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ABSTRACT
In this paper we present StyleBin—an approach to example-based
stylization of videos that can produce consistent binocular depiction
of stylized content on stereoscopic displays. Given the target se-
quence and a set of stylized keyframes accompanied by information
about depth in the scene, we formulate an optimization problem
that converts the target video into a pair of stylized sequences, in
which each frame consists of a set of seamlessly stitched patches
taken from the original stylized keyframe. The aim of the optimiza-
tion process is to align the individual patches so that they respect
the semantics of the given target scene, while at the same time also
following the prescribed local disparity in the corresponding view-
points and being consistent in time. In contrast to previous depth-
aware style transfer techniques, our approach is the first that can
deliver semantically meaningful stylization and preserve essential
visual characteristics of the given artistic media. We demonstrate
the practical utility of the proposed method in various stylization
use cases.

CCS CONCEPTS
• Computing methodologies → Non-photorealistic render-
ing; Virtual reality.
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1 INTRODUCTION
Example-based style transfer gained significant interest recently
thanks to advances made in neural approaches [Gatys et al. 2016;
Kolkin et al. 2019; Liao et al. 2017] as well as techniques based
on guided texture synthesis [Fišer et al. 2016; Jamriška et al. 2015;
Sýkora et al. 2019]. Great effort has also been devoted to example-
based stylization of videos [Fišer et al. 2017; Futschik et al. 2021;
Jamriška et al. 2019; Ruder et al. 2018; Texler et al. 2020], where
temporal consistency needs to be taken into account. Surprisingly,
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despite current trends in development of stereoscopic displays for
virtual reality, cinemas, or metaverse, only a few researchers have
tried to address the problem of example-based stylization in a binoc-
ular setting [Chen et al. 2018; Gong et al. 2018]. This lack of ex-
ploration can partly be explained by the fact that paintings are a
priori assumed to be 2D projections of a 3D world where instead of
binocular parallax, different depth cues are used. From this limited
perspective, it may seem unnatural to transfer an inherently planar
style to an image that will be depicted using a stereoscopic display.
However, as recently demonstrated by Gong et al. [2018] and Chen
et al. [2018], there is some interesting potential to better explore
ways in which the human visual system can interpret artistic images
under binocular vision. Both Gong et al. and Chen et al. approach
this problem by improving neural style transfer [Gatys et al. 2016]
to produce images that are consistent under binocular parallax.
Their setting is, however, only an approximation to the more strict
scenario we consider in this paper. Since neural style transfer does
not preserve the planarity of the style exemplar, structures such as
strokes or canvas patterns can be distorted arbitrarily. This fact may
lead to noticeable geometric distortion [Sýkora et al. 2019] where
the stylized image looks as if the style exemplar is mapped onto the
target 3D object which is then projected to 2D in each viewpoint.
The aim of our solution is to preserve the planarity of the original
style exemplar while still being able to synthesize images that are
consistent under binocular parallax.

Given an input video and one or more stylized keyframes ac-
companied by information about depth in the scene, we synthesize
a stylized output sequence for each eye. Our approach is a patch-
based synthesis process where patch selection is informed by a
family of guidance channels seeking to match aspects of the images,
including color, position, and edges; the method is similar to that of
Jamriška et al. [2019], though we must contend with the added diffi-
culty of adapting the guidance channels to right and left eye views
and then synthesizing both views consistently in time and space.
Our use of patches guarantees accurate reproduction of important
planar structures in the style exemplar and the disparity-adapted
guidance channels ensure their semantically meaningful transfer.

This paper’s main contribution is its versatile framework for
stereo stylization, able to reliably create stereoscopic video with
semantically-meaningful stylization from an input monocular video
and sparse style/depth keyframes. It extends the works of Jamriška
et al. [2019] and Luo et al. [2015] to the stereo stylization setting. Its
key technical contribution is the joint synthesis of stereo and tempo-
ral consistency. We demonstrate the effectiveness of the approach
with several examples and a qualitative user study.
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2 RELATEDWORK
Our work builds on advances in style transfer and draws on past
efforts to create and modify stereoscopic video. We discuss these
topics in turn.

Recent improvements in example-based style transfer have been
based on guided texture synthesis [Fišer et al. 2016; Jamriška et al.
2015; Sýkora et al. 2019] and on neural methods [Gatys et al. 2016;
Liao et al. 2017]. The problem of example-based stylization of videos
has received considerable attention [Fišer et al. 2017; Futschik et al.
2021; Jamriška et al. 2019; Ruder et al. 2018; Texler et al. 2020].
Stylization of 3D models has been studied [Bénard et al. 2013] and
continues to be an area of interest, with Hauptfleisch et al. [2020]
providing a recent example.

The above-cited work, however, little considers stereo images,
which is a specialized topic with its own literature. Stavrakis and
Gelautz [2004] were the first to consider computer-generated styl-
ized stereo images and identified many of the challenges in stylized
stereo, including the need for planarity of style elements in the
output. They used a stroke-based rendering system, ensuring con-
sistency by enforcing similar stroke placement across right and left
views. Northam et al. [2012] propose a more general framework for
stylized stereo images which uses multiple discrete disparity layers
and a separate stylization for each layer. While this approach was
effective for still images, the discretization of layers is problematic
for application to video.

Considerable effort has also been directed towards synthesizing
stereo line drawings. Kim et al. [2013] laid the groundwork for this
area, working with 3D geometry as an input. They note that the
simple approach of detecting and rendering silhouettes separately
from each eye creates incoherent collections of lines. By rendering
only matched pairs of lines and excluding lines that cannot be
fused in stereo, they are able to create a high-quality experience of
3D stereo line drawings from geometry. Later work [Bukenberger
et al. 2018; Istead and Kaplan 2018; Istead et al. 2021] produced
stylized line drawings from stereo depth images. Other researchers
have considered also specialized systems for particular effects and
scenarios, such as film grain in stereo [Templin et al. 2014] or
stylization of lightfields [Egan et al. 2021].

Application of neural style transfer to stereo images or to gener-
ation of novel views has enjoyed some success recently [Chen et al.
2018; Gong et al. 2018; Huang et al. 2021]. Such systems incorporate
estimates of stereo or multi-view consistency into the loss function.
However, the resulting stylization does not guarantee semantically
meaningful transfer and also distorts visually important features
seen in the original exemplar such as individual brush strokes or a
canvas structure.

Theworkmost similar to ourswas undertaken by Luo et al. [2015],
who use a patch-based approach for coherence-preserving mod-
ification of stereo images. However, they do not consider stereo-
consistent example-based stylization of videos, which remains an
open problem.

3 OUR APPROACH
The input to our method is a target sequence T and a selection
of one or more keyframes K ⊂ T for which the user will provide
(i) a stylized counterpart Sk and (ii) a disparity map Dk (see Fig. 1)

that can be obtained manually or automatically. In our experiments
we employ boosted monocular depth estimation [Miangoleh et al.
2021], and when applicable, also use Attention Mesh [Grishchenko
et al. 2020] with Poisson image editing [Pérez et al. 2003] to im-
prove disparity in facial regions. The precise choice of method is
unimportant; any other depth estimation technique or additional
depth sensor can be used to obtain Dk . The user may also decide
to refine Dk manually to achieve the desired disparity.

Tk

Sk

Dk

Ti Tj

OL
i OL

j

OR
i OR

j

input

output

Figure 1: An overview of the inputs and outputs of our
method. The user provides a target sequence T in which
one or more keyframes Tk ∈ K are stylized Sk and contain
information about disparity Dk . We propagate the dispar-
ity from Dk to the entire sequence T and transfer the style
from Sk toT such that two stylized sequencesOL andOR are
produced, each of which can then be viewed by the corre-
sponding eye to achieve a stereoscopic effect. Video framesT
and style exemplar Sk © Jana Kyllerová.

The goal of our method is to produce two temporally coherent
output sequences, a left sequence OL and a right sequence OR

(see Fig. 1), in which the target sequenceT will be stylized according
to the style exemplar Sk such that when the frames fromOL andOR

are displayed to the corresponding eyes, the viewer will see a stereo
effect driven by the disparity map Dk . This also means that OL

and OR need to be consistent both in space and time to avoid
ghosting and flickering artifacts.

We first describe the general approach to produce OL and OR

from T using Sk and Dk . Later, in Section 4, we demonstrate that
the individual building blocks of our method can be applied in
different scenarios: for example, we may have a target sequence T
that is already fully stylized, or we may know D for each frame
beforehand, perhaps because T was generated by 3D rendering or
captured using a depth sensor.

To obtain OL and OR we use a guided patch-based synthesis
framework similar to that described by Jamriška et al. [2019]. Like
Jamriška et al., we want to transfer the style to the video in a
semantically meaningful way. Unlike Jamriška et al., who create
a single view, we need to jointly synthesize two views such that
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both stylized views are consistent in time and space according to
the motion in the scene and the disparity given by Dk .

3.1 Disparity propagation
As an initial step, we need to propagate the disparity stored in Dk
from each keyframe Tk ∈ K to the rest of the target sequence T
(see Fig. 2). To do that, we employ the guided patch-based synthesis
of Jamriška et al. [2019], providing the disparity map Dk as the
style exemplar. In the case of multiple keyframes K , we propagate
disparity to T from each keyframe separately and then blend the
resulting frames using a weight proportional to the distance in time
between the currently blended frame and the keyframe.

Ti Tj Tk Tl Tm

Di D j Dk Dl Dm

Figure 2: An example of disparity map Dk propagation from
a keyframe Tk to the rest of the sequence T . An output of
this process is a sequence of disparity maps D aligned with
every frame in T . Video frames T © Jana Kyllerová.

3.2 Disparity shifting
As a byproduct of the previous disparity propagation step, a set
of auxiliary channels C = {F ,Gcolor,Gedge,Gpos} is produced for
each frame in T (see Fig. 3 and c.f. Jamriška et al. [2019]). Here F
is the optical flow computed between the consecutive frames in T
using the method of Kroeger et al. [2016]. During the synthesis, F
is used to help enforce temporal consistency. The channelGcolor is
a color guide that stores copies of individual frames ofT . It helps to
ensure that the style from Sk is transferred to locations whereTi has
similar colors to those in Tk . Gedge denotes an edge guide that en-
courages salient features inTi to be stylized consistently with those
stored inTk .Gedge is computed as follows:Gedge(Ti ) = Ti −Nσ ◦Ti ,
where Nσ is a Gaussian filter with standard deviation σ and ◦
denotes convolution. Finally,Gpos is a positional guide that encour-
ages transfer of style pixels from keyframeTk to the corresponding
positions in the current frameTi .Gpos is computed by accumulating
a series of consecutive optical flows Fi−k ∈ F between frames Ti
and Tk .

The sequence of optical flows F plus the above-mentioned guid-
ing channels G are sufficient to perform style transfer using the
original method of Jamriška et al. In our setting, however, we need
to produce a binocular sequence, for which we need a left CL and
right CR view for each channel in C . Those new views can be ob-
tained by shifting the content inC using the disparities stored in D;
see Fig. 3.

Note that motion vectors stored in F are relative to the position
of the underlying pixels, and therefore there is no need to modify
their values during the shifting phase (we only need to shift their

FL
←−
F F

−→
F FR

GL
color

←−
G color Gcolor

−→
G color GR

color

GL
edge

←−
G edge Gedge

−→
G edge GR

edge

GL
pos

←−
G pos Gpos

−→
G pos GR

pos

Figure 3: An example of shifting and completion of auxiliary
channelsC = {F ,Gcolor,Gedge,Gpos}: optical flow F as well as
guiding channels G are first shifted to the left←−C and to the
right −→C using disparities stored in D, and then disoccluded
areas are filled using disparity-guided patch-based synthesis
to obtain complete properly aligned auxiliary channels CL

andCR for the left and right views. Video frameGcolor © Jana
Kyllerová.

origins). Conversely, color-coded correspondences stored in Gpos
are absolute; however, since they point to the original pixels in the
monocular version of the keyframe Tk ∈ K , there is no need to
modify them, as shifting their locations is sufficient.

3.3 Handling disocclusion
After the shifting phase, a subset of the pixels in channels←−C and −→C
may remain untouched due to disocclusion (see blue areas in Fig. 3).
To fill those gaps, we first apply the disparity completion approach
of Wang et al. [2008] to obtain consistent left DL and right DR

disparity maps. Once DL and DR are available, we can employ
disparity-guided patch-based synthesis, similar to that used by Luo
et al. [2015]. Here the goal is to minimize the following:

ED (CS ,CV ) =
∑
t̂ ∈CV

min
ŝ ∈CS

Q(ŝ, t̂), (1)

where CS is the source monocular channel and CV is one of the
shifted auxiliary channels (substituting for either CL or CR ). For
each disoccluded patch t̂ inCV , we search for a source patch ŝ inCS

such that the following dissimilarity metric is minimized:

Q(ŝ, t̂) =
∑

s ∈ŝ,t ∈t̂

wdis |D
S (s) − DV (t)|2+

wval(s, t)|C
S (s) −CV (t)|2 +wuniΩ(s).

(2)

Here s and t are individual pixels from patches ŝ and t̂ , andwdis is the
weight of a disparity term that compares the disparity of the source
pixel s stored in DS with the disparity of the target pixel t stored
in DV (substituting here either for DR or DL). Note that DS was
obtained in the disparity propagation phase (Section 3.1) while DV
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originates from the preceding disparity completion step. The fol-
lowing disparity-dependent dissimilarity term helps to control the
smoothness of the synthesized channel CV (here C is one of F ,
Gcolor, Gedge, or Gpos, and V stands for L or R). By setting

wval(s, t) = exp(−|DS (s) − DV (t)|2/σ 2) (3)

as per Luo et al. [2015], we can encourage smooth transitions of
synthesized channel values at the areas where the original disparity
is continuous, while at discontinuities it enables abrupt changes.
Finally,wuni is the weight for the occurrence term Ω that prevents
excessive repetition of source patches by counting frequency of
their usage. More frequently used source patches have higher values
of Ω and thus are less preferred during the search phase; see Kaspar
et al. [2015] for further details.

3.4 Final synthesis
Once auxiliary channels for both views CL and CR are available in
each target frame, we can begin to synthesize the stylized output
sequences OL and OR . We start from a selected keyframe Tk ∈ K
and continue frame by frame forward/backward in time (or in both
directions when k is neither the starting or final frame of T ). For
each input frame Ti ∈ T , we compute output frames that minimize
the following energy:

ES (Sk ,OL
i ,O

R
i ) =

∑
t̂L ∈OL

i

min
ŝL ∈Sk

ML(ŝL , t̂L)+
∑

t̂R ∈OR
i

min
ŝR ∈Sk

MR (ŝR , t̂R ),

(4)
which is a sum of two partial energies computed over the left OL

i
and right OR

i stylized views. The aim is to find a source patch ŝL ∈
Sk for each target patch t̂L ∈ OL

i in the left view and a source
patch ŝR ∈ Sk for each target patch t̂R ∈ OR

i in the right view that
minimizes the following patch dissimilarity metric (see Fig. 4):

MV (ŝ, t̂) =
∑

s ∈ŝ,t ∈t̂

wtexMV
tex(s, t) +wcolorMV

color(s, t)+

wposMV
pos(s, t) +wedgeMV

edge(s, t)+

wtempMV
temp(s, t) +wuniΩ(s).

(5)

Here s denotes a pixel within the source patch ŝ and t is a pixel
within the target patch t̂ . The overall energy is a sum of dissimilarity
terms, each with its own weight. The first texture dissimilarity
term MV

tex (V stands for left L or right R) with its weight wtex
measures the similarity between pixels in the style exemplar Sk
and the corresponding pixels in the synthesized views (OL

i andOR
i ).

At the same time, it also evaluates the stereo consistency in the
other view using the disparity maps DL

i and DR
i of the current

frame i:

MV
tex(s, t) = |Sk (s)−O

V
i (t)|

2+wstereo |Sk (s)−O
¬V
i (t±D

V
i (t))|

2, (6)

Again V denotes L or R, ¬V denotes the complement (R or L re-
spectively), and ± refers to adding the disparity going left, and
subtracting it going right. The stereo weightwstereo balances the in-
fluence of texture and stereo consistency. The following terms in the
energy formulation represent additional weighted guidance (wcolor,

wedge, andwpos) using channels Gcolor, Gedge, and Gpos:

MV
guide(s, t) = |G

S
k (s) −G

V
i (t)|

2 +wstereo |G
S
k (s) −G

¬V
i (t ±D

V
i (t))|

2.

(7)
Here MV

guide substitutes for M
V
color, M

V
edge or M

V
pos, whileGV stands

for GV
color, G

V
edge or G

V
pos. GS

k are monocular guiding channels that
correspond to a keyframe Tk . Each dissimilarity measure is accom-
panied by a corresponding dissimilarity for the disparity-adjusted
pixel, promoting stereo consistency across the two views. In addi-
tion, temporal coherence is taken into account with a weightwtemp
in both views:

MV
temp(s, t) = |Sk (s) − F

V
i [O

V
i−1](t)|

2. (8)

Here FVi [. . .] denotes a warp driven by the shifted optical flow FVi
of the previously synthesized output frame OV

i−1. Again, V refers
to either the left L or the right R view. Finally, Ω is the patch
occurrence term with a weight wuni, used to prevent overuse of
particular exemplar patches as described by Kaspar et al. [2015].

left view right viewkeyframe

ML
tex MR

tex

ML
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color

ML
pos MR

pos
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edge MR

edge

ML
temp MR

temp

OL
i Sk OR

i

GL
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color

GL
pos GS

pos GR
pos

GL
edge GS

edge GR
edge

FLi [O
L
i−1] Sk FRi [O

R
i−1]

DR
i DL

i

DR
i DL

i

DR
i DL

i

DR
i DL

i

Figure 4: An overview of terms consisting of patch dissimi-
laritymetricsML andMR and their dependence on auxiliary
channels. See the text for the detailed explanation. Video
frame GS

color and style exemplar Sk © Jana Kyllerová.

3.5 Optimization
To minimize ED and ES , we use the EM-like optimization scheme
proposed by Wexler et al. [2007] and later refined by Kaspar et
al. [2015] to update the patch occurrence term. During the opti-
mization of ED , only patches whose central pixel lies within the
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disoccluded area are modified. All others remain unchanged and
serve as boundary conditions to encourage the synthesis to pro-
duce seamless transitions between the original shifted pixels and
those being synthesized to fill in dissocluded areas. In the case
of ES , the optimization runs over all target pixels since the style S
needs to be consistently propagated to the entire frames. In the
case of multiple keyframes, we transfer the style from each exem-
plar S separately and then perform linear blending to obtain the
final merged sequence. Alternatively, a more advanced merging
based on a screened Poisson equation can be used as described
in [Jamriška et al. 2019].

4 RESULTS
We implemented our approach using C++. A table providing set-
tings of all tunable parameters can be found in our supplementary
material. To reduce computational overhead during the optimiza-
tion of ED and ES , we employed PatchMatch [Barnes et al. 2009]
to accelerate nearest-neighbour retrieval. On average, it takes 2.5
minutes on a ten-core CPU to synthesize one stereo pair for a single
half-megapixel video frame.

To demonstrate the versatility of our framework, we prepared a
selection of testing sequences with a variety of input data. These
include one or more stylized keyframes in different styles with
depth information obtained via boosted monocular depth estima-
tion [Miangoleh et al. 2021] or rendered from a 3D model aligned
with the target scene [Grishchenko et al. 2020]. We also demon-
strate a use case when the target sequence is partly or entirely
stylized and where keyframes are produced using a different style
transfer method or contain only information about the depth in the
scene. All results are presented in Figures 5 and 6 where the stereo
effect can be seen using red-cyan anaglyph glasses. The full stylized
sequences are also presented in the supplementary video, rendered
both in red-cyan anaglyph and side-by-side mode. The latter is
suitable for a cardboard or a VR headset, where the resulting stereo
effect is most apparent.

The Lili sequence (see Fig. 5.1) contains subtle head motions. We
prepared a single keyframe with an oil painting as a style exemplar
and obtained depth information by combining boosted monocu-
lar depth estimation [Miangoleh et al. 2021] and a rendering of a
3D face model aligned with the head pose in the keyframe [Gr-
ishchenko et al. 2020]. We merged those two sources using Poisson
image editing [Pérez et al. 2003]. The rest of the sequence was
stylized using our approach, i.e., depth was propagated to the re-
maining frames, left and right auxiliary channels were produced,
and finally the synthesis was executed to obtain the final stylized
views.

In the Jana sequence (see Fig. 5.2) with its more dramatic head
motion, a single keyframe was digitally painted by hand and then
three other keyframes were generated using STALP [Futschik et al.
2021]—a neural style transfer method that handles more dramatic
changes in the scene. For those additional keyframes, depth in-
formation was estimated using the same approach as for the Lili
sequence, i.e., we combined estimated and rendered depth maps.
We used our approach to propagate depth and stylize the sequence
from each keyframe and then we blended them to produce the final
output.

The Selfie sequence (see Fig. 6.1) shows a human head with
moving body and the Lynx sequence (see Fig. 6.2) depicts an animal
inmotion. For each of these sequences, two keyframeswere digitally
painted and depth was estimated using [Miangoleh et al. 2021]. Our
approach was used to propagate depth and stylize the sequence
using both keyframes. The final output was produced by blending.

Finally, sequences Knights and Alchemist (see Figures 5.3 and 6.3)
were created in monocular view by an artist using a combina-
tion of hand-painted layers that undergo parallax motion and the
video style transfer method of Jamriska et al. [Jamriška et al. 2019].
Depth for those two sequences was obtained by generating eight
keyframes using [Miangoleh et al. 2021]. Our method was then
used to propagate the depth from the keyframes, construct auxil-
iary channels, and perform the synthesis to produce the resulting
stereo pairs.

To evaluate our method, we conducted an informal user study.
We presented each participant with the sequences produced us-
ing our approach, and interviewed them to gain some qualitative
feedback about the outputs. The interviews took place in a VR
environment, with both the interviewer and the interviewee being
in the same virtual room with a screen. The interviewer controlled
the sequences being shown and asked questions about them. There
were in total eight participants, selected specifically to include a
range of experience with VR, 3D movies, and hand-drawn art, from
complete novices to professional artists. Participants were asked
about their overall feeling from the sequence and whether they saw
any artifacts; they were also given the opportunity to comment
generally on the sequences.

Participants in general enjoyedwatching our sequences.Without
prompting, they immediately noticed clear stereo effect, which was
more vivid in sequences with dynamic camera (Knights, Alchemist,
and Lynx). They expressed no objections about understanding the
depth layout in the scene, nor did they report any discomfort with
respect to the stereo consistency. Participants were more interested
in aspects that were not directly related to our method, such as
expressing a preference for some particular artistic style or the
selection of colors in the background plane. After several repeated
viewings, two participants spotted subtle artifacts produced by our
method, relating to the temporal coherency of newly uncovered
regions in each view, comparing them to a shimmer caused by heat.
Some participants commented on aspects of the sequences that were
already present in the input, such as the lack of movement in the
candle flames in the Alchemist sequence. Overall, the participants
were enthusiastic about the potential for stereo stylization.

To further highlight the benefits of our approach, we performed
quantitative and qualitative evaluation with two baseline stereo
stylization techniques: (1) stylize-and-warp—a method where we
use known disparity to warp the input stylized monocular video to
left and right view; and (2) warp-and-stylize—an approach in which
an input monocular video is warped to left and right views and then
each view is stylized separately. Results of these two evaluations are
presented in the supplementary material. They clearly demonstrate
that our approach reproduces the style more faithfully and achieves
better stereo consistency.
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(1a) (1b) (1c)

(1d)

(1e)

(1f)

(2a) (2b) (2c)

(2d)

(2e)

(2f)

(3a) (3b)

(3d)

(3e)

(3f)

Figure 5: A collection of three different sequences stylized using our approach—Lili Fig. 5.1, Jana Fig. 5.2, and Knights Fig. 5.3.
From Lili’s and Jana’s input sequences (1d & 2d) a single keyframe was selected (1a & 2a) for which a stylized counterpart
was prepared by an artist (1b & 2b) and also a depth map specified (1c & 2c). Our method then produced the final binocular
sequences (1e & 2e) of which anaglyph examples are shown in (1f & 2f). In the case of Knights. the input sequence (3d) was
already stylized by an artist, and the aim here is to add a stereoscopic effect (3e). To do that, our method propagates depth
information (3b) from a set of keyframes (3a) to the entire sequence and synthesizes the stylized stereo view (3f). See also our
supplementary video for a side-by-side version of this result. Video frames (1a) & (1d) ©Michal Dvořák, video frames (2a) & (2d)
and style exemplar (2b) © Jana Kyllerová, stylized video frames (3a) & (3d) © Jakub Javora.

5 DISCUSSION
In the previous section, we showed a variety of examples with
different styles and arising from different input scenarios. The
corresponding videos can be seen in the supplementary material.
As the anaglyph view provides only an approximation of the stereo
effect, We strongly recommend viewing the resulting sequences in
VR, whether with a full headset or with a cardboard viewer.

Our method extends video stylization from monocular video to
stereo. The stereo output is largely free of objectionable stereo in-
consistencies while maintaining coherence of style elements across
views and conveying the sense of observing a 3D world while still
preserving the 2D essence of the style.

Our method shares some limitations with the approach of Jam-
riška et al. [2019]. Both techniques are sensitive to significant
changes in the input video (e.g., viewpoint, pose or illumination)
and can find it difficult to propagate high-frequency details from the
style exemplar through the full video sequence. This drawback can
be mitigated by providing additional corrective keyframes, either
manually or using a more advanced style transfer technique such

as STALP [Futschik et al. 2021] as we demonstrated in the Jana
example.

There is also some dependence on the quality of input depth.
While monocular depth estimation is outside the scope of our con-
tribution, inaccurate depth maps may impose problems on us, some-
times manifesting as inconsistent halo effects or a lack of depth
perception. We demonstrated how to partially mitigate this by fit-
ting a 3D mesh [Grishchenko et al. 2020] into the input sequence
to obtain higher-quality depth values in facial regions, but a more
general solution remains an open problem.

Our method may encounter difficulties in scenarios where more
accurate reconstruction of disocclusions is necessary. Our expec-
tation is that holes are relatively small and thus there is no need
to handle continuation of semantically meaningful structures in
the scene. For larger holes or a complex configuration of occluders
(e.g., a dense forest with leaves and branches blowing in the wind),
more elaborate methods would be required.
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(1a) (1b)

(1d) (1e)
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(1h)
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(1d) (1e) (1f)

(1g)

(1h)

(1i)

(2a) (2b) (2c)

(2d) (2e) (2f)
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(2i)
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(3d)

(3e)

Figure 6: StyleBin applied to three different sequences—Selfie Fig. 6.1, Lynx Fig. 6.2, and Alchemist Fig. 6.3. From Selfie’s
and Lynx’s input sequences (1g & 2g) the user will pick two keyframes (1a, 1d, 2a, 2d), prepare their stylized variants (1b, 1e,
2b, 2e), and provide an estimate of depth in the scene (1c, 1f, 2c, 2f). Our method then transfers the style from those keyframes
onto the rest of the video (1g & 2g) producing a consistent stereo sequence (1h & 2h) of which one frame is displayed here as
a red-cyan anaglyph (1i & 2i). In the case of Alchemist, the input video (3c) was already stylized by an artist. A set of depth
maps (3b) is provided for a selection of keyframes (3a). Our algorithm then propagates the information about depth to the
entire stylized video and synthesizes a stereo sequence (3d). An anaglyph close-up of one frame from our stereoscopic output
is shown in (3e). See also our supplementary video for a side-by-side version of this result. Video frames (1a), (1d) & (1g) and
style exemplars (1b) & (1e) © Jana Kyllerová, style exemplars (2b) & (2e) and stylized video frames (3a), (3c) & (3d) © Jakub
Javora.

6 CONCLUSION
We present an example-based approach for style transfer in the
stereo image setting. Our input is a monocular video sequence
plus one or more stylized keyframes with information about depth.
We extrapolate the provided style and depth across all frames and
produce right and left stylized views. Our method uses a guided
patch-based synthesis, choosing patches from the style exemplar
such that an energy function is minimized, measuring similarity
according to multiple guiding channels (as done by Jamriška et
al. [Jamriška et al. 2019]) and enforcing consistency across the
video frames as well as between the corresponding patches in right
and left views.

We showed results in a variety of styles and with varied input
conditions. The patch-based synthesis allows us to preserve the 2D
aspects of the style while the joint optimization of temporal and
stereo consistency produces a comfortable viewing experience. In
our user study, no participants experienced discomfort or expressed
concerns about their 3D interpretation of the scene. We believe our
approach could simplify creation of stylized stereoscopic videos.

Some scope remains for future work. Depth estimation is an on-
going area of research, and ourmethodwould benefit from advances
here. Further, while our method deals adequately with simple dis-
occlusions, complex scenes may impose difficulties; future work
can attempt to extrapolate the style exemplar across more dramatic
changes and disocclusions.

Our method could also help to bootstrap machine learning meth-
ods for stereo stylization. Training data for still images is abundant;
stylized video is rarer, and stylized stereo video rarer still. Our
method could be used in data amplification in this setting.
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