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Figure 1: StyleProp in action: a hand-drawn style is transferred to a given 3D model (a) from a single exemplar created using color
pencils (b). A novel variant of guided patch-based synthesis is used to pre-calculate a sparse set of samples (d, f, h) from which the model
can be rendered in real-time at arbitrary location within available interaction space (c, e, g) even on a mobile phone (i, j) while maintaining
consistency when the viewing direction is changed. Style exemplar (b) courtesy of © Štěpánka Sýkorová.

Abstract

We present a novel approach to the real-time non-photorealistic rendering of 3D models in which a single hand-drawn exemplar
specifies its appearance. We employ guided patch-based synthesis to achieve high visual quality as well as temporal coherence.
However, unlike previous techniques that maintain consistency in one dimension (temporal domain), in our approach, multiple
dimensions are taken into account to cover all degrees of freedom given by the available space of interactions (e.g., camera
rotations). To enable interactive experience, we precalculate a sparse latent representation of the entire interaction space, which
allows rendering of a stylized image in real-time, even on a mobile device. To the best of our knowledge, the proposed system is
the first that enables interactive example-based stylization of 3D models with full temporal coherence in predefined interaction
space.

CCS Concepts
• Computing methodologies → Non-photorealistic rendering;

1. Introduction

With the rapid evolution of physically-based rendering and the abil-
ity to reproduce natural materials’ appearance, artists nowadays
produce breathtaking animated movies and video games that are
quickly reaching a state of absolute visual perfection. Although the
audience highly appreciates this convergence, artists start to feel
that with the prevalence of realism, the visuals they continue pro-
ducing become less and less unique. It is usually challenging for
an uninformed observer to recognize an animated movie’s author-

ship or a video game by its visuals. Due to this reason, artists start
to seek techniques that can automatize repetitive tasks while still
being able to retain their unique style. The ability to draw by hand
either physically or digitally and reproduce the look of traditional
artistic media has recently become increasingly attractive (see, e.g.,
games such as Cuphead, Memories Retold, Dreams, Machinarium,
or Dordogne and recently released animated features Spider-Man:
Into the Spider-Verse and Loving Vincent, Disney shorts Just A
Thought and Jing Hua or Riot Games’ Annie).
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Besides the production of animated movies and video games,
a similar trend also emerges in other fields where visual unique-
ness plays an important role. For instance, in the architecture de-
sign, when a studio participates in a competition to realize a devel-
oper project, photo-realistic visualizations are usually considered
a disadvantage. They prevent the committee from recognizing the
unique style of a particular studio, which indirectly serves as a qual-
ity certificate. Nevertheless, creating such a distinctive presentation
is a tedious task; thus, there is a high demand for tools that could
help automatize the creative process while still retaining the origi-
nal aesthetic quality.

An ideal tool that would help artists to simplify the creative pro-
cess in the sense mentioned above would take a stylized example
(e.g., an initial view on a 3D model), distill its distinct visual prop-
erties, and transfer them on the target content (e.g., the same model
in different viewpoint or pose) so that the resulting stylized coun-
terpart reproduces the look and the feel of the original artwork.

Such a setting is in line with the current research efforts on
automatic style transfer that became popular thanks to significant
advances made by neural techniques [GEB16, KSS19, KSLO19].
Despite the impressive results those approaches can produce, their
fundamental limitation is that they are trying to reproduce only the
given artistic style’s statistical properties. There is no guarantee that
a specific local stylization choice made by an artist (e.g., a carefully
crafted stroke depicting an eye region) will retain in the stylized
counterpart.

A concurrent approach to neural style transfer uses guided patch-
based synthesis [HJO∗01, BCK∗13, FJL∗16, FJS∗17, JvST∗19],
which focuses more on local textural details and semantic mean-
ingfulness of the transferred style instead of global statistics. By
taking into account those essential properties, the results pro-
duced by those techniques are sometimes difficult to distinguish
from the original artwork. However, their drawback is a signifi-
cant computational overhead that hinders their applicability in in-
teractive applications. Although real-time approximative solutions
exist [FCC∗19, SJT∗19], those impose various restrictions on the
content being stylized (e.g., faces only) and the type of guidance
that can be used (e.g., sufficient spatial variation).

In this paper, we introduce a novel solution to guided patch-
based synthesis that enables real-time response with temporal co-
herence while being agnostic to the stylized content and guidance.
We sparsely sample the space of possible interaction states (e.g.,
camera rotations) and compute each state’s stylization coherently
with nearby samples. Then for each stylized state, we store only
its latent representation (the nearest-neighbor field) from which we
can quickly reconstruct the intermediate states and render the final
stylized image. Moreover, since the sampled set is relatively com-
pact, we can transfer it swiftly via the network and deliver a smooth
interactive 3D viewing experience even on a mobile device.

2. Related Work

Early approaches to non-photorealistic rendering [KCWI13] use
hand-crafted algorithmic solutions to paint an input image or video
in a particular style. Some employ physical simulation [CAS∗97,
HLFR07, LXJ12] or a hand-crafted shader [BKTS06, BNTS07,

BLV∗10, MSS∗18] to mimic given artistic medium; others com-
pose the result from a library of predefined pen [SWHS97,
PHWF01, SZKC06], hatch [BSM∗07], or brush strokes [Lit97,
HE04,SSGS11,ZZ11]. Although these techniques can deliver con-
vincing results, they work only on their respective domain; they are
limited to a single style or a certain artistic tool.

Sloan et al. [SMGG01] tried to address this lack of control over
the appearance in their technique called The Lit Sphere (a.k.a. Mat-
Cap). They allow the user to prepare a hand-drawn exemplar that
depicts a stylized counterpart of an illuminated sphere and use it
to stylize the illumination of an arbitrary target 3D model. To do
that, they employ environment mapping [BN76]—a particular vari-
ant of texture mapping where vertex normals are used for texture
lookup instead of UV coordinates. Nevertheless, MatCap cannot
be directly applied in our scenario since it assumes the stylization
of illumination. Debevec et al. [DTM96] proposed a similar tech-
nique that can re-project photographs on 3D models. Although their
method is directly applicable in our scenario, it cannot handle more
extensive viewpoint changes and it distorts the planar structures in
the original style exemplar due to texture re-projection (c.f. Fig. 2).

a) b) c)

Figure 2: A simple approach to our problem would be to employ
the technique of Debevec et al. [DTM96], i.e., to use the original
style exemplar (a) as a texture and re-project it on the new pose (b).
While this method enables real-time rendering and can provide suf-
ficiently good results when the camera position does not change
considerably, it is prone to disturbing artifacts in our scenario. A
key issue here is that texture mapping does not preserve the origi-
nal style exemplar’s planarity, i.e., it deforms strokes to respect the
shape of the underlying geometry and thus makes the visual system
believe the painting was created on the surface and not in the im-
age plane. It is also apparent that the re-projection cannot correctly
handle model parts with a normal almost parallel to the original
image plane. Since the re-projection is limited to individual trian-
gles, the resulting image may suffer from a misalignment of sharp
geometric details with fluffy structures painted in the original style
exemplar. Our approach alleviates all mentioned issues (c). Style
exemplar (a) courtesy of © Štěpánka Sýkorová.

Hertzmann et al. [HJO∗01] proposed an image analogies frame-
work to alleviate the mentioned drawbacks. In their technique, they
employ patch-based synthesis [WSI07, KNL∗15, FJL∗16] to pre-
serve the planarity of structures in the original style exemplar while
still maintaining meaningful style transfer using additional guid-
ing channels. Others extended this concept to handle style trans-
fer to fluid animations [JFA∗15], 3D renders [FJL∗16], or facial
animations [FJS∗17]. However, obtaining high-resolution stylized
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images using patch-based synthesis is a computationally expensive
task even on the GPU; thus, these methods are hardly accessible
when a low computational budget is available, e.g., on a mobile de-
vice. Recently, Sýkora et al. [SJT∗19] introduced a real-time vari-
ant of guided patch-based synthesis that is, however, limited only
to a specific type of guidance containing sufficient spatial variation
such as surface normal or texture coordinates.

Our setting bears a resemblance to a stylization scenario where
the aim is to propagate the appearance of a single stylized keyframe
to the remaining animation frames or a video sequence. This ap-
proach was pioneered by Bénard et al. [BCK∗13], who extended
the patch-based method of Hertzmann et al. [HJO∗01] by a set
of auxiliary guiding channels provided by a 3D renderer and by a
new optimization scheme that enables the generation of temporally
coherent sequences. Recently, Jamriška et al. [JvST∗19] proposed
a video stylization framework where necessary guiding channels
are extracted automatically from the video. Moreover, Jamriška et
al. offer a post-processing step to merge content stylized from dif-
ferent keyframes. However, a fundamental limitation of these tech-
niques is that they are not interactive and can preserve coherency
only in one dimension—in time.

A popular example-based approach to style transfer pioneered
by Gatys et al. [GEB16] uses the response of the VGG-19 net-
work [SZ14] to measure the similarity of the stylized image and
the target content. Based on this measurement, they refine the out-
put stylized image using back-propagation. This approach, how-
ever, requires costly optimization. Others used this technique to
generate a larger dataset and train a feed-forward network that can
reproduce a particular artistic style notably faster [JAFF16,UVL16,
ULVL16,WOZW17,UVL17,WRB17]. However, those approaches
suffer from two significant drawbacks: (1) they often fail in repro-
ducing fine textural details presented in the original style exemplar,
and (2) they do not guarantee that the transfer is semantically mean-
ingful, e.g., that the strokes used to stylize an eye in the original
style exemplar are used to stylize an eye region in the target image.

One can solve the problem of appearance transfer by employing
generative adversarial networks [GPAM∗14]. Those can be trained
to perform so-called image-to-image [IZZE17, ZPIE17, ZZP∗17]
as well as video-to-video [TLYK18, WLZ∗18] translation. How-
ever, this approach relies on a huge dataset of translation pairs,
which is not available in our scenario. Some techniques utilize an
encoder-decoder scheme to enable the transfer of an arbitrary style
to a content image using a single network trained on unpaired ex-
emplars [HB17, LFY∗17, LZY∗17]. The encoder, usually a set of
convolutional layers of the VGG-19, extracts feature representation
from both style and content image. The features are then combined,
and a pre-trained decoder turns them back into the image space.
Recently, Kotovenko et al. [KSM∗19,KSLO19] proposed complex
encoder-decoder systems that can deliver impressive results nicely
reproducing even lower-level details. Nevertheless, their transfer is
still not semantically meaningful as they measure only statistical
correlations between the stylized image and the original style ex-
emplar.

Various methods combine aspects of patch-based synthesis and
neural-style transfer to achieve semantically meaningful transfer
while maintaining neural networks’ ability to generalize. To better

reproduce local features, Li et al. [LW16] search for neural patches
in a style image while following the structure of a content image.
Liao et al. [LYY∗17] extended this idea into a deep image analogy
framework. Instead of image patches, they compute dense corre-
spondences in the feature space of responses given by the VGG-
19 network. Although this technique delivers impressive results,
it is computationally expensive and does not support coherence
when considering animation. Futschik et al. [FCC∗19] approxi-
mate the patch-based method of Fišer et al. [FJS∗17] by training
a feed-forward network on a large dataset produced by the men-
tioned method. Recently, Texler et al. [TFF∗20] combined neural
style transfer with patch-based synthesis to enable the generation
of high-resolution stylized imagery. Although their approach can
deliver notably better stylization quality, it still relies on the net-
work’s capability to provide meaningful results respecting scene
semantics.

When performing style transfer to animation or video, the tem-
poral consistency has to be taken into account. Although a certain
amount of temporal flicker is natural for traditional hand-colored
animations [FLJ∗14], it can be visually demanding when the re-
sulting sequence is observed for a longer period and can cause
dizziness we would like to avoid. Various methods, both patch-
based [BCK∗13,FJS∗17,DLKS18,JvST∗19,FSDH19] and neural-
based [CLY∗17, GJAFF17, SKLO18, RDB18], allow for enforcing
temporal consistency explicitly by considering relations between
individual animation/video frames. Alternatively, one can employ
a blind temporal coherency [LHW∗18] to stabilize the arbitrary in-
put video sequence. Although all mentioned methods can help to
suppress or entirely remove temporal flicker, they consider tempo-
ral coherency only in one dimension—in time. In our scenario, we
need to solve the problem of temporal consistency in two or more
dimensions.

Our approach also resembles image-based rendering that can
produce impressive novel views from a sparse set of input pho-
tographs [STB∗19, MSC∗19]. A key difference in our scenario is
that we have only a single input image and we aim to preserve
planar structures of the original style exemplar, i.e., to retain scale
and orientation of individual brush strokes and specific canvas pat-
terns or paper grain. Those features are usually distorted by out-
of-plane deformations, which are desirable when generating novel
views under perspective projection. These deformations are, how-
ever, unwanted in our style transfer scenario.

3. Our Approach

Our method’s input is a 3D model M with a texture T that highlights
semantically essential details. To prepare a style exemplar, we first
produce a render of M: Ri (see Fig. 3) at a specific location i ∈ I,
where I is an interaction space through which the user can explore
the model M (e.g., a set of all possible camera rotations or zooming
in/out). We assume Ri contains all important structures that would
appear when exploring I. In our current implementation i is chosen
manually by the user. However, we envision an automatic estima-
tion of the optimal location as future work. Finally, we print Ri on
a paper and provide it to the artist as a stencil to prepare a stylized
hand-drawn exemplar Si (also denoted as S). Optionally, the artist
can paint over the stencil digitally using a tablet.

© 2020 The Author(s)
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Figure 3: An overview of our method: First, a model M is rendered in preselected interaction state i to produce a stencil Ri over which
an artist paints the style exemplar Si. Also, a set of source guiding channels GS is rendered at the state i. Then in the pre-processing
phase, available interaction space I is sampled to a set of states X = {x1, . . . ,xN} ⊂ I and for each such state, the full render, as well as
other guiding channels in GT , are computed. Those serve as an input to our patch-based synthesis algorithm that maintains coherence in
multiple dimensions, i.e.; it takes into account consistency between nearby interaction states in X. This algorithm’s output is a set of nearest
neighbor fields (NNF) at each interaction state x. Those provide a latent representation from which the corresponding stylized image T can
be reconstructed (not shown in this figure). Finally, in the real-time rendering phase, the user browses to an arbitrary interaction state j ∈ I,
and at that location, pre-computed NNFs of nearby states xa, . . . ,xd are combined to produce NNFj from which the final target image Tj is
reconstructed using voting operation. Alternatively, the NNF upsampling technique of Texler et al. [TFF∗20] can be used to increase the
resolution of the output image. See the text for further details. Style exemplar Si courtesy of © Jan Pokorný.

The task for our method is to render Tj (see Fig. 3)—a stylized
counterpart of the target model M seen from a different location
j ∈ I. We would like Tj to be still perceived as a painting/drawing
on a canvas/paper comparable to Si, i.e., we need to preserve planar
structures typical for the used artistic media such as brush strokes
or canvas pattern. In addition, we would like to retain the artist’s
intention, i.e., stylize a particular feature in Tj in a similar way as it
was stylized in the original style exemplar Si. Finally, our aim is to
render Tj in real-time on a mobile device while maintaining tem-
poral consistency during the interactions in the available interaction
space I.

We approach this task in two steps. First, we generate N sam-
ples of the interaction space I, i.e., X = {x1, . . . ,xN} ⊂ I. Then
for each sample x ∈ X , we synthesize Tx using a patch-based syn-
thesis algorithm that respects planar structures of the original style
exemplar Si. Moreover, we also ensure that when a user moves
from a sample xk to a nearby sample xl , the transition will be vi-
sually consistent. Finally, we store a latent representation of Tx de-
noted as NNFx, and during the interactive exploration when the user
browses through I into a location j, we retrieve NNFs of all nearby

samples around j:N j ⊂X and use them to quickly reconstruct the
stylized image Tj. A key advantage of combining latent representa-
tions instead of blending images is that the final stylized image will
look comparable to the original patch-based synthesis algorithm’s
output.

The task described above has a substantial difference com-
pared to previous patch-based synthesis techniques [BCK∗13,
FJS∗17, JvST∗19] where the coherence is maintained only in one
dimension—in time. In our scenario, we need to achieve consis-
tency in all possible dimensions of I. To do that, we extend the
patch-based synthesis algorithm of Fišer et al. [FJL∗16] (StyLit) to
support multidimensional coherence. We provide a brief overview
of the original StyLit algorithm, and then we propose its extension.

3.1. StyLit algorithm overview

In its original form, StyLit algorithm aims to minimize the follow-
ing error over all patches in the target synthesized image T :

E(S,T,GS,GT ) = ∑
q∈QT

min
p∈QS

(Et(S,T, p,q)+Eg(GS,GT , p,q)) .

(1)

© 2020 The Author(s)
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Figure 4: For buildings we used the following set of guiding channels: full global illumination (a), direct (b), indirect (c), specular (d)
components, shadow guide (e), and edge guide (f). For characters, to distinguish between different body parts, we used material ID (h)
together with full global illumination (g).

Here QS & QT are sets of patches in the source style exemplar S and
the target synthesized image T , Et is the texture coherence error:

Et(S,T, p,q) = ‖S(p)−T (q)‖2 (2)

and Eg is the guidance error:

Eg(GS,GT , p,q) = ‖GS(p)−GT (q)‖2 (3)

where GS & GT are source and target multichannel guides, which
are computed using a 3D renderer. Besides a full global illumina-
tion channel, its direct/indirect/specular components, and shadow
channel (used in the original StyLit algorithm), we added an edge
channel (c.f. Fig. 4a–f):

G{S,T} = {full,direct, indirect,specular,shadow,edge}. (4)

For 3D characters we use the full global illumination channel and
the material ID channel (c.f. Fig. 4g–h):

G′{S,T} = {full, id}. (5)

To compute E , the nearest neighbor field (NNF) is constructed
between the sets of source and target patches QS & QT . NNF is a
look-up table in which each target patch q ∈ QT has stored coordi-
nates of its corresponding source patch p ∈ QS. The p corresponds
to q if it has the lowest sum of style and guide errors Et & Eg among
all patches in QS. Also, during the retrieval of p, an allowable error
budget is taken into account to prevent some source patches from
being assigned too often as the closest ones (please refer to Fišer et
al. [FJL∗16] for detailed description).

To obtain the final stylized image T , the StyLit algorithm uses
an iterative EM-like algorithm initially proposed by Wexler et
al. [WSI07]. It alternates two steps: First, in search step, NNF is
constructed between the source patches QS and target patches QT .
Then in voting step, an updated version of T is reconstructed us-
ing NNF by computing a weighted average of all co-located pixels
from corresponding source patches.

To maintain temporal coherence in Fišer et al. [FJS∗17] and later

in Jamriška et al. [JvST∗19], the error (1) was extended by an ad-
ditional temporal coherence term:

Ec(S,T ′, p,q) =
∥∥S(p)−T ′(q)

∥∥2
(6)

where T ′ is a previously synthesized frame that was shifted to
match with the position of the current frame T . Therefore, the ex-
tended error E which is minimized looks as follows:

E(S,T,T ′,GS,GT ) =

∑
q∈QT

min
p∈QS

(
Et(S,T,p,q)+Eg(GS,GT , p,q)+Ec(S,T ′, p,q)

)
.

(7)
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Figure 5: An illustration of a discrete subset X of an interaction
space I where the pre-calculation of stylized images Tx of the target
model M is performed (a). In order to reconstruct a target image
Tj in arbitrary location j within the interaction space I, a latent
representation NNFx of nearby images Tx at locations {xa, . . . ,xd}
are shifted towards j using motion vectors {V j,xa , . . . ,V j,xd} and
combined to produce NNFj from which the target image Tj is sub-
sequently reconstructed (b). See the text for detailed description.

3.2. Multidimensional coherence

The error E requires the motion-compensated version of the pre-
vious frame T ′ to perform the evaluation. However, in our sce-
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Figure 6: Demonstration of coherence enforcement: (a, b) two con-
secutive states stylized without handling the coherence, (d, e) the
same states with coherence enforced. The area in a red rectangle
is enlarged below; notice the difference in (a’, b’), while (d’, e’)
appear identical; (c’, f) visualize an inverted subtraction of (a’)
from (b’) and (d’) from (e’), respectively. Note that (f’) is almost
white (almost zero difference). Although these differences might not
seem prominent on still images, they can be distracting in motion
(c.f. our supplementary video).

nario, we do not have a sequence of frames, but a multidimen-
sional space of all possible interaction states I (see Fig. 5a). To
address such a multidimensional coherence problem, we sample I
to X = {x1, . . . ,xN} ⊂ I and start the computation of all Tx in
parallel. During each search-vote iteration, we get an intermedi-
ate stylized result of Tx and warp it to all neighboring interaction
states Nx ⊂ X . To do that, we leverage the existence of the under-
lying 3D model to generate accurate motion fields Vx,n that capture
movement of individual pixels between nearby interaction states.
Such a shifted result T ′n is then used as a new coherence guide, i.e.,
our goal is to minimize a joint error computed over all sampled
interaction states X :

∑
x∈X

∑
n∈Nx

E(S,Tx,T ′n ,GS,GT ). (8)

The importance of this coherence enforcement is demonstrated
in Fig. 6a–b where two consecutive stylized frames are synthe-
sized without coherence enforcement while in Fig. 6d–e coher-
ence is enforced. In the zoom-in patches, significant changes be-
tween Fig. 6a’ and Fig. 6b’ are visible, but Fig. 6d’ and Fig. 6e’
appear almost identical. Even though the changes might not seem
very prominent on still images, they could be distracting while in
movement (c.f. our supplementary video).

3.3. Real-time rendering

The algorithm described in the previous section outputs a coher-
ently stylized model for each sample x of sparsely sampled in-

a) b)

Figure 7: Improving spatial coherency of a combined NNF∗j :
(a) an image T∗ produced from NNF∗j that was combined from
nearby pre-computed states of interaction space N ∗j , note blurri-
ness caused by spatial incoherency of NNF∗j , (b) a sharper im-
age T produced from a refined NNFj that has better spatial co-
herency (see the text for a detailed description).

teraction space X . However, for our target interactive application
we need to reconstruct a stylized image Tj at an arbitrary loca-
tion j ∈ I. Moreover, we need to retain the visual quality of the
original synthesis algorithm, i.e., Tj needs to be a mosaic of larger
bitmap chunks taken from the original style exemplar Si. Therefore,
instead of doing some kind of blending operation on the stylized
images Tx, we leverage the existence of NNFx that were used to
generate Tx.

We again use the underlying 3D geometry to generate motion
vectors V j,x that we use to shift nearby pre-computed NNFx to a
position of the current interaction state j ∈ I (see Fig. 5b). To gen-
erate the combined NNF∗j at every target pixel t, we set NNF∗j (t) =
NNFx̂(t−V j,k(t)) where x̂ is the most suitable sample from the set
of nearby states N j. To select x̂, we first exclude states that have
different object IDs, i.e., that lie outside the object located at the
pixel t. Those will form a set of feasible samples N ∗j . Then we
generate a small random displacement vector r that is unique for
each target pixel t and does not change during the interaction. Fi-
nally, we pick x̂ such that:

x̂ = arg min
x∈N∗

j

‖x− j+ r‖ (9)

Such a perturbated closest sample selection does not introduce ad-
ditional flicker and helps to avoid larger abrupt swaps when the
sample x changes.

Since the combined NNF∗j mixes pixel coordinates from dif-
ferent NNFs of nearby interaction samples it may suffer from
lower spatial coherency, i.e., contain smaller coherent chunks when
compared to the original NNFs. This may lead to blurring arti-
facts when NNF∗j is applied directly in the subsequent voting step
(see Fig. 7). To improve spatial coherency of the resulting NNFj ,
we first apply voting step to obtain an intermediate blurred version
of Tj denoted as T∗j . Then for each patch q ∈ QT∗ at a pixel t we
compute the error Ec(S,T∗, p,q) for every p ∈ QS of with coordi-
nates given by the shifted NNFx(t−V j,x(t)). The coordinates of a
patch p with the lowest error Ec are then stored to the refined NNFj
that is used for final voting step to produce Tj. The improvement
caused by this refinement can be seen in Fig. 7.

© 2020 The Author(s)
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a)

b)

c)

d)

Figure 8: A complex architectonic model of a chapel stylized using markers (a, c) and watercolor (b, d) style exemplars (left) from various
viewpoints using our method. The camera is rotating and zooming in/out (right). Note how important planar structures (such as individual
pen/brush strokes or a paper grain) typical for the corresponding artistic media are preserved in each result. For the stylization in motion,
please, refer to our supplementary video. Style exemplar (a,c) courtesy of © Jan Pokorný and (b,d) © Štěpánka Sýkorová.

4. Results

We implemented our patch-based synthesis algorithm in C++ and
CUDA. To generate guiding channels, we use GPU implementation
of [Kaj86]. The overall computation (guiding channels and synthe-
sis) takes around 10 seconds for one interaction sample with resolu-
tion of 1280x720 on Nvidia RTX 2080 GPU. For I where camera is
rotating around the model (see Fig. 5) in a range of 180 degrees for
horizontal direction and 50 degrees for vertical direction with sam-

pling rate 10 degrees we get 90 samples of X that can be generated
in less than 15 minutes. The second part of our approach—NNF
merging and rendering is implemented in Unity framework using
HLSL shaders that can fully utilize GPU. Thanks to this integra-
tion, the renderer can easily be deployed on desktop machines as
well as on a wide range of mobile devices (c.f. Fig. 1i–j).

Resulting NNFs are stored as 2D arrays where each entry con-
tains two coordinates (short integers). After the LZMA compres-
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a) b) c)

Figure 9: A model of family house painted using color pencils (a). Results of our method (b, c) faithfully represent the original style exemplar
and respect the content of an underlying 3D model. The stylized model can be viewed on computer or mobile phone in real-time (see our
supplementary video). Style exemplars (a) courtesy of © Barbora Kociánová.

a) b) c) d) e) f) g) h) i) j)

Figure 10: A model of a girl stylized using two different watercolor styles (a, j). The results (b–e) were produced using style (a) and results
(f–i) using style (j). Even in extreme poses, stylized images (b) and (i) retain the content of an underlying 3D model well. The stylized model
can be viewed on desktop computer as well as on a mobile phone in real-time, see our supplementary video. Style exemplars (a, j) courtesy
of © Štěpánka Sýkorová.

sion (in Unity), such a lossless latent representation is smaller than
the final stylized image stored in PNG format or roughly the same
size as a medium–high quality JPEG image of the same resolution.
The compressed bundle of 90 samples takes around 19MB of space.

Both the computation time for guiding channels and patch-based
synthesis and the memory footprint can further be reduced by us-
ing NNF upscaling method of Texler et al. [TFF∗20]. When NNF
is upscaled two times, the resulting quality is still acceptable while
the computational overhead is reduced to roughly 4 minutes and
the size of 90 NNF samples is only 5MB. Thus, the entire inter-
action space for a new style exemplar can be sampled, stylized,
transferred, and viewed on a mobile device relatively quickly.

To evaluate our method, we choose two characters and two ar-
chitectonic models for which we let artists to prepare different
style exemplars using watercolor, markers, color pencils, and chalk.
We sampled two different interaction spaces: (1) camera moving
around the object and (2) camera moving in a horizontal direction
and zooming in/out. In Fig. 8 we show results on a architectonic
model of chapel stylized in four different artistic styles. Another
architectonic model is shown in Fig. 9. In Figures 1, 10, and 11 we
present results on two different character models. To demonstrate
the potential of our approach to be executed in real-time on a mo-

bile device, in Fig. 1i–j we show our method running on Samsung
Galaxy Note 8 at 20 frames per second. For full recordings of real-
time interaction sessions please refer to our supplementary video.

An important parameter of our method is the sampling rate of the
available interaction space (e.g., angular difference between nearby
camera viewpoints). In Fig. 12 we compare results created using
four different sampling rates, their memory requirements, and the
time of pre-calculation. The visual quality difference between the
sampling rate of 2 and 5 degrees is almost negligible. For sampling
rate of 10 degrees some blurring artifacts start to show up, how-
ever, those are not visible on small screens, e.g., mobile phones,
and thus 10 degrees can serve as a good compromise between vi-
sual quality, storage space and computational overhead. The results
with sampling rate of 20 degrees and more already show consider-
able artifacts.

In Fig. 13 and in our supplementary video we compared our ap-
proach with the current state-of-the-art in patch-based synthesis as
well as with some neural-based techniques.

The seminal example-based method of Bénard et
al. [BCK∗13] (Fig. 13b) as well as the current improvement
of Jamriška et al. [JvST∗19] (Fig. 13c) were designed for image
sequences, therefore, they suffer from discontinuities when brows-
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a) c) d)

b) e) f)

Figure 11: A model of a boy stylized using watercolor (top row)
and chalk (bottom row). Our results (c–f) faithfully mimic the
original style exemplars (a, b), preserving the notion of a paint-
ing/drawing created by hand on the paper (c.f. our supplementary
video for the model in motion). Style exemplars (a, b) courtesy of
© Štěpánka Sýkorová.

ing in multidimensional interaction space. We used those previous
techniques to illustrate this limitation and precalculate a few linear
trajectories over the entire interaction space. During the viewing
session, we then let the user navigate freely in the interaction
space, pick the closest pre-computed path, and replay its frames as
long as its direction remains similar to the user’s intent. In the case
when the user starts navigate differently, we pick another trajectory
that is closer to a new path. Due to the one-dimensional coherence,
such a hard jump leads to abrupt changes in the appearance, as is
visible in our supplementary video. Performance-wise the method
of Bénard et al. took several minutes per frame to compute and
thus is not applicable in our interactive scenario. The method
of Jamriška et al. [JvST∗19] running on the GPU is notably
faster (few seconds per frame), however, still not fast enough for
interactive use.

The method of Debevec et al. [DTM96] (Fig. 13e) and recent
approach of Sýkora et al. [SJT∗19] (Fig. 13d) can run at interactive
rates, however, since they use texture mapping coordinates to per-
form the re-projection / style transfer, they fail to handle parts of the
model which are not properly stylized in the original exemplar Si.

2 degrees
341 samples
65.04 MB
3491 sec

5 degrees
65 samples
13.85 MB
682 sec

10 degrees
21 samples
5.85 MB
226 sec

20 degrees
8 samples
3.46 MB
88 sec

a) b) c) d)

Figure 12: Comparison of four different sampling rates. From left
to right, dense sampling to sparse sampling; (a) sampled every 2
angular degrees, (b) 5 degrees, (c) 10 degrees, and (d) 20 degrees.
Sampling rate defines trade-off between quality and performance,
i.e., with dense sampling the quality is high, however, time required
to run the patch-based synthesis and size of the package might be
intractable. Compare the visual quality of (a) and (d) and their
respective memory and computational time requirements. We found
that sampling rate of 5 or 10 degrees is a good compromise.

Although the StyleBlit algorithm can use additional guides (such as
object IDs) that are less restrictive and allow for better generaliza-
tion, one local guide still needs to remain in the set of guiding chan-
nels to satisfy the StyleBlit requirements. To perform a meaningful
comparison using our guiding channels (Fig. 4g–h), which are not
local, we had to add a local guide, i.e., texture mapping coordinates.
Due to this reason, the results shown in Fig. 13d suffer from simi-
lar artifacts as the method of Debevec et al. [DTM96]. An essential
advantage of our approach is that it could potentially work with any
guiding channels as the original StyLit algorithm [FJL∗16].

Neural-based techniques are slow to compute (tens of sec-
onds per frame) and in general have difficulties to preserve
important high-frequency details of the original artistic media
as is visible in the output of Li et al. [LFY∗17] (Fig. 13f)
and Gu et al. [GCLY18] (Fig. 13h). While deep image analo-
gies [LYY∗17] (Fig. 13g) performs better with respect to high-
frequency details, they cannot properly handle temporal coherence.

5. Limitations and Future Work

Although our approach enables interactive exploration of a stylized
3D model on a mobile device while faithfully reproducing unique
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a) b) c) d) e) f) g) h)

Figure 13: Comparison of our approach (a) with other example-based stylization methods. Method of Bénard et al. [BCK∗13] (b) and
Jamriška et al. [JvST∗19] (c) show artifacts due to their inability to maintain temporal coherence in multiple dimensions; Sýkora et
al. [SJT∗19] (d) and Debevec et al. [DTM96] (e) fail to stylize parts of the model which are not well covered by texture in the original
style exemplar; Li et al. [LFY∗17] (f) fail to reproduce appearance of the style exemplar; Liao et al. [LYY∗17] (g) preserve texture properties
faithfully, however, do not maintain global consistency; Gu et al. [GCLY18] (h) yield poor texture as well as content quality. Please, refer to
our supplementary video to see this comparison in motion.

visual characteristics of the used artistic media and preserving tem-
poral coherency, there are still some limitations that could motivate
future work.

a) b) c) d)

Figure 14: Comparing results computed using large and smaller
interaction space: (a) result generated from a small interaction
space where all samples are stylized without visible artifacts, (b) re-
sult of the same viewpoint as (a), but taken from a synthesis running
on a larger interaction space. Note the artifacts on the hair region
propagated from samples far from the style exemplar (c, d) that are
not stylized correctly due to significant content difference.

As our technique uses guided patch-based synthesis [FJL∗16] it
also shares its drawbacks. The style exemplar needs to be aligned
relatively well with the original render, i.e., notable discrepancies
(e.g., shape caricature) may lead to a structural mismatch. Tiny de-
tails such as nostrils may occasionally disappear due to relatively
small spatial support. For those parts, adding a specific guide would

be beneficial. Although the original algorithm [FJL∗16] handles
brush strokes crossing the object boundaries, in our real-time NNF
combination phase, the object ID masking mechanism may lead
to visible discontinuities. Special handling would be necessary to
preserve the appearance of structured boundaries.

Despite the fact that our approach explicitly handles multidimen-
sional coherence, it may not always achieve fully coherent results.
Since the result of patch-based synthesis is a seamless mosaic of
small, translated chunks of the original style exemplar, occasional
popping is inevitable. This effect was also apparent in previous
patch-based methods (see, e.g., [JvST∗19]) where it can bring the
notion of hand-colored sequence [FLJ∗14] but it may also intro-
duce unwanted distraction. In future work, we plan to control it by
combining patch-based and neural techniques.

Our method can suffer from significant artifacts when executed
on a larger interaction space where, e.g., the camera viewpoint dif-
fers significantly from the one used for creation of style exemplar S.
The synthesis then fails to find appropriate exemplar patches for
the unseen content and it starts to use patches from inappropriate
areas. Since the coherence is enforced in all dimensions, the synthe-
sis may propagate those errors across the entire interaction space.
Due to this reason artifacts from distant interaction states (w.r.t. S)
diffuse to nearby states which would otherwise be stylized properly
if a smaller interaction space is used. This limitation is illustrated
in Fig. 14 (and in our supplementary video) where two samples
from the same viewpoint are displayed side-by-side: one is gener-
ated from a larger interaction space that goes beyond the limits of
our method and the other uses a smaller space.
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6. Conclusion

We introduced an interactive approach to the stylization of 3D mod-
els that faithfully reproduces a given hand-drawn exemplar while
preserving coherence during its exploration. To allow this, (1) we
designed a novel variant of a patch-based synthesis algorithm that
can produce a sparse set of samples from the available interaction
space. Those are produced in a way that all nearby states are styl-
ized coherently. Then, during the real-time rendering phase (2), we
demonstrate how to swiftly combine those pre-calculated samples
to produce the final stylized image at an arbitrary location. Thanks
to this two-stage approach, a real-time 3D model exploration is fea-
sible even on a mobile device. We verified our method on various
3D models and hand-drawn styles and compared them with the cur-
rent state-of-the-art.
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