area

CL1 CL2

CLk

Figure 4: Schematic layout of a BVH and a shaft collection. The
shaft lookup table maps shaft ids to the offset of their associated
candidate lists in the candidate list area. The lists contain direct
indices to the nodes of the base BVH.

The shaft id is computed as a combination of the shaft’s voxel
x/y/z coordinates and the u/v directional coordinates. This id then
serves as a key to the shaft lookup table.

4.2. Shaft Geometry

A shaft’s geometrical definition is fully described by its 3D grid
base voxel together with culling planes enclosing the subinterval of
directions, very much like Arvo and Kirk [AK87] proposed. The
voxel is surrounded by the culling planes, which leave the frustum
shaft open on its other end.

At most seven culling planes are used to define the shaft: four
of them enclose the directional range of the shaft, and up to three
planes contain the outer faces of the shaft’s voxel. The shaft geom-
etry is utilized only during the candidate list construction, so we do
not store it with the data structure past that step.

4.3. Candidate List

The shaft’s candidate list provides complete coverage of the scene
geometry enclosed by the shaft. Its elements are ids of the nodes
of the original BVH which intersect the shaft. In Algorithm 1, we
show in pseudocode the construction of a candidate list.

1: stack.push(bvh.root)
2: while !stack.empty() do
3: node← stack.top()
4: stack.pop()
5: if shaft.overlaps(node) then
6: if node.isInner() then
7: p← shaft.getHitProbability(node, sampleRays)
8: if p ≥ minHitProbability then
9: if shaft.centerRay.dir[node.splitAxis] > 0 then

10: stack.push(node.child)
11: stack.push(node.child+1)
12: else
13: stack.push(node.child+1)
14: stack.push(node.child)
15: else
16: node← shaft.cullNodeSubtree(node)
17: if node.valid() then
18: shaft.candidateList.append(node)
19: else {leaf}
20: shaft.candidateList.append(node)

Algorithm 1: Construct shaft candidate list for a binary BVH.

A crucial component of our method is the getHitProbability()
function. This function tests the intersection of a small number (20)
of rays within the shaft with the node’s AABB to estimate the prob-
ability of traversing this node in the rendering phase. These rays are
generated randomly using a uniform distribution within the given
shaft and they are cast using the standard BVH to establish the in-
tersections with the scene. The hit probability estimation uses these
rays to check if the intersections with the node’s AABB lie before
the intersections of the sample rays with the scene. The estimation
thus also considers occlusion, which prevents creating candidate
list entries in occluded areas of the scene. The hit probability serves
as a measure which tells us whether the node is worth opening and
being replaced with its children. If the node passes this check, its
children are pushed back onto the stack with respect to the ori-
entation of the shaft’s center ray, i.e., depth-sorted to increase the
probability of early ray termination later in the rendering phase.

For nodes which do not pass the check of minimum hit probabil-
ity, in cullNodeSubtree() we try to find a single descendant node
which still contains all relevant geometry. This is done by opening
the current node and checking the number of its children intersected
by the shaft; if we find a single descendant with this property, it re-
places the ancestor node in the candidate list. Occasionally, all the
descendant nodes are culled, effectively preventing this entire sub-
tree from being part of the candidate list.

In some cases, the algorithm produces more nodes than we al-
low as the maximum size of candidate lists. To address this issue,
we progressively increase the minHitProbability threshold and call
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the algorithm again, which tends to generate fewer nodes into the
candidate list.

It can be shown that to probabilistically reduce the number of
traversal steps, the minimum hit probability threshold has to be set
to k−1

k for k-ary BVH. If this threshold was lower, the algorithm
would descend deeper in the tree and produce longer candidate
lists. As a result, we could potentially end up traversing even more
nodes than with the standard traversal. Conversely, if the threshold
was larger, we would not utilize the potential of the method, staying
too close to the BVH root.

Having a candidate list and the BVH subtrees referenced from
the nodes in the list, we effectively form a set of sub-BVHs of sub-
stantially lower height than the base BVH (see Figure 1). These
smaller BVHs can be interpreted as presorted view-dependent sub-
sets of scene geometry with respect to a group of coherent rays
within a shaft.

4.4. Memory Optimizations

The upper bound on build time complexity of a shaft collection
is O(s3d2k logn) while the space complexity is O(s3d2k); here s
represents a single spatial resolution in all three axes, d a directional
resolution in both coordinates, k the maximum length of candidate
list, and n the number of scene primitives.

We can use an optional reduction scheme, which limits the com-
putational and storage costs very efficiently. The idea relies on ray
sampling when only the most ray-occupied shafts are allowed to
build their candidate lists. The shaft occupancy criterion can be
given by a fraction of rays or shafts we want to use for acceler-
ated traversal; it operates on shaft statistics data gathered in the
sampling phase and sorted from the most used shafts to the less
important ones. The ray sampling is a rendering phase executed in
a lower image resolution and/or with fewer samples per pixel. The
light transport or any potential information gathered by these sam-
ple rays can be utilized during rendering to amortize the cost of
sampling.

A cheaper alternative to ray sampling is to construct the candi-
date lists only for shafts originating in voxels occupied by scene ge-
ometry. This approach handles all secondary rays and also shadow
rays cast from surfaces towards light sources. However, it excludes
the primary rays from processing (unless the camera is located in a
nonempty voxel).

Often the candidate lists of adjacent shafts (those with nearby
base voxels and similar ray directions) are identical. Therefore,
during the construction we index the candidate lists in a hashmap
which gives us a quick answer to whether there already is an iden-
tical candidate list in the collection. If so, we do not store the new
copy again, but rather let the respective shaft refer to the original
instance. This very cheap check saves between 10-80% of memory
in the candidate list area in our scenes.

4.5. Traversal

The traversal of a ray starts by classifying the ray and looking up
the corresponding candidate list. If we successfully found the list,

all its nodes become the new entry points of the traversal, being
pushed onto the traversal stack instead of the BVH root. Otherwise,
we continue in the usual manner by following the BVH root.

This is the only modification of a standard traversal kernel which
needs to be made: except for the different start-up, we traverse the
BVH in the usual fashion. Thus, we remove large parts of the traver-
sal path. It might be necessary to increase the traversal stack capac-
ity, as the stack has to be able to hold the entire candidate list plus
some extra space for the traversal of the individual subtrees refer-
enced from the list.

5. Results

We implemented the proposed method in standard C++11 with
thread parallelism integrated into the open-source PBRT v3 ren-
derer [PJH16]. We performed a series of tests on ten scenes, com-
paring the ratio of traversed steps, the ray tracing performance,
the build times, and the memory footprint of our method, hav-
ing the standard BVH traversal as reference. The measurements
were performed on a PC equipped with Intel Xeon E3-1245 with
8 cores @ 3.5 GHz and 16 GB RAM, both the shaft collection
build and ray tracing phases used 8 working threads. The source
code of the algorithm can be downloaded from the project website:
http://dcgi.fel.cvut.cz/projects/rc+bvh.

The BVHs were constructed using Binning SAH method
[Wal07] with 32 bins and 4 triangles per leaf; we used them as static
bases for generating different configurations of shaft collections.
For direct comparison with PBRT, we built binary BVHs; we also
measured the performance on quaternary hierarchies, for which we
had to slightly adjust the renderer’s traversal code. We chose 31
nodes as the maximum size of candidate lists. This value proved to
be a good balance to describe the shaft content with enough detail
yet not overly memory demanding.

5.1. Ray Tracing Performance

To evaluate the performance of ray tracing aided by shafts, we ad-
justed the BVH traversal code in the PBRT renderer to execute our
lookup and stack population code. The evaluation uses the default
rendering setup in PBRT, i.e., path tracing with max. 5 bounces and
Russian roulette, accelerated by binary BVHs. This setup incorpo-
rates a good amount of incoherent load for most scenes we tested.
Each scene was traced from three different camera locations and
orientations using 1920× 1080 image resolution with 8 samples
per pixel. We tested three different variants of the method:

• Complete – Candidate lists of all shafts were built.
• OccupiedVoxels – Candidate lists were built only for voxels oc-

cupied by scene geometry.
• ViewDependent – Ray sampling phase was executed to deter-

mine the shafts most used by rays. The candidate lists were com-
puted for 10% of the most populated shafts.

For all variants, we used three different spatial resolutions (100k,
200k, 500k voxels), combined with two different directional reso-
lutions (2 and 4).

A comprehensive overview of the results for the OccupiedVox-
els variant and resolution of 200k×4 is summarized in Table 1. In
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the ray tracing phase, the number of traversed steps ranges between
37% and 81% related to the standard traversal with rendering times
measured between 81% and 97%. The major reason for this differ-
ence between traversed steps and rendering times ratios is that the
rendering process also includes geometry intersection and shading
on top of the ray traversal itself. These rendering phases are not
targeted by our method and remain roughly constant.

The results evaluated on quaternary BVHs exhibit on average
5% lower savings of traversal steps than binary BVHs. Consid-
ering there are three times fewer interior nodes in the quaternary
BVH than in the binary variant, the achieved savings are actually
higher than we initially expected. PBRT does not implement SIMD
traversal, therefore our rendering times for quaternary BVHs are
generally slightly higher than those for binary BVHs. Using the
SIMD traversal would speed up both the reference quaternary BVH
method as well as the method accelerated by shafts.

A graphical overview of the speedups for the FirstHit and AnyHit
routines as well as the total rendering speedup is shown in Figure 5.
In most cases, the complete build yields the best speedups, at the
expense of larger memory consumption and longer build time.

Figure 5: The performance of all variants of our method on differ-
ent scenes for FirstHit and AnyHit routines and the total rendering
time. The speedups are calculated relatively to the performance of
the standard traversal without shafts using a binary BVH.

The relation of the speedups averaged over all tested scenes to
the average relative memory consumption of all evaluated variants
is shown in Figure 6. The flat shape of the graphs suggests it does
not make much sense increasing the memory budget beyond us-
ing approx. the same amount as for the geometry. The speedup
for shadow rays is significantly higher than for the other types of
rays. The method saves about 15% of time of finding ray-scene
intersections, dominated by the higher ratio of FirstHit calls. The
OccupiedVoxels variant saves substantial memory, but suffers from
not handling the primary rays. The ViewDependent variant leads to

lowest memory consumption, but due to some uncovered rays the
speedups are also slightly lower than for the Complete variant.

Figure 6: Average speedups in relation to the memory demands of
our method itself, related to the size needed for storing the geom-
etry of the scenes. To better show the influence of increasing the
spatial resolution, the measurements with the same resolution of
the directional subdivision for a given method are connected.

To gain more insight into how many elements there are in the
candidate lists, we gathered statistics for two scenes (Conference
and San Miguel) which largely differ in number of geometry prim-
itives and whether they represent interior of exterior. It turns out
that despite these differences, the distributions are very similar, re-
sembling the binomial distribution (see Figure 7). In the Confer-
ence scene, most candidate lists are able to contain all nodes in the
first pass of Algorithm 1, the number of the most populated CLs
approaching zero. On the other hand, in San Miguel with much
higher number of primitives, we have to iterate the algorithm with
increased threshold in order to squeeze the candidate lists into the
allowed size, leaving many candidate lists with high node counts.

To evaluate the behavior with increased ratio of incoherent rays,
we ran an additional test with a closed interior scene (Confer-
ence), higher max. bounces (10), and Russian roulette disabled. The
speedups remained practically unchanged.

5.2. Construction Overhead

For high-quality rendering with many samples per pixel and/or
many camera frames, the shaft construction times are easily com-
pensated during rendering. This can be seen from most results
shown in Table 1, although we used a relatively low number of
samples per pixel (8). Still, reduction of the construction overhead
may be of concern. The ViewDependent variant uses only the most
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Fairy Forest Conference Happy Buddha Soda Hall Hair Ball

#triangles 174k #triangles 331k #triangles 1087k #triangles 2169k #triangles 2850k

build build traversals render build build traversals render build build traversals render build build traversals render build build traversals render

size time per ray time size time per ray time size time per ray time size time per ray time size time per ray time

[MB] [s] [- / %] [s / %] [MB] [s] [- / %] [s / %] [MB] [s] [- / %] [s / %] [MB] [s] [- / %] [s / %] [MB] [s] [- / %] [s / %]

Binary BVH

no shafts 11 0.2 44.8 / 100% 522 / 100% 22 0.4 45.7 / 100% 1006 / 100% 71 1.3 23.5 / 100% 90 / 100% 139 2.3 62.0 / 100% 739 / 100% 190 3.7 75.3 / 100% 358 / 100%

with shafts 122 19.9 21.3 / 47% 451 / 86% 127 17.6 16.9 / 37% 837 / 83% 223 23.4 16.0 / 68% 83 / 93% 325 29.0 27.2 / 44% 596 / 81% 851 161.5 57.7 / 77% 345 / 96%

Quaternary BVH

no shafts 10 0.2 43.3 / 100% 551 / 100% 20 0.4 41.0 / 100% 1049 / 100% 65 1.3 23.1 / 100% 93 / 100% 128 2.4 59.0 / 100% 800 / 100% 173 3.8 71.5 / 100% 360 / 100%

with shafts 125 21.2 22.2 / 51% 469 / 85% 130 17.2 17.5 / 43% 869 / 83% 236 30.6 16.8 / 73% 87 / 93% 335 42.6 32.8 / 56% 680 / 85% 963 412.2 58.1 / 81% 350 / 97%

Crown Pompeii San Miguel Vienna Power Plant

#triangles 4868k #triangles 5632k #triangles 7842k #triangles 8637k #triangles 12759k

build build traversals render build build traversals render build build traversals render build build traversals render build build traversals render

size time per ray time size time per ray time size time per ray time size time per ray time size time per ray time

[MB] [s] [- / %] [s / %] [MB] [s] [- / %] [s / %] [MB] [s] [- / %] [s / %] [MB] [s] [- / %] [s / %] [MB] [s] [- / %] [s / %]

Binary BVH

no shafts 314 7.1 48.0 / 100% 219 / 100% 366 6.9 79.7 / 100% 503 / 100% 514 10.1 124.0 / 100% 1898 / 100% 581 10.6 59.9 / 100% 372 / 100% 809 15.3 76.8 / 100% 399 / 100%

with shafts 406 13.5 36.2 / 76% 208 / 95% 790 76.4 50.0 / 63% 445 / 89% 664 40.5 70.8 / 57% 1640 / 86% 786 46.5 31.6 / 53% 311 / 84% 911 23.9 49.9 / 65% 364 / 91%

Quaternary BVH

no shafts 288 7.2 46.7 / 100% 229 / 100% 335 6.9 72.7 / 100% 518 / 100% 470 10.2 120.5 / 100% 1974 / 100% 528 10.8 57.3 / 100% 391 / 100% 744 15.4 71.7 / 100% 426 / 100%

with shafts 385 16.1 37.2 / 80% 220 / 96% 809 94.4 50.4 / 69% 472 / 91% 635 48.6 75.9 / 63% 1715 / 87% 757 51.4 33.1 / 58% 329 / 84% 849 27.2 51.0 / 71% 391 / 92%

Table 1: Performance comparison of the tested method for the OccupiedVoxels variant with spatial resolution of 200k and direction resolution
of 4. The build times, apart from BVHs build itself, refer to the view independent construction of candidate lists; for static scenes they can be
amortized over many rendered frames. The total render times comprise ray generation, ray traversal, intersection evaluation, and shading.
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Figure 7: Distribution of candidate list lengths in the Conference
scene (left) and in the San Miguel scene (right), both having max-
imum length equal to 31 indices. In both cases, the most frequent
number of elements in candidate lists lies between 10 and 15.

used shafts and it provides about three times faster construction at
the expense of a slightly more complicated implementation (note
that the memory footprint drops accordingly, too). In a production
renderer, it would also be possible to further optimize the construc-
tion using lower level optimizations, such as SIMD instructions.

6. Conclusion and Future Work

We described a simple and flexible algorithm for accelerating BVH
traversal. The method builds an additional structure on top of an
existing BVH and is able to cut off unnecessary parts of traversal
based on spatial and directional classification of individual rays.
Groups of similar rays are enclosed in frustum shafts, each of which

contains only a limited subset of BVH nodes and scene geometry.
This subset is represented by a candidate list, thus forming a forest
of sub-BVHs of substantially lower traversal costs than the base
BVH.

Although previously deemed impractical, we showed that the
ray classification can support contemporary BVHs traversal suc-
cessfully, and we highlighted the important technical details that
make it work. On the PBRT renderer, we showed that the method
can be plugged easily into an existing framework. Our experiments
showed that it saves a large portion of traversal steps, about 42%
on average, and a significant amount of rendering time.

We provided a basic view on how the algorithm behaves with
quaternary hierarchies, which shows similar results as with the na-
tive binary variants. We plan to conduct a more in-depth analysis of
the behavior of the method with wide BVHs and optimized traver-
sal kernels. In our implementation, we construct the candidate lists
with secondary rays in mind. We plan to study shafts specialized
for any-hit usage, which would take into account the different ob-
jective of tracing shadow rays.

Our method uses ray indexing that can be used in combination
with ray reordering techniques to improve cache usage [Bik12].
Another interesting topic for future work is the combination of our
method with the path guiding approach [MGN17] that also uses
a subdivision of ray space that could be easily shared by the two
algorithms.
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