
1

Testing the Usability and Accessibility of Smart TV
Applications Using an Automated Model-based

Approach
Miroslav Bures, Miroslav Macik, Bestoun S. Ahmed, Vaclav Rechtberger, and Pavel Slavik

Abstract—As the popularity of Smart Televisions (TVs) and
interactive Smart TV applications (apps) has recently grown,
the usability of these apps has become an important quality
characteristic. Previous studies examined Smart TV apps from a
usability perspective. However, these methods are mainly manual,
and the potential of automated model-based testing methods for
usability testing purposes has not yet been fully explored. In this
paper, we propose an approach to test the usability of Smart
TV apps based on the automated generation of a Smart TV
user interaction model from an existing app by a specialized
automated crawler. By means of this model, defined user tasks
in the Smart TV app can be evaluated automatically in terms
of their feasibility and estimated user effort, which reflects the
usability of the analyzed app. This analysis can be applied in the
context of regular users and users with various specific needs.
The findings from this model-based automated analysis approach
can be used to optimize the user interface of a Smart TV app
to increase its usability, accessibility, and quality.

Index Terms—Usability Testing, Model-based Testing, User
Interface Quality, Smart TV application.

I. INTRODUCTION

Currently, Smart TVs are coming to dominate the televi-
sion market, and the number of connected TVs is growing
exponentially. This growth is accompanied by an increase in
consumers and the use of Smart TV apps that drive these
devices. Smart TV apps fully interact with the user via a
visualized UI and a remote device. Due to the increasing
demand for Smart TV apps, especially with the rise of the
Internet of Things (IoT), developing new usability testing
methods for these apps is essential. The classic User Interface
(UI) evaluation approaches for usability testing are based on
mainly manually performed testing with respect to the UI of
the System Under Test (SUT) [1]. The potential of automated
generation of a UI model from an existing Smart TV app
combined with model-checking principles has not been fully
explored.

This study is conducted as a part of the project TACR TH02010296 “Quality
Assurance for Internet of Things Technology”. This work has been supported
by the OP VVV funded project CZ.02.1.01/0.0./0.0./16_019/0000765 âĂd̄Re-
search Center for InformaticsâĂIJ. (Corresponding author: B. Ahmed)

M. Bures and V. Rechtberger are with the Department of Computer Science,
Faculty of Electrical Engineering, Czech Technical University, Karlovo nam.
13, Prague, Czech Republic, email: buresm3@fel.cvut.cz

M. Macik and P. Slavik are with the Department of Computer Graphics
and Interaction, FEE, Czech Technical University in Prague, Karlovo nam.
13, Prague, Czech Republic, email: macikmir@fel.cvut.cz, slavik@fel.cvut.cz

B. Ahmed is with the Department of Mathematics and Computer Science,
Karlstad University, Sweden and the Department of Computer Science, Czech
Technical University, Karlovo nam. 13, Prague, Czech Republic, email:
bestoun@kau.se

To this end, the motivation of this study is threefold. First,
the combination of UI model generation from an existing
Smart TV app with model-checking principles to detect possi-
ble UI design suboptimality is not sufficiently covered in the
literature. Second, concerns related to the usability of Smart
TV apps were raised by Ingrosso et al. [2] and Alam et al.
[3] in 2015 and 2017, respectively. In fact, Alam et al. [3]
discussed a number of potential usability issues of Smart TV
apps. Considering the growth of the Smart TV market and
the increase in app users, the focus on the usability testing
of these apps must be intensified to prevent the usability
problems reported by previous studies [2], [3]. A systematic
and efficient usability testing method for Smart TV apps
should be provided. Third, the current UI testing studies focus
on various devices and types of apps. The Smart TV app
domain remains relatively underexplored by relevant studies.

Based on the motivations mentioned above, the objective of
this paper is to propose and verify an automated model-based
method to detect possible design flaws or suboptimalities in
the UI of a Smart TV app. We propose a method based on the
analysis of the UI model of a Smart TV app that is acquired
automatically by a specialized crawler. Defined user tasks in
the Smart TV app are mapped to this model and then evaluated
by a set of rules to verify feasibility and effectiveness of these
tasks in which the user interacts with the app’s UI. The context
of the user interacting with an app is reflected in these rules.
This context is expressed by a set of configuration constants,
i.e., user capability to perform individual actions in the UI,
device factor, environmental factor, and a default user effort
of the individual actions in the UI. In this context, we can
model users with various specific needs. The verification rules
assess the feasibility of the task in the app for the user in a
particular context and estimate the length to detect potential
suboptimalities in the UI design or to detect repetitive steps in
the UI needed to achieve the task. The findings of this analysis
can help UI designers and app developers to optimize their UI
in consideration of both the specific features of the Smart TV
app and the particular needs of a user. This method can also
aid the evaluation of user feedback on the quality of the app’s
UI in an independent objective manner. The contributions of
this paper can be summarized as follows:

• We present an approach that potentially synergizes usabil-
ity testing and functional testing based on the underlying
model-based testing principles.

• We propose an innovative method that enables analysis

ar
X

iv
:2

0
0
4
.0

1
4
7
8
v
1

[c

s.
S

E
]

 3
 A

p
r

2
0
2
0

2

of the feasibility and ease of user tasks in a UI and
assessment of the optimality based on a UI model that
is generated automatically by a special crawler. Thus, an
up-to-date and accurate design model of the UI from the
design phase of the project is not needed.

• We propose a novel application of model-based UI
analysis in the Smart TV domain, which has not been
sufficiently explored.

• We report the parametrization of the user interaction
model for Smart TV apps that is calibrated during several
sets of experiments performed with real users.

II. RELATED WORK

Smart TV represent prospective stream of consumer elec-
tronic development. Compared to traditional TV, besides the
possibility to personalize their user environment [4], users
appreciate variety of applications that can be installed in
the smart TV set, spanning from various games, media and
infotainment applications to various services, including em-
ployment of smart TV sets in various home IoT solutions.
Especially this field is a subject of recent research and de-
velopment, for instance controlling of smart home appliances
[5], [6], smart light management system [7] or the whole smart
home solution [8], [9] using a smart TV set, various personal
healthcare application employing smart TV, for instance [10]
or personal sleep management employing a video analysis
using a smart TV application [11]. As another example, smart
home security system using cameras and smart TV set can
be given [12]. Integration of smart TV sets into various smart
home systems and services as well as increasing popularity of
smart TV among users also increase requirements on usability
of their applications.

Regarding usability testing of smart TV applications, previ-
ous work related to manual usability testing and assessments
can be found. To give few examples, Shin et al. [13] examined
the users’ attitude and perception of Smart TV devices from
a usability perspective.

Ingrosso et al. [2] examined the usability of Smart TV apps
using a case study of a T-commerce application.

A number of potential usability issues of Smart TV apps
were discussed in a more recent analysis by Alam et al.
[3]. These recent studies can also be seen as motivation
to develop specific usability testing methods to improve the
general usability of Smart TV apps.

Regarding the automation of usability tests, several previous
projects can be identified. For example, automated testing of
usability and accessibility of web pages has been proposed
by Okada et al. [14]. Here, the proposed system collects
logs from users’ interaction with the SUT. The usability
and accessibility were evaluated by comparing the logs with
hypothetical ideal scenarios. Also, more formal approaches
to usability testing have been examined in the literature to
enable a more systematic approach to the design of the test
automation system. Gimblett and Thimbleby [15] proposed a
testing approach using a theorem discovery method to find
and check usability heuristics automatically. Here, sequences
of equivalent or very similar user inputs and their effect on
the SUT were analyzed [15].

Cassino and Tucci [16] proposed an approach to evaluate
the interactive visual environments, which is based on SR-
Action Grammars [17]. This approach aids developers to
create applications in which the UI respect defined usability
rules. The practical implementation of the method resulted
in the automatic usability verification tool [16]. The formal
specification is created from the SUT and used for subsequent
usability checks and as particular usability rules, set of Nielsen
heuristics [18] were employed in the proposed tool.

However, during our analysis of the state of the art, we have
found only a few studies related to the automated usability
testing of Smart TV apps based on a model created by an
automated scan of the app’s UI. Previous effort regarding
the modeling of the smart TV app has been done by Cui et
al. [19]. Instead of a user interaction model with the app’s
UI as we propose, Cui et al. employed the hierarchical state
transition matrix (HSTM), which is based on a state machine
and hierarchical structure of the app.

Several crawlers creating a model for the UI have been
presented in the literature for mobile and web apps. For in-
stance, the projects by Mesbah et al. [20] for web applications,
Memon et al. [21] for thick-client app UIs, Amalfitano et al.
[22], [23], and Wang et al. [24] for mobile apps. Also, the
universal frameworks allowing connection to a particular app’s
UI by a modular interface, as proposed by Nguyen et al. [25].

The concepts presented in this paper can also be concep-
tually compared to the model-checking approach. However,
the applications of model-checking techniques usually focus
on the detection of potential functional defects on various
levels of the SUT in its classical form [26], or when model-
checking is combined with dynamic testing [27]. As modeling
structures, different formal notations and employed currently.
These notations include finite state machines and their various
extensions and modifications for the modeling of discrete
systems [28], Petri nets or marked graphs for the modeling of
concurrent processes, or hybrid automata or real-time temporal
logics to model real-time systems [28].

Using the model-checking approach for UI usability testing
is relatively under-explored in the literature. Harrison et al.
[29] focused on this domain recently, using temporal logic as
an underlying model of the SUT.

III. OVERVIEW OF OUR PROPOSED APPROACH

The proposed method is applicable mainly to Smart TV
apps during the development and testing process. However,
the method can be applied to apps in alpha and beta testing or
even production run, when the users report UI suboptimalities
during their interaction with the app. Different types of sub-
optimalities exist, such as (1) user discomfort, (2) confusing
organization of the individual elements of the UI, (3) too
long or confusing sequence of steps to be taken to achieve
frequently performed tasks, and (4) suboptimality of the app’s
UI for users with specific needs of particular category, or any
other UI design flaws.

These suboptimalities are detected by metrics based on the
proposed user interaction model (defined in Section IV-A) and
the execution time of user scenarios.

3

The following steps summarize the conceptual process of
the proposed approach:

• The UI of the app is scanned by a special crawler
(described in detail in Section V) that creates an extensive
user interaction model of the Smart TV app (described
in Section IV-A).

• The user (the UI designer or the developer) defines a
set of test scenarios. The scenarios capture the most
frequent user tasks to be performed in the app and/or
the user tasks that are reported as problematic from
a usability/accessibility viewpoint by users or usability
testers of the app.

• Defined test scenarios are captured in the user interaction
model using the specialized Model-based Testing (MBT)
platform (details follow in Section VII-C).

• The context in which the defined test scenarios are
assessed is defined using a set of configuration constants
(discussed further in Section IV-C).

• A set of verifications is performed for each of the
scenarios and defined context. These verifications include
feasibility assessment of the scenario in the app’s UI, user
effort needed to execute the scenario and repetition of IU
elements. The exact description of these verifications is
presented in Section VI.

• During the removal of the UI design problems identified
in the previous step, the UI designer edits the SUT user
interaction model in the MBT platform (more possible
transitions or shortcuts in the SUT UI can be added,
for instance). After these corrections, scenarios that were
evaluated as problematic during the previous step can be
reanalyzed until satisfactory results are achieved.

• Finally, the adjustments in the user interaction model can
be transformed into a set of change requests for the UI
development team.

The used MBT system1 is an experimental platform for
process and path-based testing developed and issued by the
Software Testing IntelLigent Lab (STILL), Dept. of Computer
Science, FEE, Czech Technical University in Prague. The
application supports creation of user models via a graphical
UI and employs a set of algorithms to validate the created
models and generate test cases from these models.

IV. USER INTERACTION MODEL

Our proposed approach is based on the user interaction
model (explained in Section IV-A) and its parametrization that
reflects the context. The suggested values for the Smart TV
domain are discussed in Section IV-C.

A. Model Definition

A user’s interaction with the Smart TV app’s UI is ab-
stracted as the user interaction model. Here, we use a directed
multigraph to describe the model as G = (N,E, ns, Ne, s, t),
such that N 6= ∅ is a finite set of nodes, E is a set of
edges, s : E → N assigns each edge to its source node and
t : E → N assigns each edge to its target node. The node

1http://still.felk.cvut.cz/oxygen/

ns ∈ N is the initial/start node of the graph G, and Ne =
{ne | ne ∈ N has no outgoing edge } defines nonempty set of
end nodes of graph G. A node in the directed graph models
a screen or a screen element of the UI. A screen element is
a standalone clickable part of the screen layout or a nested
container on the screen.

A graph edge in the model represents a transition between
nodes via the interactive (control) element. Each transition e ∈
E can be triggered by an input action a(e). An input action is
a physical action of the user on the remote control device that
leads to transition e in the app. Consider the remote control
device as an example for a Smart TV app. Here, the input
actions are events sent from the device to the Smart TV app
when a user presses UP, DOWN, OK, or another button. An
edge e can have identical source and target node, making a
simple loop; this case models the situation where an input
action a(e) does not trigger a transition between nodes on the
app’s UI but changes an internal state of the app.

The Tested User Scenario t is an ordered sequence of nodes
Nt ⊆ N and edges Et ⊆ E which have to be visited during
the execution of the user scenario. The n1 ∈ Nt is a starting
node of t and nn ∈ Nt is a terminal node of t. A set T is
a set of all Tested User Scenarios. The nodes and edges in t

can repeat.

User scenario path p(t) of the tested user scenario t is a path
in G that contains the nodes Nt and the edges Et of t and
can also contain other nodes or edges of G. p(t) starts with
n1 and ends with nn. The order of Nt and Et, as defined in t,
is maintained in p(t). Furthermore, |p(t)| denotes the number
of edges of p(t), and nodes(p(t)) denotes the unique number
of nodes of p(t). Note that t itself is not necessarily a path of
G. Additionally, as the nodes and edges in t can repeat, p(t)
is not necessarily the shortest path from ns to a node from
Ne.

C is the context in which the user accesses the app’s UI.
The user effort required to perform a transition e ∈ E is

E(e, C) = δ(a(e))× 1
UC(a(e),C) ×

1
Edev(C) ×

1
Eenv(C) ,

and the total user effort of user scenario path p(t) is

E(p(t), C) =

|p(t)|∑

i=1

E(ei, C), ei ∈ p(t),

where UC(a(e), C) is the user capability to perform an
action a(e) in context C (0 - user is unable to perform the
action, 1 - user is able to perform the action with standard
effort). Edev(C) is the device factor, and Eenv(C) is the
environmental factor. δ(a(e)) is the default effort of the
particular action measured in milliseconds, including the time
of cognitive effort to operate and the time to interact with the
UI. The other constants, UC, Edev , and Eenv , are unitless.

The suggested values of UC, Edev , Eenv , and δ are discussed
further in Sections IV-C (initial values of the constants) and
VII-D (refined values of the constants after the experiments).
The total user effort is further used in the assessment of
defined tested scenarios T in the UI modeled by G (details
are provided in Section VI).

4

nS n3

n1 n4

n2 n5

n11 n14

n12 n15

n13 n16

n151

n152

n153

Fig. 1: An abstracted example of the Smart TV app’s UI

nS n3

n1 n4

right

down updown up

left

n2 n5

down up

right

left

right

left

down up

n11 n14

n12 n15

right

down updown up

left

n13 n16

down up

right

left

right

left

down up

n151

n152

down up

n153

down up

back

back

back

back

OK

OK

Fig. 2: Sample user interaction model created for the example

B. Model Illustration

In this section, we demonstrate the user interaction model
concepts using an abstracted example. Figure 1 shows three
screens of a sample Smart TV app that contain various screen
elements (N). Element ns is an initial screen element of the
app. Using the remote control device, the user triggers possible
transitions in the UI (E), and his focus changes to another
screen element during this process.

All possible paths that can be taken in this example are
depicted in Figure 2; this is also the model that will be
produced by the specialized crawler used in the proposed
approach (a detailed description follows in Section V). The
outcome of this crawling process is a directed graph generated
to model the elements of the app.

C. Parametrization of the Model

User effort depends on mainly the contextual circumstances,
which we model by the context C. As an example, we take a
system (i.e., a Smart TV app) that is controlled by a person
challenged with a serious dexterity issue (i.e., quadriplegic).
This person controls the app with a special controller that
allows six actions (left, right, up, down, back, OK). Performing
the individual actions with the controller requires different
effort from the user and allows different efficiency. The basic
actions – left, right, back, OK – are easy to perform. By
contrast, significantly more effort is required to perform the

TABLE I: An initial model parametrization

action δ(a(e)) UC(a(e), C) Edev(C) Eenv(C)
LEFT 800 1.0

1.0 1.0

RIGHT 800 1.0
UP 800 1.0
DOWN 800 1.0
OK 2500 1.0
BACK 1500 1.0

remaining two actions (i.e., up and down). Hence, in different
contexts, the settings of UC, Edev and Eenv would logically
be different. Thus, we need to perform an initial setting of
these constants, including δ. Additionally, we need to calibrate
these constants in the experiments. In this paper, we used six
main actions by which the user can interact with the app’s
UI. Those actions are represented by the buttons UP, DOWN,
LEFT, RIGHT, OK and BACK on the remote control device.

As a baseline, we consider the context Cs, which models a
user without any special needs or disabilities. We also consider
a standard Smart TV set with no environmental factors that
might make the interaction with the Smart TV set more
difficult. Table I shows the first setting of δ, UC, Edev and
Eenv , or Cs, based on our previous empirical investigations.
As δ aggregates the time of the user’s cognitive preparation to
perform an action in the app and the time needed to interact
with the UI by the respective remote control button, the value
of δ is higher for actions such as OK and BACK. After the
pressing OK or BACK button, the user moves to a new UI
screen, which must be analyzed before taking the next action
to complete a task. Hence, the time needed for cognitive
preparation is longer.

V. AUTOMATED MODEL CREATION FROM THE SMART TV
APP

The user interaction model G introduced in Section IV-A
is created by a specialized crawler that we developed for this
purpose. The crawler starts at a defined screen ns of the Smart
TV and explores its screens. During this process, only the
code of the app screen is analyzed, and no knowledge of
the internal structure of the app’s code is obtained. On each
screen, the crawler analyzes the available nested containers by
examining each clickable element. During this analysis, each
clickable screen or individual nested container is assigned a
separate node in the G, being dynamically constructed during
the crawling. The exploration process stops when no more
clickable element is available to be explored or when a defined
termination criterion has been met. The termination criteria
are defined by a number of nodes |N | in the created mode G.
The termination criteria are used for dynamically generated
UIs of apps with an online content (which essentially create
an infinite space to explore). When the exploration process
terminates, N contains all the examined nodes.

When the crawler arrives at a screen or screen nested
container, it examines the user actions available on this screen.
This is done by simulating the user’s remote control by
pressing UP, DOWN, LEFT, RIGHT, OK and BACK buttons.
Identified possible actions leading to a transition to next
screens or screen nested containers are then added as edges to
G.

5

When the crawler finishes the exploration of the SUT UI, E
contains all the possible transitions available from the screens
and screen nested containers contained in N . The set Ne

contains all screens (or screen nested containers) for which
no outgoing action is available (in the case of a well-designed
Smart TV app, Ne should be empty).

Regarding the time requirements to create the user interac-
tion model G via the crawler, the initial configuration of the
crawler for a new Smart TV app takes up to 30 minutes for a
completely new user. The crawling process itself depends on
the size of the explored space; however, the run time of the
crawler did not exceed 60 minutes for the testing app used in
this study.

VI. AUTOMATED UI ANALYSIS OF THE SMART TV APP

In our approach, we use the user interaction model G that is
generated by our automated crawler. As mentioned in Section
IV-A, we designed the crawler to scan the Smart TV app and
create the model without knowing the internal structure of the
app code. The details of the crawler implementation and the
full source code are available for download2. A step-by-step
running example of the crawler can be found in [30]. The
following points detail the concepts of our approach:

1) The UI of the Smart TV app is scanned by our crawler,
which creates model G as the output.

2) A set of tested user scenarios T is defined by a tester
using. The scenarios include the most frequent user tasks
in the app and/or the user tasks in the app that are re-
ported as problematic steps from a usability/accessibility
perspective.

3) Each t ∈ T is mapped to the nodes and edges of G in
the MBT framework (details follow in Section VII-C).

4) The user context C in which the defined tested user
scenarios T will be assessed is defined. Namely, the
values of UC, Edev , Eenv and δ are set for the individual
actions that can be invoked by the remote control.

5) The following set of verifications is performed for each
t ∈ T :

a) User scenario path p(t) is constructed for t. If p(t)
does not exist, this fact indicates a UI design flaw.
If this check is passed, then perform the following
checks:

b) If p(t) is not a simple path, compute the node
repetition

nr(p(t)) =
|p(t)|+ 1

nodes(p(t))
. Then, nr(p(t)) >

nrthreshold may indicate possible UI design
suboptimality. nrthreshold is discussed in Section
VI-A.

c) |p(t)| > |p(t)|threshold may indicate possible UI
design suboptimality. |p(t)|threshold is discussed in
Section VI-A.

d) E(p(t), C) is computed:

i) E(p(t), C) = ∞ (or division by 0) indicates
that p(t) is infeasible for a particular user in

2Smart TV crawler download page https://github.com/bestoun/EvoCreeper

context C (typically, a limit for a user with a
specific need).

ii) E(p(t), C) > Ethreshold may indicate possible
UI design suboptimality. Ethreshold is discussed
in Section VI-A.

6) To remove the UI design problems identified in the
previous steps, the UI designer can edit G in the MBT
environment by adding an edge (or a set of edges),
adding a node (or a set of nodes), or generally updating
the model. Then, the problematic scenarios can be
reanalyzed (repeat step 5) until the defined verification
rules are satisfied.

7) The adjustments in G can be transformed to a set of
change requests for the UI development team to repair
the detected problems or suboptimalities in the Smart
TV app.

When step 7 results in a change in the UI, steps 1-7 can
be repeated to verify the suitability of the changes from the
usability perspective. The whole cycle of steps 1-7 can be
repeated several times until the optimal result is achieved.

A. Initial Values of Thresholds

For the verification rules defined in Section VI, step 5, we
set the following initial values of the thresholds. We set the
value of nrthreshold to 1.5, the value of |p(t)|threshold to 20
and the value of Ethreshold to 25000. These values are based
on our previous experience, and they are further adjusted based
on feedback from the experiments in Section VII-D.

VII. EXPERIMENTAL VERIFICATION

We have verified our proposed approach in an experimental
evaluation study consisting of the technical verification of the
methods and experiment with a group of Smart TV users. The
following sections detail the experimental procedures and the
evaluation results.

A. Experiment Method

The experiments were conducted in a sequence of the
following steps:

1) We selected an open source Smart TV app3 (further
referred as testing app) as an SUT to be analyzed by
our specialized crawler to create user interaction model
G.

2) We configured a special testbed setup for the exper-
iments that consisted of Smart TV environment web
simulator with an installed testing app with a special
logging mechanism to capture user actions. In addition,
this mechanism counts the exact time at which the user
executes a particular action (represented by an edge or
node of G) on the app and the remote control button
that triggered the action.

3) We defined a set of four tested user scenarios T : one
to be used as a training scenario for the experiment
participants and three to collect the experimental data.

3https://github.com/daliife/Cinemup

6

The scenarios were deliberately defined in less detail
(capturing only a generally defined user task, not a
sequence of main screens and input actions to be vis-
ited/achieved on the app). The user scenarios used in the
experiment are described in detail in Section VII-B.

4) As described in the method defined in Section VI, each
t ∈ T is mapped to the nodes and edges of G in the
MBT environment.

5) For each t ∈ T , we ran the set of verification procedures
defined in Section VI. We implemented the verification
rules as a part of the MBT platform. The initial configu-
rations of UC, Edev , Eenv and δ are presented in Section
IV-C.

6) Concurrently, each t ∈ T was implemented in the
testbed by 25 independent users recruited from the
students of a software testing course. The users were
instructed to perform the user scenario as specified by
t. The logging mechanism logged their activities on the
app.

7) We compared the results obtained from the application
of the verification rules (step 5) and the independent
test by users (step 6). Namely, we compared the total
time needed to accomplish the user scenarios and the
length of the user scenario paths on the UI measured as
the number of transitions, and we analyzed the length
of individual user scenario paths invoked on the UI by
the remote control buttons. The results are presented in
Section VII-D.

8) We repeated step 6 again with another group of 24
participants. The details of the second verification are
in Section VII-D.

9) Based on feedback from the comparison results and from
the second experiment, we adjusted the configurations
of UC, Edev , Eenv and δ. Additionally, we adjusted the
values of the thresholds nrthreshold, |p(t)|threshold and
Ethreshold. We present the updated values in Section
VII-D.

10) We repeated step 5 with the adjusted configurations of
UC, Edev , Eenv and δ.

11) Again, we compared the results obtained from the
verification rules on the app and the independent test
by the users to check for improvement in the method
configuration. The details of this second verification
follow in Section VII-D.

Regarding the details of the experiment participants, we
recruited a group of sixty persons from the students of a
software testing course: 49 of the participants successfully
completed the experiment. There were nine females and 40
males, and the mean age was 23.6 years (SD = 1.1). Two
participants were left-handed, two participants wear glasses
for both long and short distances, 15 wear glasses for long
distances, 32 do not need prescription glasses, and only one
participant changes between glasses for reading and glasses
for looking at a distance. In their routine work (not in the
experiments, where the environment was standardized), ten
participants regularly use a touchpad as a primary pointing
device, one uses a trackpoint and 39 use a mouse.

The first group of 25 participants included three females
and 22 males, and the mean age was 23.8 years (SD = 1.1).
One participant was left-handed. Eleven of the participants
wear glasses for long distance vision in the first group. The
second group of 24 participants included six females and 18
males, and the mean age was 23.5 years (SD = 1.2). One
participant was left-handed. Four participants wear glasses
for long distance and two wear glasses for both long and
short distance. The distribution of the pointing devices used
in routine work was similar between groups. In each group,
five participants use a trackpad and the others use a mouse.

In the experiments, we took the following measures to
prevent the impact of a possible learning effect: (1) participants
started the experiment with a training scenario, and the results
from these scenarios were not taken into account in the
evaluation of the experimental data, and (2) we randomized
the sequence of user scenarios to be executed by each of the
participants and maintained an overall equal distribution of
these sequences.

B. User Scenarios in the Experiment

We considered the following user scenarios in the experi-
ment:

1) Examine all photos from the given movie in the "Popu-
lar" section.

2) Count the number of movies in the category "TOP TV."
3) Check if there is a movie with given name in the

category "TOP RATED."
4) Count the number of comedies in the category "TOP

RATED." To determine if a movie is a comedy or not,
use the movie metadata in its attributes.

Scenario 1 was used as a training scenario to allow the
experiment participants to become familiar with the testing
environment. The results of this scenario were not evaluated
further. Scenarios 2, 3 and 4 were used to collect data to adjust
the model parametrization and the thresholds used in the UI
verification rules.

C. Implementation of the Proposed Automated UI Analysis

and Testbed Setup

We implemented the proposed automated method in the
development version of the used MBT platform4. In this
environment, we created an abstract user scenario. We then
mapped the steps of the abstract user scenario to the nodes N

and edges E of the user interaction model G to compose a
tested user scenario t.

During the assessment of t in G, the user scenario path
p(t) is found in G and, subsequently, the values nr(p(t))
and E(p(t), C) are computed. The parametrization of context
C (configuration of the values of UC, Edev , Eenv and δ) is
entered via two CSV files, to which a path is specified.

The computed results can be copied to the clipboard for
further processing. For the experiment with the users (Step
6 of the experiment method described in Section VII-A), the
Smart TV environment web simulator with the testing app

4http://still.felk.cvut.cz/oxygen/

7

TABLE II: Detailed results for individual input actions -
experimental group A

input action avg. time [ms] valid invalid avg. time SD
LEFT 1063 83 5 873.98
RIGHT 975 1596 8 814.58
UP 687 4 0 250.58
DOWN 1173 36 0 1383.17
OK 2418 508 31 1739.04
BACK 1293 420 5 861.19

was deployed on a set of 20 workstations with the same
hardware and operating system configuration to minimize
possible bias caused by different hardware power or operating
system configurations.

The software simulation of the remote control device was
available in the software runtime environment. To minimize
the possible bias in results caused by different layouts or the
simulated remote control, the same layout was configured for
each of the participants.

D. Experiment Results

During the first phase of the experiment, we collected
data from 25 user participants (group A) who successfully
completed the assigned user scenarios. In total, the users
completed 75 test scenarios and produced 75 user scenario
paths. As mentioned previously, we did not consider the train-
ing scenario. Regarding the individual steps of the analyzed
user scenario paths, we analyzed 2696 path steps, i.e., the
transitions between nodes of the app model N triggered by
input actions invoked by pressing the UP, DOWN, LEFT,
RIGHT, OK and BACK buttons on the remote control. To
exclude excessively long transitions from the data processing,
we set a threshold of 10 s. We considered user scenario path
steps longer than 10 s to be biased, i.e., the user left the
interaction with the UI for a certain time and then returned.
In total, we excluded 49 steps, leaving 2647 steps in total to
analyze. Table II presents a breakdown of the acquired data
by individual input actions. In Table II, valid stands for the
number of valid actions, invalid stands for the number of
invalid actions, and SD stands for the standard deviation.

Table III compares the results from the experiment with
results obtained from the automated UI verification conducted
on the MBT platform for the initial parametrization of the
app model I. Scenario IDs (ID of t in Table III) refer to the
numbering in Section VII-B. Scenario 1 was used as a training
scenario and is not included in the analysis. The left part of the
table presents the results from the experiment with the group
of users. Here, avg_time means the average time needed
to execute the scenario in milliseconds. SD stands for the
standard deviation, and avg_stp represents the average number
of steps in the user scenario paths executed by the experiment
participants. The middle part of Table III presents the results of
the analysis for the scenarios performed using the verification
rules proposed in this paper and implemented in the MBT
platform. Here, we present |p(t)| and E(p(t), C) in millisec-
onds for each t. The right part of Table III compares the
experimental results of the user group with the results obtained
from the analysis conducted by the proposed method. Here,
DIFFstp = |p(t)|

avg_stp ·100% and DIFFtime =
E(p(t),C)
avg_time

·100%.

The relatively low correlation between DIFFstp and
DIFFtime indicates the suboptimality of the initial
parametrization of the user interaction model. Additionally,
DIFFtime for scenario 4 indicates incorrect settings. For
fewer steps (60 in the shortest path versus an average of 61
for the experiment participants), the E(p(t), C) computed by
the proposed method is higher than avg_time. Clearly, an
update of the user interaction model parametrization is needed
in the second iteration of the experiment. We further analyze
and discuss the results, including the differences between the
data obtained from the experiment with the users and the data
obtained from the proposed automated analysis (DIFFstp,
DIFFtime and their correlation), in Section VII-E.

In the second iteration of the experiments, we collected
data from another 24 user participants (group B) that suc-
cessfully completed the assigned user scenarios. Group B was
disjunctive from group A, and the participants were distributed
randomly between the groups. In total, the users completed 72
test scenarios, producing 72 user scenario paths. Regarding
the individual steps of the analyzed user scenario paths, we
analyzed 2645 user scenario path steps. We kept the same
threshold of 10 s to exclude excessively long transitions. In
total, we excluded 59 steps, resulting in 2586 steps in total
to analyze. Table IV presents a breakdown of the acquired
data by individual input actions for this second iteration of the
experiment. After the analysis of the data presented in Tables
II, III, IV, and VI, we adjusted the model parametrization. The
adjusted values are presented in Table V.

Based on the above analysis, we also updated the values of
the thresholds for the UI verification rules presented in Section
VI. The value of nrthreshold was kept at 1.5, |p(t)|threshold
was set to 100 and Ethreshold was set to 100000. Table VI
compares the results from the experiment with both groups
with the results obtained from the automated UI verification
performed on the MBT platform using the adjusted model
parametrization (refer to Table V).

After the adjustment of the user interaction model
parametrization, DIFFtime improved compared to the results
from the first iteration of the experiment (refer to Table III).
The improvement in DIFFstp is not relevant to evaluate,
as we compare the shortest path computed by the proposed
method in the MBT environment with the paths taken in the
app’s UI by the participants from both experimental groups.
However, the correlation between DIFFtime and DIFFstp is
more evident in this phase of the experiment, which indicates
that the user interaction model parametrization was adjusted to
be more accurate. We analyze and discuss the results further
in Section VII-E.

E. Discussion

In this section, we discuss and analyze the experimental
results in more depth. The first point to analyze is the
significant difference between the results achieved by the
experimental participants and the results produced by the
proposed automated analysis in the case of scenario 3 (see
Table VI). The average length of the user path in this scenario
was 16 steps for both experimental groups, whereas the result

8

TABLE III: Results for tested user scenarios - experimental group A

ID of t
Experiment with users Proposed method Differences

avg_time [ms] avg_time SD avg_stp avg_stp SD E(p(t), C) |p(t)| DIFFtime DIFFstp

2 28090 15310.52 27 15.89 20100 23 71.56% 85.19%
3 19164 8095.88 16 7.34 7300 7 38.09% 43.75%
4 91527 33128.95 61 18.67 97000 60 105.98% 98.36%

TABLE IV: Detailed results for individual input actions -
experimental group B

input action avg. time [ms] valid invalid avg. time SD
LEFT 1178 93 3 1027.16
RIGHT 971 1540 11 745.51
UP 1251 5 0 1196.70
DOWN 1335 30 0 1525.18
OK 2179 482 44 1459.61
BACK 1243 436 1 709.43

TABLE V: Adjusted model parametrization

action δ(a(e)) UC(a(e), C) Edev(C) Eenv(C)
LEFT 1000 1.0

1.0 1.0

RIGHT 1000 1.0
UP 1000 1.0
DOWN 1250 1.0
OK 2000 1.0
BACK 1225 1.0

achieved by the automated analysis was 7. The rationale
behind this difference is that there were two possible ways
to iterate the list of movies in the tested app, either from an
initial position in the list to the right or from the initial position
to the left. Most users intuitively started iterating the list to the
right, which required more steps. The proposed method took
the shortest path to accomplish the task by iterating the list to
the left. For both experimental groups, only a few actions with
the UP button were performed (see Tables II and IV) due to
the nature of the tested user scenarios âĂŞ the UP button was
not practically required to accomplish the task. Due to low the
frequency of UP actions, these data are not considered in the
experimental evaluation.

For the RIGHT button, the average times of actions in
Tables II and IV are lower than those for the other buttons.
The rationale behind this situation is that the RIGHT button
was used in iterating the lists of the movies, which takes less
time than needed to control other elements in the tested app.
On the other hand, the average time for operations using the
OK button is longer than that of the other buttons, which is
expected because after pressing the OK button, the user usually
moves to a new screen of the UI, where it takes time to choose
the next action.

When analyzing the difference between the results of the
experiment with the users and the results produced by the
proposed automated analysis (DIFFtime and DIFFstp in
Tables III and VI), in both phases of the experiment, the
difference itself is not the primary indicator. As the proposed
automated analysis can find a better path through the UI, the
difference will be present in the comparison. In fact, what
is important is the correlation between the DIFFtime and
DIFFstp. In the first phase of the experiment (Table III),
this correlation is present but not so strong. However, this
correlation significantly increases in the second phase of the
experiment (Table VI), which indicates improvement in the

configuration of the user interaction model.
Another point to discuss is the values of the thresholds

for the UI verification rules presented in Section VI, namely,
nrthreshold, |p(t)|threshold and Ethreshold. These thresholds
can be set by the user based on judgment and experience with
the developed app. However, some recommendations must be
provided to potential users of the method. The results from
the experiments showed that for Smart TV app, the values
of the thresholds (especially |p(t)|threshold) are significantly
higher than the intuitively expected values for web, desktop or
mobile app UI design. This difference can be explained by the
relatively simple remote control device, which requires more
user actions to reach particular elements of the UI, compare
to web apps, for instance.

To compare the proposed approach with the available meth-
ods in the related areas, we start with manual usability testing
of Smart TV apps. Compared to the proposed approach, which
is automated, manual assessment of the usability of a smart TV
app (e.g. [2], [3], [13]) might take more time and resources.
From the performance viewpoint, the proposed automated
approach makes the assessment process faster and hence, more
repeatable after various changes in the developed smart TV
app which might impact overall app development economics.

The proposed approach also differs from the previous pro-
posals in the area of the automated usability testing of Smart
TV apps based on a model created from the SUT UI. A
comparable candidate here is an HSTM model by Cui et al.
[19], based on a state machine and hierarchical structure of
the app. In contrast to the approach proposed in this study,
the HSTM based model is constructed by scanning the source
code of the Smart TV app, whereas in our approach, UI screens
are analyzed only. This fact might not impact the performance
of the method itself; as it can be considered rather as an
organizational constraint.

Additionally, an approach by Cui et al. is considered to
be exhaustive as it will detect all the elements, including
those that are not clickable. Hence, extensive filtering of those
elements in the model is needed to generate an effective
interaction model of the UI of the Smart TV app. This
represents an extra step in the process and might impact its
performance. Our approach does not require the source code
of the app. Instead, we use a unique crawler to analyze the
app’s UI and detect the actual clickable elements, which, in
turn, makes the proposed method more flexible.

To compare the crawler proposed in this study to the
alternatives available in the literature, crawlers that can be
found, focus on different domains than the Smart TV apps
(e.g. web applications [20], thick-client app UIs [21] or mobile
apps [22]–[24]). Hence, they do not support the goals of our
study, and it is a difficult task to compare their performance,
as the domain of their operation differs significantly.

9

TABLE VI: Results for tested user scenarios - experimental groups A and B

ID of t
Experiment with users Proposed method Differences

avg_time [ms] avg_time SD avg_stp avg_stp SD E(p(t), C) |p(t)| DIFFtime DIFFstp

Experimental group A
2 28090 15310.52 27 15.89 24250 23 86.33% 85.19%
3 19164 8095.88 16 7.34 8000 7 41.74% 43.75%
4 91527 33128.95 61 18.67 85275 60 93.17% 98.36%
Experimental group B
2 32102 17728.78 30 12.19 24250 23 75.54% 76.67%
3 17937 9463.59 16 7.38 8000 7 44.60% 43.75%
4 85546 20019.32 60 14.31 85275 60 99.68% 100.00%

Regarding the models used by mentioned crawlers, differ-
ences are also present in comparison to our study. Nguyen et

al. [31] are using an event-flow graph (EFG) as a model of the
UI. Amalfitano et al. [23] employ a state machine as a model.
These approaches are not applicable in the case of smart TV
apps, which is caused by the different nature of the user’s
interaction with the app. To give an example, in a mobile app,
the spatial distance between two icons (represented by two
model states) is not relevant to the transition. In a smart TV
app, this distance significantly matters and is expressed by a
set of transitions. This difference leads to a different nature of
the user interaction model.

Finally, regarding the model-checking approach for UI
usability testing, the proposal of Harrison et al. [29] can
be compared with our approach. However, Harrison et al.
are using temporal logic as an underlying model of the
SUT and focuses on the verification of the UI of medical
devices. In comparison, our approach uses the User Interaction
Model based on a directed graph, and the primary goal is to
identify the possible UI design sub-optimalities, so these two
approaches are conceptually similar only.

To conclude, we have identified no direct alternative to the
approach proposed in this study and from this viewpoint, the
proposed method is an original contribution to the filed of
automated UI testing of Smart TV apps, based on automated
creation of the User Interaction Model from the app UI.

VIII. THREATS TO VALIDITY

In this section, we discuss issues that might affect the
accuracy or objectivity of the results. For each issue, we also
consider its possible impact and the actions we took to mitigate
the impact.

The first possible concern is that the learning effect during
the experiments might bias the results. We prevented the learn-
ing effect by two measures: (1) each participant started the
interaction with the UI with a training user scenario that was
not included in the evaluation results, and (2) each participant
was presented a randomized sequence of user scenarios. We
kept the distribution of the sequences of user scenarios equal
between the experimental groups.

Another concern that might be raised regarding the experi-
ments is the simulation of the Smart TV environment that was
used instead of a real Smart TV device, which might influence
the measured data and, as a consequence, the accuracy of the
suggested user interaction model parameterization (constants
UC, Edev , Eenv and δ). However, the principle of the method
and its use case is not affected by this possible limitation.

For the Smart TV app, only the user interaction model
parameterization constants have to be adjusted. Moreover, the
same concern can be raised in the case of different types of
remote controls. Here, the composition of the buttons on the
remote control and general ergonomics of the device might
influence the parametrization.

Additionally, the accuracy of UC, Edev , Eenv and δ can be
influenced by the set of user scenarios and analyzed apps.
Achieving perfect and exact parametrization values is not
a realistic task and is not a reasonable goal. The proposed
method works within a certain tolerance given by the thresh-
olds nrthreshold, |p(t)|threshold and Ethreshold, which can be
adjusted by the users of the method.

IX. CONCLUSION

The proposed combination of the SUT user interaction
model reconstructed from an actual Smart TV application with
a set of verification rules aimed to assess the feasibility and
efficiency of user tasks (being the major quality characteristic
in usability testing) is, to the best of our knowledge, an original
attempt in the field, as such a study has not been published
previously.

In contrast to the manual usability testing techniques, the
proposed method is automated; therefore, the proposed tech-
nique is faster and the possibility of human-made mistakes
is lower. On the other hand, if the method is not configured
correctly, the findings might be misleading. We minimized this
effect by conducting experiments in which we adjusted values
of the configuration constants UC, Edev , Eenv and δ based on
the results of independent test with a group of users.

REFERENCES

[1] J. S. Dumas, J. S. Dumas, and J. Redish, A practical guide to usability

testing. Intellect books, 1999.
[2] A. Ingrosso, V. Volpi, A. Opromolla, E. Sciarretta, and C. M. Medaglia,

“Ux and usability on smart tv: A case study on a t-commerce applica-
tion,” in Proc. Int. Conf. on HCI in Bus. Springer, 2015, pp. 312–323.

[3] I. Alam, S. Khusro, and M. Naeem, “A review of smart tv: Past,
present, and future,” in Proc. Int. Conf. on Open Source Syst. & Technol.

(ICOSST). IEEE, 2017, pp. 35–41.
[4] T. Kim, S. Choi, and H. Bahn, “A personalized interface for supporting

multi-users in smart tvs,” IEEE Trans. Consum. Electron., vol. 62, no. 3,
pp. 310–315, 2016.

[5] J. Kim, S. Kim, S. Park, and J. Hong, “Home appliances controlling
through smart tv set-top box with screen-mirroring remote controller,”
in Proc. Int. Conf. ICT Convergence (ICTC), Oct 2013, pp. 1009–1012.

[6] J. Kim, E. Jung, Y. Lee, and W. Ryu, “Home appliance control frame-
work based on smart tv set-top box,” IEEE Trans. Consum. Electron.,
vol. 61, no. 3, pp. 279–285, Aug 2015.

[7] S. Y. Chun and C. Lee, “Applications of human motion tracking: Smart
lighting control,” in Proc. IEEE Conf. Comput. Vision Pattern Recognit.

Workshops, June 2013, pp. 387–392.

10

[8] M. R. Cabrer, R. P. D. Redondo, A. F. Vilas, J. J. P. Arias, and J. G.
Duque, “Controlling the smart home from tv,” IEEE Trans. Consum.

Electron., vol. 52, no. 2, pp. 421–429, May 2006.
[9] L. Jalal, M. Anedda, V. Popescu, and M. Murroni, “Internet of things

for enabling multi sensorial tv in smart home,” in Proc. IEEE Broadcast

Symp. (BTS). IEEE, 2018, pp. 1–5.
[10] D. Vavilov, A. Melezhik, and I. Platonov, “Healthcare application

of smart home user’s behavior prediction,” in Proc. IEEE Int. Conf.

Consum. Electron. (ICCE), Jan 2014, pp. 323–326.
[11] C. Fan, Y.-K. Wang, and J.-R. Chen, “Home sleep care with video

analysis and its application in smart tv,” in Proc. IEEE 3rd Global Conf.

Consum. Electron. (GCCE), Oct 2014, pp. 42–43.
[12] E. Erkan, H. R. OzÃğalÄśk, and S. YÄślmaz, “Designing a smart

security camera system,” in Proc. 23rd Signal Process. Commun. Appl.

Conf. (SIU), May 2015, pp. 1705–1708.
[13] D.-H. Shin, Y. Hwang, and H. Choo, “Smart tv: are they really smart in

interacting with people? understanding the interactivity of korean smart
tv,” Behaviour & information technology, vol. 32, no. 2, pp. 156–172,
2013.

[14] H. Okada and R. Fujioka, “Automated methods for webpage usability
& accessibility evaluations,” Advancesin Human Computer Interaction,

In-Tech Publishing, chapter21, pp. 351–364, 2008.
[15] A. Gimblett and H. Thimbleby, “Applying theorem discovery to auto-

matically find and check usability heuristics,” in Proc. 5th ACM SIGCHI

Symp. on Eng. interactive Comput. Syst. ACM, 2013, pp. 101–106.
[16] R. Cassino and M. Tucci, “Developing usable web interfaces with the

aid of automatic verification of their formal specification,” Jour. of Visual

Languages & Computing, vol. 22, no. 2, pp. 140–149, 2011.
[17] R. Cassino, G. Tortora, M. Tucci, and G. Vitiello, “Sr-task grammars: a

formal specification of human computer interaction for interactive visual
languages,” in Proc. IEEE Symp. on Human Centric Comput. Lang. and

Environ. IEEE, 2003, pp. 195–197.
[18] J. Nielsen, “Ten usability heuristics, available from: https://www.

nngroup.com/articles/ten-usability-heuristics/,” 1995, checked 2016-01-
10.

[19] K. Cui, K. Zhou, H. Song, and M. Li, “Automated software testing based
on hierarchical state transition matrix for smart tv,” IEEE Access, vol. 5,
pp. 6492–6501, 2017.

[20] A. Mesbah, A. van Deursen, and S. Lenselink, “Crawling ajax-based web
applications through dynamic analysis of user interface state changes,”
ACM Trans. Web, vol. 6, no. 1, pp. 3:1–3:30, Mar. 2012.

[21] A. Memon, I. Banerjee, and A. Nagarajan, “Gui ripping: Reverse
engineering of graphical user interfaces for testing,” in Proc. 10th

Working Conf. on Reverse Eng. (WCRE). IEEE, 2003, pp. 260–269.
[22] D. Amalfitano, A. R. Fasolino, and P. Tramontana, “A gui crawling-

based technique for android mobile application testing,” in Proc. IEEE

int. conf. on Softw. testing, verification and validation workshops

(ICSTW). IEEE, 2011, pp. 252–261.
[23] D. Amalfitano, A. R. Fasolino, P. Tramontana, B. D. Ta, and A. M.

Memon, “Mobiguitar: Automated model-based testing of mobile apps,”
IEEE Software, vol. 32, no. 5, pp. 53–59, 2015.

[24] P. Wang, B. Liang, W. You, J. Li, and W. Shi, “Automatic android gui
traversal with high coverage,” in Proc. Fourth Int. Conf. on Commun.

Syst. and Netw. Technol. (CSNT). IEEE, 2014, pp. 1161–1166.
[25] B. N. Nguyen, B. Robbins, I. Banerjee, and A. Memon, “Guitar: an

innovative tool for automated testing of gui-driven software,” Automated

software engineering, vol. 21, no. 1, pp. 65–105, 2014.
[26] B. Bérard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petrucci,

and P. Schnoebelen, Systems and software verification: model-checking

techniques and tools. Springer Science & Business Media, 2013.
[27] P. Godefroid and K. Sen, “Combining model checking and testing,” in

Handbook of Model Checking, E. M. Clarke, T. A. Henzinger, H. Veith,
and R. Bloem, Eds. Springer, 2018, ch. 19, pp. 613–650.

[28] S. A. Seshia, N. Sharygina, and S. Tripakis, “Modeling for verification,”
in Handbook of Model Checking, E. M. Clarke, T. A. Henzinger,
H. Veith, and R. Bloem, Eds. Springer, 2018, ch. 3, pp. 75–106.

[29] M. D. Harrison, P. Masci, J. C. Campos, and P. Curzon, “Verification of
user interface software: the example of use-related safety requirements
and programmable medical devices,” IEEE Trans. Human-Mach. Syst.,
vol. 47, no. 6, pp. 834–846, 2017.

[30] B. S. Ahmed and M. Bures, “Testing of smart tv applications: Key
ingredients, challenges and proposed solutions,” in Proc. Future Technol.

Conf. (FTC), K. Arai, R. Bhatia, and S. Kapoor, Eds. Cham: Springer
Int. Publishing, 2019, pp. 241–256.

[31] B. N. Nguyen, B. Robbins, I. Banerjee, and A. Memon, “Guitar: an
innovative tool for automated testing of gui-driven software,” Automated

Software Engineering, vol. 21, no. 1, pp. 65–105, 2014.

Miroslav Bures received his Ph.D. at Czech Tech-
nical University in Prague. His research interests are
model-based testing, path-based testing, data consis-
tency testing and combinatorial interaction testing,
effective test automation (test automation architec-
tures, assessment of automated testability, economic
aspects) and quality assurance methods for Internet
of things solutions.

Miroslav Macik received his Ph.D. at Czech Tech-
nical University in Prague. He currently works at
the same institution as a researcher in the field of
Human-Computer Interaction. His research focuses
on model-based design and evaluation, haptic inter-
action, accessibility.

Bestoun S. Ahmed obtained his Ph.D. from Univer-
sity Sains Malaysia (USM) in 2012. Currently, he is
a senior lecturer at the department of mathematics
and computer science, Karlstad University, Sweden.
His main research interest include Combinatorial
Testing, Search Based Software Testing (SBST), and
Applied Soft Computing.

Vaclav Rechtberger is PhD. student in Software
testing Intelligent Lab (STILL), dept. of Computer
Science and Engineering, Czech technical University
in Prague. His focus is Model-based Testing, test
automation and testing of Internet of Things systems.

Pavel Slavik is full Professor of Computer Science
and member of HCI group at Czech Technical Uni-
versity in Prague. His fields of interest are visual-
ization, usability and accessibility. He served in the
past as an IPC member for several HCI conferences.

View publication statsView publication stats

