
QuadStack: An Efficient Representation and
Direct Rendering of Layered Datasets

Alejandro Graciano , Antonio J. Rueda , Adam Posp�ı�sil , Ji�r�ı Bittner ,

and Bedrich Benes , Senior Member, IEEE

Abstract—We introduceQuadStack, a novel algorithm for volumetric data compression and direct rendering. Our algorithm exploits

the data redundancy often found in layered datasets which are common in science and engineering fields such as geology, biology,

mechanical engineering, medicine, etc. QuadStack first compresses the volumetric data into vertical stacks which are then

compressed into a quadtree that identifies and represents the layered structures at the internal nodes. The associated data (color,

material, density, etc.) and shape of these layer structures are decoupled and encoded independently, leading to high compression

rates (4� to 54� of the original voxel model memory footprint in our experiments). We also introduce an algorithm for value retrieving

from theQuadStack representation and we show that the access has logarithmic complexity. Because of the fast access,QuadStack is

suitable for efficient data representation and direct rendering. We show that our GPU implementation performs comparably in speed

with the state-of-the-art algorithms (18-79 MRays/s in our implementation), while maintaining a significantly smaller memory footprint.

Index Terms—Computer graphics, object hierarchies, graphics data structures and data types

Ç

1 INTRODUCTION

GEOMETRIC data often contain redundancies that can be
represented in a compact way to save space. A compact

representation usually requires a certain amount of work to
convert the data to the original representation, but algo-
rithms often exist that can access the original values, in an
efficient way, directly. Various applications have different
needs and these give rise to a wide spectrum of data repre-
sentations. The focus of this paper is on discrete volumetric
data that is usually represented in an uncompressed form
as a 3D grid of volumetric elements (voxels).

The key observation of our work is that many research
and engineering fields produce layered volumetric data which
have strong directional anisotropy and high coherency in
a prevailing direction. An example is geology (Fig. 1 left),
where geological strata are made up of layers of continuous
material. Many biological materials such as skin or leaves
are also layered, but on a much smaller scale. Even though
certain volumetric materials are not composed of clearly
visible layers, they include organized stacks of uniform
material; an example is particles in materials such as stones,
microstructures, or even atmospheric data with layers of air
at different humidity, temperature, and velocity. Although
existing algorithms can be applied to layered data and

provide good compression, representation, and fast access,
we argue that by exploiting their layered structure, we can
achieve better results in both data storage and retrieval.

We introduce QuadStack, a novel algorithm for volumetric
data representation of layered datasets. QuadStack uses
a quadtree for data representation while efficiently encoding
the layers in the tree. The layers are converted to stacks, and
the algorithm decouples the voxel values from their height
values.We also introduce an algorithm for value retrieval from
the QuadStack representation and we show that the access
requires Oðlog ðnÞ þmÞ time, where n ¼ w� h for a voxel
space with dimensions w� h� d and m is the maximum
stack size. In practice, m is small compared to n in a layered
model, so the method can be assumed to run in logarithmic
time. Because of its fast access, QuadStack is suitable for effi-
cient rendering of layered data and can be implemented on
the GPUaswe show in a raycasting implementation.

We apply our algorithm to real datasets from different
domains. In particular, we show its performance on geologi-
cal datasets [1], industrial models [2], microstructural
data [3], and with a snapshot of a magnetic reconnection
simulation [4]. We render these datasets by using QuadStack
which has comparable performance to other state-of-art
techniques, but has 66 percent to 99 percent less memory
requirements compared to the uncompressed data. An
example in Fig. 1 shows three layered data from various
applications compressed and rendered by using QuadStack.

We claim the following contributions: 1) QuadStack, a
novel data structure that arranges volumetric layered data-
sets into a set of heightfields, isolating them from the attri-
bute values, and compressing them into a quadtree, 2) a fast
method for the QuadStack construction based on string
matching, and 3) a rendering algorithm that displays the
compressed data directly.

� A. Graciano and A. J. Rueda are with the Universidad de Ja�en, 23071 Ja�en,
Spain. E-mail: {graciano, ajrueda}@ujaen.es.

� A. Posp�ı�sil and J. Bittner are with the Czech Technical University in Prague,
166 36 Prague 6, Czech Republic. E-mail: {pospiad2, bittner}@fel.cvut.cz.

� B. Benes is with Purdue University, West Lafayette, IN 47907 USA.
E-mail: bbenes@purdue.edu.

Manuscript received 13 Sept. 2019; revised 12 Feb. 2020; accepted 13 Mar.
2020. Date of publication 18 Mar. 2020; date of current version 29 July 2021.
(Corresponding author: Bedrich Benes.)
Recommended for acceptance by E. Eisemann.
Digital Object Identifier no. 10.1109/TVCG.2020.2981565

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 27, NO. 9, SEPTEMBER 2021 3733

1077-2626 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0002-9230-5113
https://orcid.org/0000-0002-9230-5113
https://orcid.org/0000-0002-9230-5113
https://orcid.org/0000-0002-9230-5113
https://orcid.org/0000-0002-9230-5113
https://orcid.org/0000-0001-7692-454X
https://orcid.org/0000-0001-7692-454X
https://orcid.org/0000-0001-7692-454X
https://orcid.org/0000-0001-7692-454X
https://orcid.org/0000-0001-7692-454X
https://orcid.org/0000-0002-7440-9840
https://orcid.org/0000-0002-7440-9840
https://orcid.org/0000-0002-7440-9840
https://orcid.org/0000-0002-7440-9840
https://orcid.org/0000-0002-7440-9840
https://orcid.org/0000-0002-5818-934X
https://orcid.org/0000-0002-5818-934X
https://orcid.org/0000-0002-5818-934X
https://orcid.org/0000-0002-5818-934X
https://orcid.org/0000-0002-5818-934X
https://orcid.org/0000-0002-5293-2112
https://orcid.org/0000-0002-5293-2112
https://orcid.org/0000-0002-5293-2112
https://orcid.org/0000-0002-5293-2112
https://orcid.org/0000-0002-5293-2112
mailto:graciano@ujaen.es
mailto:ajrueda@ujaen.es
mailto:pospiad2@fel.cvut.cz
mailto:bittner@fel.cvut.cz
mailto:bbenes@purdue.edu

2 PREVIOUS WORK

Here we review related methods for representing and visu-
alizing general volumetric data followed by an overview of
methods specific for heightfields and layered data.

The most common volumetric data representation is the use
of regular grids [5], [6] that allow quick random access and
modifications needed by many data processing algorithms.
However, regular grids are often highly redundant and do
not provide scalable data representation. The grids are com-
pressed into Octrees [7], hierarchical grids [8], or collections
of tetrahedra [9]. In general, these methods are able to focus
on the details of representation into the corresponding data,
but modifications can require recalculation of the com-
pressed representations.

A specific class of volumetric representation is layered
representation, which has been studied in the context of
geological structures such as terrains and landscapes. An
inspiration for our work is the layered data structure for ter-
rain representation introduced by Benes and Forsbach [10],
extended to enable interactive modeling of terrains, includ-
ing simulations of natural processes such as erosion [11],
and the evolution of snow covered mountains [12]. Peytavie
et al. [13] used this representation for modeling and visual-
izing complex terrain, including features like arches or over-
hanged cliffs. Later, L€offler et al. [14] achieved realtime
rendering using a LoD hierarchy. Both methods convert the
layered data to a triangle mesh prior to the visualization,
and only the surface is rendered. Also, based on this data
structure, the recent work of Graciano et al. [15] introduced
the Stack-Based Representation (SBR) that is a compact
representation for a layered volumetric datasets. This work
also introduced a GPU-based method for direct rendering
of layered geological structures by using SBR. QuadStack,
the method being introduced in the present work, goes fur-
ther by proposing compression of stacks using a quadtree
without compromising realtime visualization.

Volume data visualization is often conducted by using
direct volume ray casting that provides a flexible approach
to handle varying density of the data, implementing transfer
functions, or focusing the visualization by clipping [16].
Amanatides andWoo [5] introduced a fast algorithm for tra-
versing volumetric data encoded in a regular grid using a
3D-DDA algorithm. Levoy [8] extended the traversal to hier-
archical representation. Danskin and Hanrahan [17] intro-
duced several adaptive acceleration methods for volume ray

tracing using homogeneity and opacity accumulation. Cohen
and Sheffer [18] proposed proximity clouds to accelerate tra-
versal of empty regions. Revelles et al. [7] developed an opti-
mized Octree ray tracing using a fast recursive algorithm.
Efficient skipping techniques for Octree traversal were pro-
posed by Grimm et al. [19] and Lim and Shin [20]. Crassin
et al. [21] used node and brick pools to optimize the ray tra-
versal and data filtering using sparse voxel Octrees [22]. A
detailed discussion of direct volume rendering techniques
can be found in surveys [16], [23].

K€ampe et al. [24] encoded the geometry of high resolution
volumetric models obtained using DAGs. These models are
typically generated from high-resolution rasterization of sur-
face representation into binary voxels representing either full
or occupied model parts. Later, Dado et al. [25] and Dolonius
et al. [26] proposed techniques for attaching attributes to
geometry compressed using DAGs. Our method also decou-
ples geometry, and attributes and encodes them separately.
A notable difference in ourmethod is that our representation
primarily structures the data according to attributes (layers).
This allows us to optimize direct rendering of the com-
pressed data for transfer functions that cull many layers that
are often used to study the layered datasets.

Guthe and Goesele [27] proposed a method using block-
wise compression of general volumetric data and block-
wise decompression optimized for direct volume rendering
in CUDA. Our method also compresses geometric informa-
tion, but it also stores semantic information about the layers
that can be used, for example, to render individual layers
differently. We compare to this method in Section 7.

Volumetric data can be also visualized by converting to
boundary representation and applying efficient ray tracing
methods for B-reps such as kD-Trees [28] or BVHs [29], [30].
There are several powerful implementations for both
CPU [31], [32] and GPU ray tracing [33]. Limited bandwidth
and data access latency are two of the main limitations for
GPU rendering. Cache efficient layouts [34] and compressed
data representation [35], [36] mitigate both of these issues.

We focus on layered data that can be thought of as a gen-
eral form of heightfields that are commonly used to represent
terrains with a single layer of material [37], [38], [39], [40].

Early heightfield rendering used a 2D grid traversal with a
DDA [41]. Later techniques often used precomputed hierar-
chical representations [42], [43]. Henning and Stephenson [44]
focused on accelerating ray tracing and local reconstruction

Fig. 1. QuadStack efficiently compresses and directly renders layered data like large terrain (left), outputs of a magnetic reconstruction simulation
(middle), or microstructures (right). We report the compression ratios and rendering performance on an NVIDIA 970 GTX.

3734 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 27, NO. 9, SEPTEMBER 2021

for the ray at the intersection. An efficient GPU implementa-
tion of terrain ray castingwas proposed byDick et al. [45], and
a hybrid rendering technique for terrains combining rasteriza-
tionwith ray castingwas proposed byAmmann et al. [46]. Lux
and Fr€ohlich [47] focused on out-of-core large terrains render-
ing. Acceleration of terrain rendering by skipping empty
regions of spacewas addressed by Baboud et al. [48] andmore
recently by Lee et al. [49].

Scandolo et al. [50] used compressed hierarchical repre-
sentation to encode high resolution shadow maps, which
are similar to heightfield compression. Their method main-
tains accurate shadows by encoding depths with values
within limits provided by two consecutive depth layers. For
other applications, such as representing and rendering gen-
eral layered models, the method only provides a lossy com-
pression of individual layers and is optimized for lookups
using point queries instead of ray queries needed for direct
visualization.

A number of other efficient techniques for multi-resolution
heightfield representations and rendering have been sur-
veyed by Pajarola andGobbetti [51].

Our method builds on previous work by combining the
layered representation of general volumetric data with hier-
archical representation using quadtree s and a collection of
heightfields. We hierarchically encode the volume into
regions that have constant layer topology for which simple
compressed heightfield representation can be used. This
representation achieves high compression rates while still
allowing efficient data retrieval. Thus, the method reduces
memory usage as well as the bandwidth and latency when
directly rendering the compressed representation.

3 METHOD OVERVIEW

Datasets are often composed of horizontal layers of identical
values of a certain material or physical property that we
refer to as attributes. The approach of our method is in repre-
senting the layers as run-length encoded vertical stacks [10]
that are encoded further into a horizontal quadtree. In this
way, a QuadStack is an efficient data structure for layered
volumetric data that decouples the attribute data (layer
attribute values) from the geometric data (layer heights).

Without a loss of generality, we assume that the direction
of the layers is known, and that the data is oriented so layers
are parallel to the (horizontal) direction xy. Although the
height of each layer may vary by location, the vertical
sequence (the order) of the layer attributes is spatially coher-
ent as can be seen in Fig. 2 on the left. The height of the layers
may vary between two vertical columns, but their order,

often, will not change. A common change in real-world data
sets is that one layer disappears or a new one is introduced.

The input volumetric data V (Fig. 2) with dimensions
w� h� d is first converted to a set of stacks S, where the
stack Sx;y 2 S represent the columns of voxels Vx;y encoded
as a sequence of intervals i1, i2, ..., in. Each interval consists of
voxels with the same attribute value. The conversion to
stacks is depicted as the first step of the construction in Fig. 2.
A detailed representation of a layered volumetric dataset as
stacks is shown in Fig. 3 and explained in Section 4.

In the second step, a region quadtree organizes S into quad-
rants of stacks with the same sequence of attribute values,
referred to as groups of stacks, or simply as gstacks. A gstack G
encodes the stacks in the quadrant ½xminymin; xmaxymax� in a
compact manner, and is defined as a sequence of n
intervals i1, i2,...,in. The attributes a1, a2, ..., an of the intervals
of G are common to all the stacks in the quadrant: Sx;y 2 S
where xmin � x � xmax and ymin � y � ymax. A quadtree of
gstacks is denoted asQuadStack (see Fig. 2 and Section 5).

The QuadStack provides a lossless compression of the
input data. It can be easily converted back to a voxel-based
representation by point sampling (see Fig. 2 right). A similar
sampling procedure can be used to directly render data rep-
resented in QuadStack by using a modified ray traversal
algorithm for quadtree (Section 6).

4 STACK-BASED REPRESENTATION

Given a voxel grid V with resolution w� h� d, each voxel
vx;y;z 2 V stores one or more attributes, such as color, mate-
rial, or density, that depend on the application. Layers are
the maximal sets of connected voxels with a constant value
for a given attribute.

The Stack-Based Representation (SBR) of V (see Fig. 3) is
its decomposition into a set S of vertical stacks, where each
stack Sx;y 2 S comprises the space defined by the column of
voxels at position xy:

Sx;y ffi Vx;y ¼
[d

i¼1
vx;y;i:

A stack is compacted as a run-length encoding of voxels
with the same value for the attribute. Therefore, the stack Sx;y

is a sequence of intervals i1, i2; . . ., in along the z axis where ik
is a tuple ik ¼ < ak; hk > that represents the space com-
prised by a range of voxels of the column Vx;y with identical
attribute value ak:

ik ffi
[hk

i¼1þhk�1
vx;y;i:

Fig. 2. Overview: The input volumetric data is converted to stacks then similar stacks are put into groups of stacks (gstacks) that are organized in a
quadtree. When using the QuadStack, the quadtree is traversed first, and the topology of the given part of the volume is reconstructed. Then the cor-
responding layer boundaries encoded as heightfields are sampled to determine the result.

GRACIANO ET AL.: QUADSTACK: AN EFFICIENT REPRESENTATION AND DIRECT RENDERING OF LAYERED DATASETS 3735

If k ¼ 1 then hk�1 is assumed to be 0. The intervals are sorted
by height in ascending order: hk < hkþ1 for any given k
such that 1 � k � n.

The complexity of the SBR construction is OðnÞ,
where n ¼ w� h� d is the number of voxels, because each
voxel needs to be processed exactly once. The SBR construc-
tion is embarrassingly parallel, because the stack construc-
tion does not require information about neighboring stacks.

5 THE QUADSTACK DATA STRUCTURE

A simple approach to compressing SBR data would be to
use a hierarchical data structure such as a quadtree that
would efficiently encode the neighboring stacks with the
same sequence of intervals, i.e., stacks that have identical
attribute values and heights. However, variations in the
interval heights are common and would lead to low com-
pression rates due to the high number of tree subdivisions.

Our observation is that while stacks differ significantly in
their height values, their attribute values do not change
very often between neighboring stacks. This change hap-
pens only when a layer disappears, or when a new layer
appears, as can be seen in the left image in Fig. 2. Therefore
our approach is to pack groups of neighbouring stacks with

an identical sequences of attribute values into a single struc-
ture denoted as a group of stacks or gstack.

5.1 Group of Stacks - Gstacks

Given the decomposition of volume V into stacks S, a gstack
G represents a rectangular region of S with the same num-
ber of intervals n and identical sequence of attribute values
a1, a2; . . . ; an. More specifically, G represents the stacks Sx;y

of a rectangle ½xminymin; xmaxymax� of S, where 1 � xmin �
x � xmax � w and 1 � ymin � y � ymax � h. Since the attri-
bute information of the stacks Sx;y is identical, G can be
encoded in a compact way as a sequence of intervals i1,
i2; . . . ; in. Each interval ik ¼ < ak;Hk > contains the attri-
bute value ak, common to all the intervals ik of Sx;y, and a
heightfield Hk with dimensions ðxmax � xmin þ 1Þ � ðymax �
ymin þ 1Þ that stores the heights of these intervals. More spe-
cifically, the height hk of Sx;y is mapped to the height
hx�xmin;y�ymin

of Hk. The intervals and the attribute values
are consistently ordered for all stacks Sx;y therefore the
heightfields Hk never intersect i.e., given hi;j;k 2 Hk and
hi;j;kþ1 2 Hkþ1, where 1 � k � n, the condition
hi;j;k < hi;j;kþ1 is always met.

A gstack is simple and space-efficient encoding for a
group of stacks with identical attribute information.
Although only attribute information is compressed, the
geometry information is stored as a set of non-intersecting
heightfields that can also be compressed by using any exist-
ing heightfield encoding method.

Gstacks are built during the construction of aQuadStack that
combines the spatial decomposition of a quadtreewith the com-
pact representation for groups of similar stacks given by gstacks.

5.2 Group of Stacks Hierarchies

AQuadStack represents the stacks as a hierarchy of gstacks. It
divides the volume in the direction of xy recursively until a
quadrant can be represented by a gstack. These quadrants
are not guaranteed to be squared, or a power of two, since
there are no restrictions on the dimensions of the volume.

A QuadStack stores information, not only in leaf nodes,
but also in internal nodes, which further improves the

Fig. 3. Stack-Based Representation: A voxel dataset of resolution
w� h� d composed of layers is organized into vertical stacks consisting
of intervals. Each interval ik ¼ < ak; hk > with the attribute value ak and
height hk.

Fig. 4. The QuadStack construction: The initial QuadStack is a quadtree that is optimized by merging intervals of equal or similar attributes.

3736 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 27, NO. 9, SEPTEMBER 2021

compression. An internal node can contain a gstack group-
ing intervals common to all its descendants. Since these
intervals are not necessarily consecutive, the gaps between
them, corresponding to one or more intervals that are stored
elsewhere (i.e., in a descendant or ancestor node), are repre-
sented with a new type of interval called wildcard interval or
�-interval. This enables a flexible form of a gstack that com-
bines intervals (hereinafter referred to as terminal intervals)
with areas lacking information on this level of the Quad-
Stack. These intervals, in many cases, correspond to inter-
vals with different attribute information that could not be
directly represented by the gstack.

Fig. 5a shows a 2D depiction of a SBR and its correspond-
ing QuadStack represented as a binary tree. The gstacks in
nodes n1 and n2 encode the stacks as intervals of different
attributes with their associated heightfields. Fig. 5c shows
an equivalent QuadStack where the blue intervals, common
to nodes n1 and n2, have been stored in the gstack at n0,
together with a �-interval that represents the rest of inter-
vals of the block of stacks (intervals orange and yellow).
The blue interval in gstacks of the leaf nodes is replaced by
�-intervals, since it is already stored in an ancestor.

Just like a terminal interval, a �-interval has an associated
heightfield. Let G be a gstack stored in node n and let iw 2 G
be a �-interval, defined as iw ¼ < �; Hw > . If iw represents
the intervals ik, ikþ1, ...,ikþj of gstack Gd in a descendant nd of
node n, then the heightfield Hkþj of the top interval ikþj cor-
responds to a quadrant of Hw. In this way Hw combines the
heightfields of the top intervals of all the sets of intervals
existing in descendant nodes which are grouped by iw. This
is depicted in Fig. 5c as the heightfield associated to the
�-interval in n0. If the �-interval in G refers to a group of
intervals in gstack Ga from an ancestor na of n, Hw corre-
sponds to a quadrant of the heightfieldHkþj, sinceGa covers
a larger part of the xy plane thanG. This case corresponds to
the heightfields of the �-intervals in nodes n1 and n2.

5.3 QuadStack Construction

The QuadStack is constructed in two steps: a top-down sub-
division, and a bottom-up merging. The subdivision step is a

standard quadtree construction of the stacks by using the cri-
terion of same attribute sequence. This criterion ensures
that the blocks of stacks at each leaf node can be encoded as
a gstack, and the resulting data structure is already a Quad-
Stack. Fig. 4 illustrates the resulting QuadStack.

Although the first step generates a more compact repre-
sentation for the volumetric model than an SBR, layers of
common attributes lead to duplicate intervals in many leaf
nodes, as shown by the blue, yellow, and green attributes
on the left part of Fig. 4. The second step extracts and
merges these duplicate intervals in ancestor nodes. It pro-
ceeds from the bottom-up by propagating to a node every
interval common to all its children (i.e., having the same
attribute value). We map the attribute values of the intervals
of the four gstacks in the children to a common sequence of
attribute values, using � to group non-matching attributes
(Fig. 6).

We are interested in mapping with the highest number of
terminal intervals. The search space can be very large and
our problem is related to finding common motifs with gaps,
with applications in text mining and the analysis of DNA
sequences. Many solutions have been proposed [52], [53],
[54] that assume certain restrictions (e.g., motif size, maxi-
mum gap size, etc.) and require an exact match of the
motifs, or accepting a certain degree of similarity.

However, our sequences are rather short and we propose
a brute-force solution for this problem (Algorithm 1). The
input is two gstacks and the output is two gstacks with a
matching sequence of interval attribute values. The algo-
rithm takes every possible pair of intervals from the first
and second gstack and tests if their attribute values match; if
a matching pair i1;s, i2;t is found, the intervals are added to
their corresponding result gstack and the function calls itself
with the remaining intervals i1;sþ1; . . . ; i1;n and i2;t; . . . ; i2;m.
If i1;s and i2;t are not in the first positions of their gstacks (i.e.,
s > 0 and t > 0), the predecessors intervals i1;1; . . . ; i1;s�1
and i2;1; . . . ; i2;t are grouped into two �-intervals associated
to the heightfields of the top intervals i1;1 and i2;1. The num-
ber of terminal intervals of the solution obtained are com-
puted, and finally the best solution is returned.
Generalizing this solution to the four children of a Quad-
Stack node is straightforward. The theoretical complexity of
this algorithm is Oððm!Þ4Þ for four stacks with m intervals,
but it performs much better in practice with the heuristics
described in Section 5.5.

If the derived gstacks have at least one terminal interval,
they are merged into a single gstack at the parent node
(Figs. 5b and 5c). The heightfields of the newly created
gstack are generated by packing the four heightfields of the

Fig. 5. Details of the QuadStack construction: Initial construction as a
quadtree encoding groups of stacks with the same sequence of attrib-
utes (a), merging gstacks in nodes n1 and n2 into a gstack with common
intervals and �-intervals (b), propagation of the new gstack to the parent
node n0, restructuring heightfields (c) and optimization, deleting �-inter-
vals in nodes n1 and n2 associated to the intervals propagated to the par-
ent node (d).

Fig. 6. Finding a common mapping for two gstacks that maximizes the
number of terminal intervals.

GRACIANO ET AL.: QUADSTACK: AN EFFICIENT REPRESENTATION AND DIRECT RENDERING OF LAYERED DATASETS 3737

intervals of the derived gstacks. Finally the derived gstacks
are deleted, and every propagated interval is converted to
an �-interval at the children gstacks, grouping adjacent inter-
vals if necessary (Fig. 5c). If a gstack ends up as a single �-
interval, it can be safely deleted from the node since it does
not provide any information.

Algorithm 1. AlgorithmmatchGS

Input: gstacks Gi
1 ¼ fi1;1; . . . ; i1;ng and Gi

2 ¼ fi2;1; . . . ; i2;mg.
Interval ii;k ¼ < ai;k; Hi;k > where ai;k and Hi;k are its
attribute value and heightfield respectively.

Output: gstacks Go
1 and Go

2 with the same sequence of attribute
values.

if Gi
1 6¼ ; Gi

2 6¼ ;
Go

1 f< �; H1;1 > g
Go

2 f< �; H2;1 > g
else
Go

1 ;
Go

2 ;
scbest 0
foreach interval i1;s from Gi

1 do
foreach interval i2;t from Gi

2do
if a1;s ¼ a2;t and a1;s 6¼ � and
ðs > 1 xor t > 1Þ and
ðs < n xor t < mÞ then
Gr

1; G
r
2 matchGSðfi1;sþ1; . . . ; i1;ng,

fi2;tþ1; . . . ; i2;mgÞ
sc numTerminalIntervalsðGr

1Þ
if sc > scbestthen
scbest sc

if s > 0 then
Go

1 f< �; H1;1 > g [fi1;sg [Gr
1

Go
2 f< �; H2;1 > g [fi2;tg [Gr

2

else
Go

1 fi1;sg [Gr
1

Go
2 fi2;tg [Gr

2

end
end
return Go

1; G
o
2

The time complexity is Oðn lognÞ for the initial quadtree
construction and Oðn� ðm!Þ4Þ for the interval propagation
phase, where n is the number of stacks in the SBR (n ¼ w� h)
andm themaximumnumber of intervals in a gstack.

5.4 Heightfield Compression

QuadStack implements a compact encoding of the ordered
sequence of attributes, but does not deal with the compres-
sion of the interval heights. In our approach, attribute and
heightfield representation are decoupled, therefore height-
fields can be stored in a raw form, or compressed by any
existing method such as the algorithm of [55].

A simple delta encoding provides good results, since
height values usually vary progressively. However, the
main problem is that the access to any data requires decom-
pressing the whole dataset which limits the practical use in
applications where efficient queries or traversals are
required (e.g., realtime visualization).

We propose a method that provides a trade-off between
compression and access time, inspired by the work of
Andujar [56]. This method partitions the heightfield into
equal-sized blocks and compresses the values in each block

independently. Consider a heightfield H partitioned into
w� h blocks with the same dimensions m� n. For each
block Bi;j 2 H the lower height value is taken as the base
value, encoding the m� n elements in the block as differen-
ces from this base value. Using blocks of a relatively small
size makes these differences close to zero, allowing them to
be encoded with a reduced number of fixed bits. This ena-
bles random access to a particular location with only two
reads: a first one to a header that comprises the base value
of the block and the number of bits required to encode each
height difference, and a second one to the actual difference
located at the bit field. Other predictors for a value in a
block are possible: for instance it can be encoded as the dif-
ference with respect to the bilinear interpolation of the
height values at the four corners of the block.

5.5 Optimizations

TheQuadStack construction algorithmdescribed in Section 5.3
generates a compact representation of the attributes of the
model. This can be further improved if �-intervals that do not
provide useful information for sampling operations are
removed. Good candidates are the �-intervals representing
information that can be found elsewhere in an ancestor
node, such as the top �-intervals in the gstacks of nodes n1

and n2 in Fig. 5c. The information represented by these inter-
vals is included in the blue interval in the gstack of the
node n0. These intervals are never reached during sampling
(Section 6), and can be discarded during the bottom-up phase
of the QuadStack construction algorithm. When an interval is
propagated to an ancestor (Figs. 5b and 5c), it is completely
removed from the initial gstack, instead of being converted
to an �-interval. Note that the result is no longer a gstack,
since it represents only a subset of intervals instead of the
full range of the stacks. We refer to this as a partial gstack.
Under the described conditions, gstacks can be converted into
partial gstacks reducing the QuadStack space requirements
without affecting its performance in sampling or rendering
operations. Fig. 5d shows the resulting QuadStack after this
optimization.

An optimal match of the gstacks during the bottom-up
phase is essential for a good attribute compression. Algo-
rithm 1 finds the optimal matching, although its time com-
plexity is high. We use two efficient heuristics to reduce its
computation time.

First, the exploration of a new solution can be avoided if
the minimum of the lengths of the two lists of explored
intervals is less than the best score so far, since a better score
cannot be found. Notice that the score of a solution is the
number of terminal intervals, so at least two lists with a
higher number of intervals are required to be able to find a
better solution.

Second, we store the optimal matching found for four
given lists of intervals, since certain combinations are
explored repeatedly. For this purpose we use a simple map
with a key computed from the length of the four lists of
intervals. This improvement reduces the time requirements
of the algorithm to Oðm5Þ. To illustrate this, in the computer
used for our experiments (Section 7) matching 4 stacks with
30 intervals is solved in less than 26 ms compared to 764 ms
without optimizations (30� faster).

3738 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 27, NO. 9, SEPTEMBER 2021

6 QUADSTACK SAMPLING AND DIRECT

RENDERING

We discuss two techniques for retrieving data from Quad-
Stack representation. The first is point sampling that is cru-
cial for compression/decompression applications, the
second technique uses ray casting and enables direct ren-
dering of QuadStack data.

Algorithm 2. Function sampleQS

Input: node n to be sampled; sampling point p.
Output: final node and attribute value sampled at p.
ar null
nr null
if pz > 0 then
foreach interval ik ¼ < ak;Hk > from gstack G in n do
if hpx;py 	 pz then

ar ak
nr n
break

end
if r ¼ � then
C getChildrenðnÞ
if C 6¼ ; then
Given C ¼ fc0; c1; c2; c3; c4g
if insideQuadrantðc0; pÞ then
ar; nr sampleQSðc0; pÞ

else if insideQuadrantðc1; pÞ then
ar; nr sampleQSðc1; pÞ

else if insideQuadrantðc2; pÞ then
ar; nr sampleQSðc2; pÞ

elseif insideQuadrantðc3; pÞ then
ar; nr sampleQSðc3; pÞ

return ar; nr

6.1 Point Sampling for Selective Decompression

The QuadStack decompression can be performed selectively
by using point sampling of theQuadStack representation. Algo-
rithm 2 shows the regular structure of a point sampling proce-
dure in a hierarchical data structure adapted to a QuadStack.
Querying a point p is carried out by recursive traversing of
the quadtree data structure. First, an inclusion test between p
and the bounding box of the data is computed, if the test is
successful, the query can start by sampling the root node. In
order to sample a node, the heightfieldHk of each interval in

the gstackmust be sampled at the xy position of p, comparing
its height with the z coordinate. The iteration stops when the
lowest interval whose height is above z is found. If it is a ter-
minal interval, regardless of whether a leaf node is reached or
not, the attribute is returned.When an �-interval is found, the
traversal continues in the successive nodes.

The overall time complexity is OðlognþmÞ since, in the
worst case, it is necessary to reach a leaf of the tree to
retrieve the interval, checking at most m intervals during
the traversal. Point sampling can also be easily generalized
to decompress an arbitrary rectangular region or box of the
model into stacks, or further into voxel data.

6.2 Ray Casting for Direct Volume Rendering

GPU-accelerated ray casting is currently the most common
approach for the visualization of volumetric data providing
a good trade-off between simplicity, quality, and speed.
Models represented by QuadStack can be rendered by ray
casting without using an intermediate representation (e.g., a
SBR or a 3D grid of voxels). Similar to other hierarchical
data structures QuadStack allows an efficient implementa-
tion of ray casting, which is solved at the gstack level first,
then at the interval level, and finally at the heightfield level,
as depicted in Fig. 7.

The rendering procedure starts by computing the inter-
section between the ray and the gstack at the root node. This
can be computed efficiently, considering that a gstack
defines a cuboid that spans the entire z dimension of the
volumetric space. Then, the first intersection with an inter-
val ik of the gstack is calculated. This involves computing
the intersection of the ray with its four lateral faces and two
bounding heightfields: Hk (top) and Hk�1 (bottom). If the
interval ik is terminal, its contribution to the accumulated
color and opacity is computed as the integral of the transfer
function for the attribute ak between the entry and exit
points of the ray, together with an opacity correction due to
adaptive sampling [57]. The ray processing stops if the
opacity of the color is close to one. If ik is an �-interval, a
recursive call is made to compute the contribution by the
ray traversal of the gstacks in the four descendant nodes.
After ik has been processed, the traversal continues with a
new interval until the ray exits the gstack. If the gstack is at
the root node the QuadStack sampling is completed. In gen-
eral, it implies the return of a recursive call and further
processing of the gstack at the parent node.

The most time-consuming step in the QuadStack raycast-
ing is the ray-heightfield intersection computation. In order
to accelerate this step, each heightfield ismipmapped storing
the min-max instead of averaging values [58]. Each mipmap
level defines a bounding geometry for the heightfield with
the shape of a set of cuboids with the same dimensions in the
xy plane. The highest mipmap level represents the coarsest
approximation (i.e., a bounding box) and the level zero rep-
resents the finest (i.e., the heightfield itself). To test if a ray
intersects the heightfield associatedwith a given interval of a
gstack, first the intersection with the bounding cuboid
defined by the highest mipmap level is computed. If the
cuboid is hit, the intersection computation continues with
the four contained cuboids in the preceding mipmap level,
until the ray passes by or hits the heightfield at level zero.
The extra memory required (66 percent for each heightfield)

Fig. 7. QuadStack raycasting is first resolved at the QuadStack level,
then at the interval level and finally, at the heightfield level (a). When an
�-interval is found, a recursive call to traverse the gstacks in children
nodes is required (b). After processing a gstack, the traverse continues
with the next one, until the ray exits the volumetric model.

GRACIANO ET AL.: QUADSTACK: AN EFFICIENT REPRESENTATION AND DIRECT RENDERING OF LAYERED DATASETS 3739

can be reduced by using heightfield compression explained
in Section 5.4, resulting in a good trade-off between render-
ing time andmemory footprint.

7 IMPLEMENTATION AND RESULTS

We have implemented our algorithm in C++ with support of
OpenGL and GLSL. Results were generated on a desktop
computer with an Intel i7-4790 quad-core processor running
at 3.6 GHz, 16 GB of RAM, and a NVIDIA GTX 970 GPU.
Below, we first discuss details of the GPU implementation
and then present results and comparisons.

7.1 QuadStack Encoding in the GPU Memory

The key for an efficient raycasting is a careful encoding of
the model representation in the GPU memory. Our memory
layout for QuadStack consists of three buffers: a tree buffer
that encodes the QuadStack structure, a lookup table (LUT)
for the set of gstacks, and a heightfield buffer that packs the
heightfields associated with each gstack (Fig. 8).

The structure of the tree buffer is inspired by [60], where
each tree node keeps either the data itself (leaf), or an index to
its descendants (otherwise). Contrary to the previous work,
an inner node in our structure also contains the corresponding
gstack. Therefore, a node in the tree buffer holds indices of its
children and an extra pointer to the gstack LUT indicating the
beginning of the sequence of intervals and its size.

The gstack LUT comprises every gstack in a consecutive
manner. Each element of this buffer defines a gstack interval
formed by its attribute and a pointer to the beginning of its
corresponding heightfield in the heightfield buffer.

Heightfields are compressed by using the approach
described in Section 5.4. The detailed structure of the height-
field buffer is shown in Fig. 9. A header contains a field with
the number of blocks into which the heightfield is divided,
followed by a sequence of block descriptors that comprises
the base value, the number of bits required for encoding the
height differences, and the address of the height data. Next,
the encoded height data for each block is stored. Morton
encoding layout both for blockmetadata and height differen-
ces provides the required spatial coherence when accessing
data. As shown in Fig. 8, an index indicating the level of the
QuadStack to which the heightfield is associated (base level)
has been added.When a gstack in a descendant node referen-
ces a specific quadrant of this heightfield, the use of this
index avoids adding extra information at the LUT buffer: the
actual quadrant can be quickly determined from the base
level of the heightfield and the level queried.

7.2 Volumetric Data Compression

We evaluated theQuadStack to perform lossless compression
of the input volumetric data. We used five datasets for the
tests that exhibit strong to medium layered structure: two
terrain models with several layers of different geological
content (Terrain1, Terrain2) from [1], microstructure of a Li-
Pol battery (Battery) [3], a part of an industrial model of a
wing of a plane (Wing) [2], and amagnetic reconnection sim-
ulation (Magnetic). We wanted to cover a wide spectrum of
applications and awide variety of layers and structures.

The measured results are shown in Table 1. Interestingly,
models with comparable maximum number of layers (e.g.,
Terrain1 and Terrain2) lead to different compression ratios,
regardless of the method used. This is caused by their struc-
tural differences leading to variability of the average num-
ber of layers per stack (that can be far from the maximum),
and the sequences of layers of neighboring stacks. We leave
the study of these factors and eventually the development
of a measure that could show the compression potential of a
layered model for future work (Section 8).

The memory for the input volume data, using 8 bits to
encode each voxel, ranges from 53 MB to 163 MB. The voxel
representation uses 8 bits per voxel [bpv].QuadStack requires
from 3 MB to 19 MB of memory for our datasets, demanding
less than 2 bpv for all the scenarios. The achieved compres-
sion ratio is between 4� and 54�. It also obtained a more
compact representation of the volumetric data than the SBR,
except for the Terrain 1 dataset in which SBR achieved the
highest compression ratio.

Table 1 also shows the construction time and memory
consumption of a standard octree-based volume representa-
tion. Further, we report results of the publicly available
implementation of the GigaVoxels algorithm [59] that uses
an octree enhanced by a brick pool for optimized rendering

Fig. 8. a) Rendering procedure overview and GPU memory structure for the direct rendering of a QuadStack represented. b) Its heightfield arrange-
ment. c) Indices in the heightfield buffer indicate theQuadStack level to which the heightfield belongs.

Fig. 9. Heightfield compression scheme.

3740 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 27, NO. 9, SEPTEMBER 2021

of very large volumes (we used the default settings with
brick size 83). QuadStack provided more compact storage
than both Octree and GigaVoxels. The storage requirements
and construction times for GigaVoxels are higher due to
preallocated fixed size buffers for nodes and bricks and the
associated brick pool construction overhead [59]. However,
the brick pool used by the GigaVoxels enables efficient fil-
tering and out-of-core rendering that are currently not sup-
ported by our implementation of QuadStack.

This study is completed with the recent volume compres-
sion method of Guthe and Goesele (GG) [27], which is
inspired by 2D texture compression techniques. Volume is
structured into 4� 4� 4 blocks that are independently com-
pressed using the approach that best suits the data in the par-
ticular block (constant, difference to the maximum/
minimum, gradient or Haar wavelet). Overall, QuadStack
and GG are comparable in terms of compression perfor-
mance for the dataset in our experiments. They provided the
same compression ratio for Magnetic (5 percent), GG
achieved a better compression for Terrain 1 (8 versus 15 per-
cent) and Battery (19 versus 25 percent), and finally, Quad-
Stack outperformed GG with Terrain 2 (5 versus 6 percent)
and the Wing model (2 versus 6 percent). Beyond these
results, GG compresses data without providing any particu-
lar insight into it. In contrast, our method holds topological

information of the existing layers, enabling operations such
as analysis of the structure of the model, fast generation of a
triangle mesh from a given layer, direct extraction or modifi-
cation of the transparency of a layer during rendering, etc.

A breakdown of the memory budget for QuadStack is
shown in Table 2. Most of the memory is used by the quad-
tree and attribute information. The min-max mipmaps
require slightly less memory and the compressed height-
fields require the least amount of memory. In addition, the
amount of memory required to encode raw heightfields is
included. The memory required to store the min-max mip-
maps is optional; min-max mipmaps act only as rendering
acceleration data structure and they are not required for a
compression only application.

7.3 Direct Volume Visualization

The second aspect that we have examined is the perfor-
mance of the GPU-based direct visualization of QuadStack
by using the five datasets from Section 7.2. As reference, we
used two visualization backends implemented in the Para-
view software: the GPU accelerated rendering using VTK,
and CPU based rendering using OSPRay. For all scenes we
used five representative views for which we measured the
rendering times that were converted to performance num-
bers expressed in milliseconds required to generate a frame

TABLE 1
Results Measured From Five Test Datasets

The table shows the characteristics of the datasets, construction times, memory requirements, and rendering performance for QuadStack and several alternative
representations. The results for the method with the lowest memory consumption and best rendering performance are highlighted in bold.

GRACIANO ET AL.: QUADSTACK: AN EFFICIENT REPRESENTATION AND DIRECT RENDERING OF LAYERED DATASETS 3741

[ms/frame]. To provide a more concise overview, we report
average performance for each scene and method using val-
ues averaged over different views.

The lower part of Table 1 shows an overview of the ren-
dering performance results. VTK uses a highly optimized
GPU ray caster of uncompressed volume data and we can
observe that it achieves the highest rendering performance
for most camera positions, generally followed by the Giga-
Voxels octree-based representation. The QuadStack render-
ing is between 2:21� 9:42� slower. The OSPRay renderer is
CPU-based and it generally achieves the lowest performance
on the tested scenes. It is 1:3� 4� slower than the direct
QuadStack visualization. The direct SBR rendering uses an
equidistant sampling to satisfy the Nyquist-Shannon sam-
pling theorem. The direct SBR rendering is slower than the
QuadStack (between 1:13� 7:9�) for all datasets excluding
the Battery scenario where the SBR is 4:33� faster.

QuadStack performs better than the rest of renderers/
techniques when a ray has to skip a large empty space that
is encoded in high levels of the tree structure (Terrain 1-2
and the Wing). As we highlighted in the previous subsec-
tion, the lack of structure of the compressed data in [27] also
penalizes the efficiency of this empty space step. However,
the VTK renderer provided a better overall performance.
This is primarily due to the heightfield decompression over-
head implicit in each sampling step of the QuadStack tra-
versal. Since QuadStack uses just a fraction of memory
required by the VTK renderer, it provides a good tradeoff
between memory usage and rendering performance.

Fig. 10 shows the time [ms] required to generate each
dataset. Our rendering method performs in realtime or close
to it in every scenario in resolution of 1,280 � 720. Terrain1
presents an outlier in one camera position. This results from
rendering the dataset from the bottom and consequently no
empty space-skipping was required.

8 CONCLUSION AND FUTURE WORK

We introduced QuadStack, a novel algorithm for layered
data compression and direct rendering. The key inspiration
for our work is the common output of many science and
engineering applications and measurements that produce
data with strong directional anisotropy in the form of layers.

QuadStack compresses the layers into stacks and then com-
presses the stacks into a quadtree while considering the rep-
resenting patterns among neighboring layers. We also
introduce a novel algorithm for direct rendering of the com-
pressed data and we show its GPU implementation that
performs comparably to state-of-the art algorithms for
direct volume rendering, but instead of using full data it
works directly with the compressed volumes.

Our method has several specific advantages that are pos-
sible for layered models. It allows for the extraction of an
individual layer during rendering and its conversion to a
triangle mesh on-the-fly if required. Layers can also be indi-
vidually hidden/visible, which is relevant in many practical
fields such as geology. We can also render layers that
include water by using transparency or even refraction
effects. Finally, it supports lossless and lossy compression
(within the limit of numerical representation).

While the field of data compression and rendering has
been active for many years, there are still many open prob-
lems that may have been enabled by our algorithm. Our algo-
rithm could be extended to time-varying datasets that are
common in fluid simulations or simulations of eroded ter-
rains. Also, many datasets are cylindrical and it would be an
interesting extension to apply QuadStack to a non-linear
domain. We have not fully explored the internal structure of
the layers and its relation to the compression factor. It would
be possible to first sample and rotate the input data to detect a
direction that would provide good compression factor. The
construction algorithm uses rather simple matching and a
possible extension would improve its efficiency for scenes
with many layers. We would also like to study the possibility
of using DAGs [24], [25], [26] for compressing the layer attrib-
utes aswell as the layer geometry for high resolution data sets.

ACKNOWLEDGMENTS

This research was funded in part by National Science Foun-
dation Grant #10001387, Functional Proceduralization of 3D
Geometric Models, the Research Center for Informatics No.
CZ.02.1.01/0.0/0.0/16_019/0000765, the Czech Science
Foundation under Project GA18-20374S, the Ministry of Sci-
ence and Innovation of Spain under Projects TIN2017-
84968-R and RTI2018-099638-B-I00 and the University of
Ja�en. The authors would like to thank Niels Aage for pro-
viding the Wing model and Daniel and Carmen Benes-Mag-
ana as well as Colin Gray for proofreading the paper.

TABLE 2
Breakdown of the QuadStackMemory Requirements

Dataset Attributes
[MB (%)]

Heightfields [MB raw/
compressed (%)]

Mipmaps
[MB (%)]

Total
[MB
(%)]

Terrain 1 11.4 (59%) 5.9/3.3 (17%) 4.7 (24%) 19.4
(100%)

Terrain 2 2.9 (62%) 2.3/1.0 (21%) 0.8 (17%) 4.7
(100%)

Battery 6.4 (49%) 8.3/4.6 (36%) 1.9 (15%) 13.1
(100%)

Wing 1.3 (52%) 3.1/0.8 (32%) 0.4 (16%) 2.5
(100%)

Magnetic 3.4 (58%) 4.6/1.5 (25%) 1.0 (17%) 5.9
(100%)

The columns represent memory needed for representing the quadtree and
attributes, raw and compressed heightfields, and min-max mipmaps.

Fig. 10. Rendering results [ms] per frame. The whisker plot show the
time distribution.

3742 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 27, NO. 9, SEPTEMBER 2021

REFERENCES

[1] J. L. Gunnink, D. Maljers, S. F. Van Gessel, A. Menkovic, and
H. J. Hummelman, “Digital geological model (DGM): A 3D raster
model of the subsurface of the Netherlands,” Geologie en Mijn-
bouw/Netherlands J. Geosciences, vol. 92, no. 1, pp. 33–46, 2013.

[2] N. Aage, E. Andreassen, B. S. Lazarov, and O. Sigmund, “Giga-
voxel computational morphogenesis for structural design,”
Nature, vol. 550, pp. 84–86, 2017.

[3] M. Ebner, F. Geldmacher, F. Marone, M. Stampanoni, and V. Wood,
“X-ray tomography of porous, transition metal oxide based lithium
ion battery electrodes,” Adv. Energy Mate., vol. 3, no. 7, pp. 845–850,
2013.

[4] F. Guo, H. Li, W. Daughton, and Y.-H. Liu, “Formation of hard
power laws in the energetic particle spectra resulting from relativ-
istic magnetic reconnection,” Phys. Rev. Lett., vol. 113, 2014,
Art. no. 155005.

[5] J. Amanatides and A. Woo, “A fast voxel traversal algorithm for
ray tracing,” in Proc. European Comput. Graph. Conf. Exhibition,
1987, pp. 3–10.

[6] T. T. Elvins, “A survey of algorithms for volume visualization,”
Comput. Graph., vol. 26, no. 3, pp. 194–201, 1992.

[7] J. Revelles, C. Ure~na, and M. Lastra, “An efficient parametric algo-
rithm for octree traversal,” J. WSCG, vol. 8, no. 1–3, pp. 212–219,
2000.

[8] M. Levoy, “Efficient ray tracing of volume data,” ACM Trans.
Graph., vol. 9, no. 3, pp. 245–261, 1990.

[9] P. Muigg, M. Hadwiger, H. Doleisch, and M. E. Gr€oller,
“Interactive volume visualization of general polyhedral grids,”
IEEE Trans. Vis. Comput. Graph., vol. 17, no. 12, pp. 2115–2124,
Dec. 2011.

[10] B. Benes and R. Forsbach, “Layered data representation for visual
simulation of terrain erosion,” in Proc. 17th Spring Conf. Comput.
Graph., 2001, pp. 80–86.

[11] G. Cordonnier, M.-P. Cani, B. Benes, J. Braun, and E. Galin,
“Sculpting mountains: Interactive terrain modeling based on sub-
surface geology,” IEEE Trans. Vis. Comput. Graphics, vol. 24, no. 5,
pp. 1756–1769, May 2018.

[12] G. Cordonnier et al., “Authoring landscapes by combining ecosys-
tem and terrain erosion simulation,” ACM Trans. Graph., vol. 36,
no. 4, pp. 134:1–134:12, 2017.

[13] A. Peytavie, E. Galin, J. Grosjean, and S. Merillou, “Arches: A
framework for modeling complex terrains,” Compput. Graph.
Forum, vol. 28, pp. 457–467, 2009.

[14] F. L€offler, A. M€uller, and H. Schumann, “Real-time rendering of
stack-based terrains,” in Vision, Modeling, and Visualization, P. Eisert,
J. Hornegger, and K. Polthier, Eds., Aire-la-Ville, Switzerland: The
EurographicsAssociation, 2011.

[15] A. Graciano, A. J. Rueda, and F. R. Feito, “Real-time visualization
of 3D terrains and subsurface geological structures,” Adv. Eng.
Softw., vol. 115, pp. 314–326, 2018.

[16] J. Beyer, M. Hadwiger, and H. Pfister, “State-of-the-art in GPU-
based large-scale volume visualization,” Comput. Graph. Forum,
vol. 34, no. 8, pp. 13–37, 2015.

[17] J. Danskin and P. Hanrahan, “Fast algorithms for volume ray
tracing,” in Proc. Workshop Volume Vis., 1992, pp. 91–98.

[18] D. Cohen and Z. Sheffer, “Proximity clouds — an acceleration
technique for 3d grid traversal,” Vis. Comput., vol. 11, no. 1,
pp. 27–38, 1994.

[19] S. Grimm, S. Bruckner, A. Kanitsar, and E. Gr€oller, “Memory effi-
cient acceleration structures and techniques for CPU-based vol-
ume raycasting of large data,” in Proc. IEEE Symp. Volume Vis.
Graph., 2004, pp. 1–8.

[20] S. Lim and B.-S. Shin, “A distance template for octree traversal in
CPU-based volume ray casting,” Vis. Comput., vol. 24, no. 4,
pp. 229–237, 2008.

[21] C. Crassin, F. Neyret, M. Sainz, and E. Eisemann, Efficient Render-
ing of Highly Detailed Volumetric Scenes with GigaVoxels. Natick,
MA, USA: A. K. Peters, 2010, pp. 643–676.

[22] S. Laine and T. Karras, “Efficient sparse voxel octrees,” IEEE Trans.
Vis. Comput. Graphics, vol. 17, no. 8, pp. 1048–1059, Aug. 2011.

[23] M. Balsa Rodr�ıguez et al., “State-of-the-art in compressed GPU-
based direct volume rendering,” Comput. Graph. Forum, vol. 33,
no. 6, pp. 77–100, 2014.

[24] V. K€ampe, E. Sintorn, and U. Assarsson, “High resolution sparse
voxel dags,” ACM Trans. Graph., vol. 32, no. 4, pp. 101:1–101:13,
2013.

[25] B. Dado, T. R. Kol, P. Bauszat, J.-M. Thiery, and E. Eisemann,
“Geometry and attribute compression for voxel scenes,” Comput.
Graph. Forum, vol. 35, no. 2, pp. 397–407, May 2016.

[26] D. Dolonius, E. Sintorn, V. K€ampe, and U. Assarsson,
“Compressing color data for voxelized surface geometry,” IEEE
Trans. Vis. Comput. Graphics, vol. 25, no. 2, pp. 1270–1282, Feb.
2019. [Online]. Available: http://doi.ieeecomputersociety.org/
10.1109/TVCG.2017.2741480

[27] S. Guthe and M. Goesele, “Variable length coding for GPU-based
direct volume rendering,” in Proc. Conf. Vis. Modeling Vis., 2016,
pp. 77–84. [Online].Available: https://doi.org/10.2312/vmv.20161345

[28] I.Wald andV.Havran, “On building fast KD-trees for ray tracing, and
on doing that in o(n log n),” in Proc. IEEE Symp. Interactive Ray Tracing,
2006, pp. 61–69. [Online]. Available: doi.ieeecomputersociety.org/
10.1109/RT.2006.280216

[29] I. Wald, “On fast construction of sah-based bounding volume hier-
archies,” inProc. IEEE Symp. Interactive Ray Tracing, 2007, pp. 33–40.

[30] M. Stich, H. Friedrich, and A. Dietrich, “Spatial splits in bounding
volume hierarchies,” in Proc. Proc. Conf. High Performance Graph.,
2009, pp. 7–13.

[31] I. Wald, S. Woop, C. Benthin, G. S. Johnson, and M. Ernst,
“Embree: A kernel framework for efficient cpu ray tracing,” ACM
Trans. Graph., vol. 33, no. 4, pp. 143:1–143:8, 2014.

[32] I. Wald et al., “Ospray - a CPU ray tracing framework for scientific
visualization,” IEEE Trans. Vis. Comput. Graphics, vol. 23, no. 1,
pp. 931–940, Jan. 2017.

[33] T. Aila and S. Laine, “Understanding the efficiency of ray traversal
onGPUs,” in Proc. Conf. High Perform. Graph., 2009, pp. 145–149.

[34] S.-E. Yoon andD.Manocha, “Cache-efficient layouts of bounding vol-
ume hierarchies,” Comput. Graph. Forum, vol. 25, no. 3, pp. 507–516,
2006.

[35] H. Ylitie, T. Karras, and S. Laine, “Efficient incoherent ray tra-
versal on GPUs through compressed wide BVHs,” in Proc. High
Perform. Graph., 2017, pp. 4:1–4:13.

[36] C. Benthin, I. Wald, S. Woop, and A. T. �Afra, “Compressed-leaf
bounding volume hierarchies,” in Proc. Conf. High-Perform. Graph.,
2018, pp. 6:1–6:4.

[37] P. Lindstrom, D. Koller, W. Ribarsky, L. F. Hodges, N. Faust, and
G. A. Turner, “Real-time, continuous level of detail rendering of
height fields,” in Proc. 23rd Annu. Conf. Comput. Graph. Interactive
Techn., 1996, pp. 109–118.

[38] H. Hoppe, “Progressive meshes,” in Proc. 23rd Annu. Conf. Com-
put. Graph. Interactive Techn., 1996, pp. 99–108.

[39] M. Duchaineau, M. Wolinsky, D. E. Sigeti, M. C. Miller, C. Aldrich,
and M. B. Mineev-Weinstein, “Roaming terrain: real-time opti-
mally adaptingmeshes,” in Proc. IEEEVis., 1997, pp. 81–88.

[40] H. Hoppe, “Smooth view-dependent level-of-detail control and its
application to terrain rendering,” in Proc. IEEEVis., 1998, pp. 35–42.

[41] F. K. Musgrave, “Grid tracing: Fast ray tracing for height fields,”
Dept. Comput. Sci., Yale University, NewHaven, CT, Rep. no. 639,
1988.

[42] D. Cohen-Or and A. Shaked, “Photo-realistic imaging of digital
terrains,” Comput. Graph. Forum, vol. 12, no. 3, pp. 363–373, 1993.

[43] D. Cohen-Or, E. Rich, U. Lerner, and V. Shenkar, “A real-time
photo-realistic visual flythrough,” IEEE Trans. Vis. Comput.
Graphics, vol. 2, no. 3, pp. 255–264, Sep. 1996.

[44] C. Henning and P. Stephenson, “Accelerating the ray tracing of
height fields,” in Proc. Int. Conf. Comput. Graph. Interactive Techni-
ques Australasia Southeast Asia, 2004, pp. 254–258.

[45] C. Dick, J. H. Kr€uger, and R. Westermann, “GPU ray-casting for
scalable terrain rendering,” in Eurographics (Areas Papers). M€unich,
Germany: Eurographics Association, 2009, pp. 43–50.

[46] L. Ammann, O. G�enevaux, and J.-M. Dischler, “Hybrid rendering
of dynamic heightfields using ray-casting and mesh raster-
ization,” in Proc. Graph. Interface, 2010, pp. 161–168.

[47] C. Lux and B. Fr€ohlich, “GPU-based ray casting of stacked out-of-
core height fields,” in Proc. Int. Symp. Vis. Comput., 2011, pp. 269–280.

[48] L. Baboud, E. Eisemann, and H.-P. Seidel, “Precomputed safety
shapes for efficient and accurate height-field rendering,” IEEE
Trans. Vis. Comput. Graphics, vol. 18, no. 11, pp. 1811–1823,
Nov. 2012.

[49] E.-S. Lee, J.-H. Lee, and B.-S. Shin, “A bimodal empty space skip-
ping of ray casting for terrain data,” J. Supercomput., vol. 72, no. 7,
pp. 2579–2593, 2016.

[50] L. Scandolo, P. Bauszat, and E. Eisemann, “Compressed multire-
solution hierarchies for high-quality precomputed shadows,”
Comput. Graph. Forum, vol. 35, no. 2, pp. 331–340, May 2016.

GRACIANO ET AL.: QUADSTACK: AN EFFICIENT REPRESENTATION AND DIRECT RENDERING OF LAYERED DATASETS 3743

http://doi.ieeecomputersociety.org/10.1109/TVCG.2017.2741480
http://doi.ieeecomputersociety.org/10.1109/TVCG.2017.2741480
https://doi.org/10.2312/vmv.20161345
http://dx.doi.org/doi.ieeecomputersociety.org/10.1109/RT.2006.280216
http://dx.doi.org/doi.ieeecomputersociety.org/10.1109/RT.2006.280216

[51] R. Pajarola and E. Gobbetti, “Survey of semi-regular multiresolu-
tion models for interactive terrain rendering,” Vis. Comput.,
vol. 23, no. 8, pp. 583–605, 2007.

[52] C. S. Iliopoulos, J. Mchugh, P. Peterlongo,N. Pisanti,W. Rytter, and
M.-F. Sagot, “A first approach to finding common motifs with
gaps,” Int. J. Found. Comput. Sci., vol. 16, no. 06, pp. 1145–1154, 2005.

[53] P. Antoniou, J. Holub, C. S. Iliopoulos, B.Melichar, and P. Peterlongo,
“Finding common motifs with gaps using finite automata,” in Proc.
Int. Conf. Implementation Appl. Automata., 2006, pp. 69–77.

[54] P. Antoniou, M. Crochemore, C. S. Iliopoulos, and P. Peterlongo,
“Application of suffix trees for the acquisition of common motifs
with gaps in a set of strings,” in Proc. 1st Int. Conf. Lang. Autom.
Theory Appl., 2007, pp. 57–66.

[55] W. R. Franklin, “Compressing elevation data,” inAdvances in Spatial
Databases, M. J. Egenhofer and J. R. Herring, Eds. Berlin, Germany:
Springer, 1995, pp. 385–404.

[56] C. And�ujar, “Topographic map visualization from adaptively
compressed textures,” Comput. Graph. Forum, vol. 29, no. 3,
pp. 1083–1092, 2010.

[57] M. Hadwiger, J. M. Kniss, C. Rezk-salama, D. Weiskopf, and
K. Engel, Real-time Volume Graphics. Natick, MA, USA: A. K. Peters,
Ltd., 2006.

[58] A. Tevs, I. Ihrke, and H.-P. Seidel, “Maximum mipmaps for fast,
accurate, and scalable dynamic height field rendering,” in Proc.
Symp. Interactive 3D Graph. Games, 2008, pp. 183–190.

[59] C. Crassin, F. Neyret, S. Lefebvre, and E. Eisemann, “Gigavoxels:
Ray-guided streaming for efficient and detailed voxel rendering,”
in Proc. Symp. Interactive 3D Graph. Games, 2009, pp. 15–22.

[60] S. Lefebvre, S. Hornus, and F. Neyret, “Octree Textures on the
GPU,” in Programming Techniques for High-performance Graphics
and General-Purpose Computation, P. M. editors, Ed. Reading, MA,
USA: Addison Wesley, 2005, pp. 595–613.

Alejandro Graciano received the PhD degree in
computer science from the University of Ja�en,
Spain, in 2019. He is currently a postdoctoral
researcher at University of Ja�en, Spain. His
research interests include topics in computer
graphics such as geoscientific visualization, GPU
programming and its applications as well as geo-
graphic information systems.

Antonio J. Rueda is currently an associate pro-
fessor of Computer Science at the Escuela
Polit�ecnica Superior, University of Ja�en, Spain.
His main research interests include computer
graphics, focusing on design of geometric algo-
rithms, processing of 3D laser scanned data or
GPU computing. He has presented his work in
more than 40 papers and communications in jour-
nals and conferences.

Adam Posp�ı�sil received the BS degree from the
Czech Technical University, Prague. He is cur-
rently a researcher at the Czech Technical Uni-
versity, in Prague. His main area of research is in
spatial data structures, and global illumination.

Ji�r�ı Bittner received the PhD degree from the
Czech Technical University in Prague. He is cur-
rently an associate professor of Computer Science
at the Czech Technical University, in Prague. His
research interests include visibility computations,
real-time rendering, spatial data structures, and
global illumination.

Bedrich Benes (Senior Member, IEEE) is cur-
rently a George McNelly professor of Technology
and professor of Computer Science at Purdue
University. His area of research intetrests include
procedural and inverse procedural modeling and
simulation of natural phenomena and he has pub-
lished more than 140 research papers in the field.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

3744 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 27, NO. 9, SEPTEMBER 2021

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

