
Rapid Labels: Point-Feature Labeling on GPU

Václav Pavlovec, Ladislav Čmolı́k

Abstract— Labels, short textual annotations are an important component of data visualizations, illustrations, infographics, and
geographical maps. In interactive applications, the labeling method responsible for positioning the labels should not take the resources
from the application itself. In other words, the labeling method should provide the result as fast as possible. In this work, we propose a
greedy point-feature labeling method running on GPU. In contrast to existing methods that position the labels sequentially, the proposed
method positions several labels in parallel. Yet, we guarantee that the positioned labels will not overlap, nor will they overlap important
visual features. When the proposed method is searching for the label position of a point-feature, the available label candidates are
evaluated with respect to overlaps with important visual features, conflicts with label candidates of other point-features, and their
ambiguity. The evaluation of each label candidate is done in constant time independently from the number of point-features, the number
of important visual features, and the resolution of the created image. Our measurements indicate that the proposed method is able to
position more labels than existing greedy methods that do not evaluate conflicts between the label candidates. At the same time, the
proposed method achieves a significant increase in performance. The increase in performance is mainly due to the parallelization and
the efficient evaluation of label candidates.

Index Terms—Label placement, Point-feature labeling, GPU.

1 INTRODUCTION

Labels, short textual annotations, are an important component of data
visualizations, illustrations, infographics, and geographical maps. The
main function of the labels is to provide annotations, for which we
can easily see to which visual features they relate. The annotations
(e.g., names of the visual features) are crucial in identifying the visual
features, especially in information visualization and geographical maps
where all visual features have the same or similar shape.

The label placement was identified as one of the most important
problems in Discrete Computational Geometry [3]. The label placement
is usually divided according to the feature type that is being labeled into
point-feature labeling, line-feature labeling, and area-feature labeling.
In this work, we are focusing on the point-feature labeling where the
features are points or small areas that can be approximated with points.

The point-feature labeling problem also denoted as label number
maximization problem is an optimization problem. The goal is to
label maximum number of point-features possible with labels of given
dimensions such that each label can be unambiguously associated with
the labeled point-feature and that no label overlaps with other labels or
important visual features (e.g., labels of point-features in a line chart
will not overlap the line). The problem does not have an easy solution
as it is NP-hard [2, 6, 11, 18].

Oftentimes, the point-feature labeling problem is extended to con-
sider several groups of point-features where the priority of each group
is given by order of the groups. In a such case, the goal for each group
is to maximize the number of positioned labels while not decreasing
the number of positioned labels in groups with higher priority.

The vast majority of point-feature labeling techniques, discussed
in detail in Section 2, position the label in close proximity to the
labeled point-feature. Most often, the techniques choose the label
from four or eight predetermined label candidates around the point-
feature. Less often, the techniques use the sliding model where the label
candidate is allowed to slide around the point-feature. Only several
techniques [13, 16] allow positioning the label further away from the
point-feature. They associate the label with the labeled point-feature
with a leader - a line or a curve that connects the label with the point-
feature.

• V. Pavlovec, L. Čmolı́k are with Faculty of Electrical Engineering, Czech
Technical University in Prague. E-mail: { pavlova1 | cmolikl}@fel.cvut.cz.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

In interactive applications, especially in interactive data visualiza-
tions and interactive geographic information systems, we often obtain
previously unknown configurations of point-features after loading a
dataset or performing a dynamic query [24]. In such situations, to
support the user in identifying the point-features, the label layout needs
to be found in a very limited time.

In this work, we propose a screen-space greedy method that is
running on GPU. The proposed method takes a list of point-features
with their coordinates and labels as the input. Further, the method takes
as the input a raster image containing the important visual features that
cannot be occluded by the labels and a raster image into which the
labels will be drawn. This way, any application that is able to produce
an image can be easily integrated with the proposed method. The
proposed method allows to label a large number of point-features at
interactive framerates without the need for a pre-processing of the input
data. Alternatively, the proposed method can be utilized to quickly pre-
process the input data to generate a label layout that supports zoom and
pan. As the method is greedy, we do not guarantee that the proposed
method will find the optimal label layout. We highlight our four main
contributions:

1. In contrast to existing methods that position the labels sequen-
tially, the proposed method positions several labels in parallel.
Yet, we guarantee that the positioned labels will not overlap, nor
will they overlap important visual features.

2. The proposed method is evaluating overlaps with important vi-
sual features, considering conflicts with label candidates of other
point-features, and evaluating ambiguity when it is determining
the position of a label. This makes the proposed method more
flexible than the existing greedy methods that either evaluate over-
laps with important visual features [12, 16] or consider conflicts
with label candidates of other point-features [20]. Further, none
of the existing greedy methods evaluate ambiguity when it is
determining the position of a label.

3. The proposed method uses Summed Area Table [5] to evaluate
overlaps of a label candidate with important visual features, to
evaluate conflicts of the label candidate with label candidates of
other features, and to evaluate ambiguity of the label candidate.
Due to the Summed Area Table, the evaluation is done in constant
time independently of the number of important visual features,
labeled point-features, and resolution of the created image. Please
note that there is a performance cost associated with the creation
of the Summed Area Table, but the overall acceleration is greater
than the cost.

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2021.3114854

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



0

4

5

6

7

1

2 3

Fig. 1. The eight predetermined label candidates around the point-feature
(indicated with the cross). The horizontal and vertical offset of each label
candidate from the point-feature is given by the offset o. For each label
candidate, we depict its preference as a number (lower is better). The
conflict rectangle enclosing all label candidates is indicated with red
color.

4. We have compared the performance and the number of labeled
point-features of the proposed method with two existing greedy
methods, Particle-based labeling of Luboschik et al. [16], and
Fast Labels of Kittivorawong et al. [12]. To assess the impact of
the greedy approach used in the proposed method on the number
of labeled point-features, we have compared the proposed method
with a modified meta-heuristic method of Zoraster [33] based
on simulated annealing. Our measurements indicate that the
proposed method achieves a significant increase in performance
compared to the other methods. At the same time, the proposed
method is able to label more point-features than the two greedy
methods but fewer point-features than the modified method of
Zoraster.

2 RELATED WORK

The point-feature labeling problem has been extensively studied, and
many optimization strategies were used to solve it. Often, the strategies
are using the same concept called conflict graph [25] to represent
possible conflicts (e.g., overlaps) among label candidates. Within this
concept, the objective of the point-feature labeling problem is to find
the maximum independent set of the conflict graph.

Many optimization strategies have been applied to the problem,
including simulated annealing [22, 33], tabu search [1, 32], genetic
algorithms [8, 28, 29], ant colonies [23], and 0-1 integer program-
ming [9, 17, 19]. For an extensive list of the existing methods, please
see the website of Wolff and Strijk [31], who catalogs the map labeling
techniques.

All the above-described methods provide high-quality label layouts
for various applications. However, only several methods [9,14] consider
overlaps among labels and other important visual features. Further, all
the above-described methods share a common problem. The computa-
tion time ranges from seconds for small datasets to minutes or hours
for large datasets. Consequently, these methods cannot be used in inter-
active applications where the positions of point-features can change in
time or where the label layout of a previously unknown configuration
of point-features is needed quickly.

Petzold et al. [21] addressed the problem of high computation time
for a special case of zooming in a map. They divided the calculation
into a time-demanding pre-processing stage and fast labeling phase. In
the pre-processing stage, they determine a modified conflict graph to
resolve label conflicts at any given zoom level of the map. Due to the
time-demanding pre-processing stage, the method is not applicable in
scenarios where the point-features cannot be pre-processed in advance.

Been et al. [2] explored the labeling of dynamic maps. They propose
a method that can position the labels consistently with panning and
zooming operations. Interactive computation times are again achieved
by a heavy pre-processing phase.

Greedy methods are also addressing the problem of high computa-
tion time, but for a general case of the point-feature labeling problem.
Greedy methods do not guarantee to find the optimal label layout. Gen-
erally, they will find a worse label layout than the above-described
methods, but they are able to calculate the label layout in milliseconds
which makes them applicable in situations where heavy pre-processing
is not possible.

Mote [20] introduced a greedy method based on a so-called trellis
strategy. The method divides the screen area into a 2-dimensional grid

and determines a simplified version of a conflict graph for the given
point-features. Only point-features in neighboring cells need to be
checked for conflict with a given point-feature. The technique assigns
a cost to every label candidate and selects the least expensive set of
non-conflicting candidates. However, overlaps of labels with important
visual features are not evaluated. Subsequently, the labels can occlude
important visual features.

Lubostchik et. al. [16] introduced Particle-based labeling, where the
particles represent both the already positioned labels and the visual fea-
tures that the labels cannot overlap. To reduce the number of particles
that need to be tested for overlaps with a label candidate, they introduce
a local neighborhood data structure similar to the Trellis strategy of
Mote [20]. In contrast to the method of Mote, Particle-based labeling
does not evaluate conflicts among the label candidates, which leads
to label layouts with a lower number of positioned labels when the
labels are positioned to the close proximity of the point-features. They
compensate it with so-called distant labels positioned further away
from the point-features. The relationship is established with straight
leaders that connect each distant label with the corresponding point-
feature. The distant labels also allow for the labeling of dense clusters
of point-features. Unfortunately, the straight leaders often cross the
point-features, the labels, and one another, which generates a signifi-
cant visual clutter. The performance of Particle-based labeling depends
heavily on the number of used particles. The method is significantly
slower for cases with complex visual features that the labels cannot
occlude.

The performance problem of Particle-based labeling was addressed
by Kittivorawong et al. [12] with occupancy bitmask. The occupancy
bitmask allows faster evaluation of the overlaps of the label candidates
with the visual features that cannot be occluded. However, the time
required to determine overlap for a label candidate still depends on the
size of the label candidate and the screen resolution.

Recently, Lhuillier et al. [13] proposed an approach to determine the
distant labels without the visual clutter. They calculate a density map
of point-features. The positions of labels are calculated by gradient
descent of the density map with leaders corresponding to the trajectory.
Therefore, the leaders are guaranteed to be crossing-free. They incor-
porate an obstacle map to avoid overlaps of labels and other important
visual features. However, the method is not suitable for large datasets
due to high computation time.

As our proposed method uses Summed Area Table [5] to evaluate
the label candidates, we mention that recently Čmolı́k et al. [4] used
Summed Area Table to evaluate label candidates of area-features.

3 LABELING OF POINT-FEATURES ON GPU

In this work, we propose a greedy method that allows to provide visual
features that the labels cannot overlap and evaluates conflicts between
the label candidates of point-features. Further, we propose how to
evaluate the ambiguity of the label candidates. We demonstrate that
the evaluation of ambiguity further improves the resulting label layout.
Finally, in contrast to other existing methods, the proposed method
positions labels of several point-features in parallel.

The proposed method is choosing the label for each point-feature
from eight predetermined label candidates around the point-feature, see
Figure 1. Each label candidate has its preference (lower is better). The
proposed method is choosing the label based on the preference of the
label candidates and other properties of the label candidates discussed
later. The horizontal and vertical offset of the label candidates from
the point-feature is given by the offset o. All label candidates of
a point-feature are enclosed in the conflict rectangle with the width
w = 2 ·wL +2 ·o and height h = 2 ·hL +2 ·o, where wL is the width of
the label and hL is the height of the label.

3.1 Parallel Point-Feature Labeling

To allow labeling of multiple point-features at once, we utilize distance
between the point-features. We can label a set of point-features in
parallel if the vertical distance dv ≥ wmax and the horizontal distance
dh ≥ hmax for each pair of point-features in the set, where wmax and

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2021.3114854

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



b��

q = 0

q = 2

q = 1

q = 3
i0

b�� b��

b��

0

1

1

j

Fig. 2. An illustration of four blocks b00, b01, b10, and b11 and their quad-
rants. The quadrant of each block with quadrant id q = 1 is highlighted in
gray color. Three point-features at extreme positions and their conflict
rectangles are depicted in red color to show that in a worst-case, the
conflict rectangles will touch but not overlap.

hmax are the maximum with and height of conflict rectangles of all
point-features calculated from the provided labels and font size.

Finding such a set of point-features is relatively easy. We divide the
space into grid a of blocks of width 2 ·wmax and height 2 · hmax, see
Figure 2 for an example. We denote each block as bi j, where i and j
are x and y coordinates of the block in the grid. Then, we divide each
block into four quadrants of width wmax and height hmax. We assign
quadrant id q ∈ {0,1,2,3} to each quadrant according to its position
in the block, see Figure 2 for an example. Finally, by choosing one
point-feature from the quadrant with given q of each block, we obtain
the set of point-features that can be labeled in parallel. In Figure 2, we
highlight the quadrant with q = 1 in each block with gray color and
depict three point-features with extreme positions and with the width
w = wmax and height h = hmax of their conflict rectangles to show that
in the worst case the labels will touch but not overlap. Please note that
if certain quadrants do not contain any point-features then the condition
that the labels will not overlap is still met.

3.2 Overview of the Algorithm

The proposed algorithm is a screen-space technique that operates in
image space. The algorithm works with 2D buffers. A 2D buffer is
similar to a 2D raster image, but the values stored in a 2D buffer do not
need to be colors; they can be any desired values.

Our algorithm takes the list of point-features and two buffers as the
input. For each point-feature, the [x,y] coordinates and the label string
are provided. The obstacles buffer is a buffer that contains a mask of
the important visual features that the labels cannot overlap. Essentially,
the pixels of the obstacles buffer that the labels cannot overlap have the
value 1 while the remaining pixels have the value 0. The color buffer
contains the image that will be overlaid with the labels.

The output of the algorithm is the color buffer overlaid with the
positioned labels. Alternatively, the output of the algorithm can be the
labels buffer, a buffer of the width equal to the number of point-features
and of the height 1 containing the coordinates and dimensions of the
positioned labels. The x coordinate in this buffer corresponds to the
index of the point-feature in the input list of point-features.

The algorithm uses other buffers internally. The conflict buffer is
used to evaluate conflicts between the label candidates of different point-
features. The ambiguity buffer is used for the evaluation of ambiguity
of the label candidates. The label obstacles buffer is used to evaluate
overlaps of label candidates with already positioned labels. All these
buffers have the same size as the input obstacles buffer. In fact, we
combine the obstacles buffer, conflict buffer, ambiguity buffer, and
label obstacles buffer into the evaluation buffer. The evaluation buffer
is a buffer with four channels (similar to an RGBA image), where the
obstacles buffer, conflict buffer, ambiguity buffer, and label obstacles
buffer are each represented as one channel. Further, the algorithm uses
the block buffer that represents the blocks of the grid. The size of
the buffer corresponds to the size of the grid of blocks, i.e., there is
one pixel of the block buffer for each block of the grid. Finally, the
algorithm uses the priority buffer of the same size as the block buffer.
The priority buffer is used to find the point-feature with the highest

ob
st
ac
le
s

bu
ffe
r

1st iteration 2nd iteration 3rd iteration 4th iteration

la
be
lo
bs
ta
cl
es

bu
ffe
r

co
nfl
ic
t

bu
ffe
r

am
bi
gu
ity

bu
ffe
r

Fig. 3. An illustration of changes in the evaluation buffer during the first
four iterations of the proposed algorithm. For each iteration we depict
the obstacles buffer, the conflict buffer, the ambiguity buffer, and the
label obstacles buffer. In the obstacles buffer, we indicate the processed
quadrant with light red color and the labels positioned in the previous
iterations. In the first iteration, a label of one point-feature is positioned.
The conflict rectangle of the point-feature is removed from the conflict
buffer, and the label is added to the label obstacles buffer.

priority for each block of the grid.
Below, we describe the overview of the proposed algorithm. We

explain the details in the following sections. We indicate the corre-
sponding sections in the overview. Figure 3 depicts how the evaluation
buffer will be modified during the first four iterations of the algorithm
for a simple line chart with four point-features. For a graphical version
of the overview with all used buffers, please see Figure 4.

1. Establish the set of quadrant ids Q = {0,1,2,3} and set the quad-
rant id q = 0.

2. Create evaluation buffer, see Section 3.3 for details.

3. Create priority buffer, block buffer, and labels buffer.

4. While the set of quadrant ids Q is not empty:

(a) Set quadrant id q = (q+1)%4.

(b) If the quadrant id q /∈ Q then go to Step 4.

(c) Set the value of each pixel in the priority buffer to 0. Clear
each pixel in the block buffer to contain no label and point-
feature.

(d) Do in parallel for each unlabeled point-feature f in the
quadrant with id q:

i. Determine the coordinates [i, j] of the block bi j which
contains the point-feature f .

ii. Determine the label L and the priority p of the point-
feature f using the evaluation buffer, see Section 3.4
for details. If the point-feature f cannot be labeled,
then the processing of the point-feature f ends.

iii. Atomic operation: If the priority p is greater than the
priority at position [i, j] in the priority buffer, then
set priority at position [i, j] in the priority buffer to
p and store the position and dimensions of the label
candidate l and position and id of the point-feature f
in the block buffer at position [i, j].

(e) Do in parallel for each block bi j:

i. If a point-feature in block bi j was labeled, then update
the evaluation buffer, see Section 3.5 for details.

(f) If no point-feature was labeled for quadrant id q, then re-
move the quadrant id q from the set of quadrant ids Q.

(g) Otherwise, do in parallel for each block bi j:

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2021.3114854

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



point-features

obstacles buffer

evaluation buffer

block buffer

priority buffer

Evaluate point-features

U
pd

at
e

ev
al

ua
tio

n
bu

ffe
r

En
d

Start

Yes

Yes

Q = {}Q = Q\q
No

No

Was any point-
feature labeled?

q = (q + 1) % 4

q = 0
Q = {0, 1, 2, 3}

Copy point-features

Render point-features
screencolor buffer

Summed Area Table

labels buffer
Create evaluation buffer

YesNo q in Q

x

index: 0 1 2 3

y w h

obstacles buffer

label obstacles buffer

conflict buffer

ambiguity buffer

5.269

4.641
3.354

3.18

1

2

4a

4b

4d
4e

4f

5

4

4g

Fig. 4. Graphical overview of the proposed algorithm. Black nodes and arrows represent the state diagram of the algorithm. Inside each node, we
depict the created buffers. Gray arrows incoming to a black node indicate that the node is reading from the buffer. A gray arrow outgoing from a black
node indicates that the node is writing into the buffer. In the red circles, we provide the numbering of the steps in the description of the algorithm.

i. If a point-feature in block bi j was labeled, then copy
the position and dimensions of the chosen label into
the labels buffer at the position given by the id of the
point-feature.

ii. Mark the point-feature as labeled.

5. Do in parallel for each point-feature:

(a) Draw the label on the screen.

The atomic operation used in the algorithm means that the whole step
is executed at once for each point-feature without interruption.

3.3 Creating the Evaluation Buffer
We create the evaluation buffer by combining the obstacles buffer,
conflict buffer, ambiguity buffer, and label obstacles buffer into a single
buffer similarly to how the RGBA image combines red, green, blue, and
alpha channels. We will express the value of a pixel of the evaluation
buffer as e = [eo,ec,ea,el ], where the eo, ec, ea, and el are values of the
corresponding pixel in the obstacles buffer, conflict buffer, ambiguity
buffer, and label obstacles buffer, respectively.

Now let us describe how we create the individual buffers. The
obstacles buffer is the input of the algorithm, and the remaining buffers
are created with the same size. The value of each pixel in the conflict
buffer is set to 0. For each point-feature, we render its conflict rectangle
and add 1 to each pixel in the conflict buffer inside the conflict rectangle.
After this, each pixel of the conflict buffer contains the number of
conflict rectangles that it is inside of. The ambiguity buffer is created
exactly the same as the conflict buffer. This is because the content of
the conflict buffer is changing during the labeling, while the content
of the ambiguity buffer remains the same. Please see Figure 3 for an
example. Lastly, the value of each pixel in the label obstacles buffer is
set to 0.

After we create the evaluation buffer, we calculate the Summed
Area Table [5] of all blocks bi j in the buffer in parallel. Calculating
the Summed Area Table for blocks bi j instead of the whole evaluation
buffer makes the calculation dependent on the size of the blocks which
is smaller than the size of the whole buffer. Further, it allows us to
update the Summed Area Table more efficiently. We describe the
update process in detail later in Section 3.5. To calculate the Summed
Area Table, we use the method of Hensley et al. [10] tailored for the
parallel calculation on GPU.

In the Summed Area Table, each pixel p of the buffer inside of
block bi j contains sum S = [So,Sc,Sa,Sl ] of the values of pixels in the
rectangle with the bottom left corner at the bottom left corner of the
block and top right corner at the position of pixel p. Again, the values

So, Sc, Sa, and Sl are sums of values of pixels in the corresponding
rectangle in the obstacle buffer, conflict buffer, ambiguity buffer, and
label obstacles buffer.

Summed Area Table allows to obtain the sum of values in a given
rectangle in the evaluation buffer in constant time. In our case, the
maximum size of the given rectangle is equal to the size of one quadrant
of the block. In other words, the given rectangle can be inside of a single
block, overlap two blocks horizontally, overlap two blocks vertically,
or overlap four blocks of the grid. In the following text, we show that
in the worst case we need nine reads from the Summed Area Table of
the evaluation buffer to obtain the sum of values in the given rectangle.

If the given rectangle is inside of a single block, we can obtain the
sum of values in the rectangle with reading values in the four corners
of the rectangle. In Figure 5(a), we depict the rectangle together with
the bottom and left border of the block. To obtain the sum S of values
in the rectangle, we calculate

S = S3−S1− (S2−S0) = S0−S1−S2 +S3, (1)

where S0, S1, S2, and S3 are sums in the Summed Area Table in the
corners of the given rectangle depicted in Figure 6.

In the case that the given rectangle overlaps two blocks vertically,
we need six reads from the Summed Area Table, see Figure 5(b). For
the part of the rectangle in the bottom block, we can use Equation 1.
For the part of the rectangle in the top block, we can calculate the sum
by subtracting the sum S4 from the sum S5. This gives us the equation

S = S0−S1−S2 +S3−S4 +S5. (2)

Similarly, in the case that the given rectangle overlaps two blocks
horizontally, we need six reads from the Summed Area Table, see
Figure 5(c). For the part of the rectangle in the left block, we can use
Equation 1. For the part of the rectangle in the right block, we can
calculate the sum by subtracting the sum S6 from the sum S7. This
gives us the equation

S = S0−S1−S2 +S3−S6 +S7. (3)

Finally, in the case that the rectangle overlaps four blocks of the grid,
we need nine reads from the Summed Area Table, see Figure 5(d). For
the part of the rectangle in the bottom left block, we can use Equation 1.
For the part of the rectangle in the top left block, we need to subtract
sum S4 from sum S5. For part of the rectangle in the bottom right
block, we need to subtract sum S6 from sum S7. And for the part of the
rectangle in the top right block, the sum equals to sum S8. Adding the
values for all parts of the rectangle gives us the equation

S = S0−S1−S2 +S3−S4 +S5−S6 +S7 +S8. (4)

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2021.3114854

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



S� S�

S�S�

(a)

S� S�

S�S�
S� S�

(b)

S� S�

S�S�

S�

S�

(c)

S� S�

S�S�
S� S�

S�

S�
S�

(d)

Fig. 5. The pixels (highlighted in red color) of the Summed Area Table
from which we need to read in order to calculate the sum of values in the
rectangle contained in a single block (a), overlapping two blocks vertically
(b), overlapping two blocks horizontally (a), and overlapping four blocks
(d).

3.4 Evaluating the Point-Features

This section describes how we determine the label L and the priority
p of a point-feature. The evaluation is based on the Summed Area
Table of the evaluation buffer. To simplify the following description,
we will not distinguish between label candidates completely inside in a
single block, label candidates overlapping two blocks vertically, label
candidates overlapping two blocks horizontally, and label candidates
overlapping four blocks. Instead, let us consider that the correct formula
from the previous section is used to obtain the sum of values inside of
the label candidate in the evaluation buffer.

In the following text, we describe an algorithm that determines label
L of a given point-feature from the label candidates of the point-feature
and assigns priority p to the point-feature. If the point-feature cannot
be labeled then, the label L is not set. In the algorithm, the label
candidates of the point-feature are evaluated sequentially in ascending
order according to their preference.

To evaluate a label candidate l, we obtain the sum S = [So,Sc,Sa,Sl ]
inside of the label candidate l from the Summed Area Table of the
evaluation buffer. First, we test that the candidate does not overlap
important visual features encoded in the obstacles buffer or already
positioned labels encoded in the label obstacles buffer. If that is the
case then So +Sl = 0.

For the satisfactory label candidate l, we evaluate the conflicts of
the label candidate l as a ratio of the area of the label A to the sum of
conflicts Sc inside of the label candidate. Please note that A/Sc = 1
only if the label candidate does not overlap the conflict rectangle of any
other unlabeled point-feature (i.e., the label candidate overlaps only the
conflict rectangle of its point-feature). If the label candidate overlaps
conflict rectangles of other unlabeled point-features then A/Sc < 1.

If there are multiple label candidates of a point-feature with the
same ratio A/Sc (this will happen most often when point-feature has
several label candidates without conflicts), then we prefer the label
candidate with the lowest ambiguity. We evaluate the ambiguity of
label candidate l as a ratio of the area of the label A to the sum of
ambiguity Sa inside of the label candidate. The sum of ambiguity is
similar to the sum of conflicts, but also considers the conflict rectangles
of already labeled point-features. Please note that the higher the ratio,
the lower the ambiguity. Again, A/Sa = 1 only if the label candidate
does not overlap the conflict rectangle of any other labeled or unlabeled
point-feature. A label candidate with such a ratio is not ambiguous
because it is not located in the proximity of any other point-feature.
The lower the ratio A/Sa, the closer is the label candidate to other
point-features. In Figure 3, we have depicted two label candidates
with dashed lines in the conflict buffer and the ambiguity buffer in
the algorithm’s third iteration. The evaluation of the conflicts alone
will not allow to prefer one of the candidates while the evaluation
of ambiguity will. Choosing the label candidate further away from

S�

(a)

S�

(b)

S�
(c)

S�
(d)

Fig. 6. The sum of values (indicated with gray color) that is stored in a
pixel (highlighted in red color) of the Summed Area Table. We depict the
sum of values for the four pixels in the corners of a rectangle.

other point-features will make the label point-feature association easier.
However, the evaluation of ambiguity usually will not improve the
label layout in areas with densely packed point-features, as such point-
features typically will not have multiple label candidates with the same
ratio A/Sc.

If there are multiple label candidates of a point-feature with the
same ratio A/Sc and with the same ratio A/Sa, then we prefer the label
candidate with the highest preference.

Further, we use two rules of Wagner et al. [30] to simplify the
dependencies between the point-features. We have extended the second
rule to consider the ambiguity of the label candidates. (1) If a point-
feature has only one available label candidate left, then we use the
candidate, and the point-feature is assigned the highest priority possible.
(2) If a point-feature has label candidates that are not in conflict with
any label candidate of any other point-feature, then we use the least
ambiguous of the label candidates, and the point-feature is assigned
second highest priority.

The first rule will have the following effect. In the processed quad-
rant of blocks, we will always label a point-feature f with only one
available label candidate first. It is important to label the point-feature f
as soon as possible because the space needed for the last available label
candidate could be used by a label of another point-feature, and then we
would not be able to label the point-feature f . The second rule allows
to simplify the evaluation of conflicts between the label candidates.
Please note that after a point-feature is labeled, its conflict rectangle is
removed from the channel of the conflict buffer in the Summed Area
Table of the evaluation buffer which increases the chance of finding
new point-features with label candidates that are not in conflicts in the
next iteration.

The complete algorithm is as follows:

1. Set the number of available candidates N = 8.

2. Set best conflicts c = 0.

3. Set best ambiguity a = 0.

4. For each label candidate l:

(a) Calculate area A of the label candidate.

(b) Obtain the sum S = [So,Sc,Sa,Sl ] inside of the label can-
didate l from the Summed Area Table of the evaluation
buffer.

(c) If So +Sl = 0:

i. If A/Sc > c or (A/Sc = c and A/Sa > a): Set the label
L = l, set the priority p = 0.9 ·A/Sc, set best conflicts
c = A/Sc, and set the best ambiguity a = A/Sa.

Otherwise: N = N−1

(d) If N = 1: Set the priority p = 1.

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2021.3114854

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



(a) (b)

(c) (d)

Fig. 7. The update rectangles (in red, green, blue, and purple color)
with highlighted pixels c0 and c1 for a conflict rectangle inside a single
block (a), overlapping two blocks horizontally (b), overlapping two blocks
vertically (c), and overlapping four blocks (d).

Please note that in Step 4(c)i, we use the multiplication factor 0.9
to calculate the priority p to make sure that the priority of the point-
feature with the last available label candidate (Step 4d) is the highest.
If there is no point-feature with the last available label candidate, then
the multiplication will not have any effect on the resulting label layout.

3.5 Updating the Evaluation Buffer
In each iteration, after we have positioned a label for one point-feature
in certain blocks, we need to update the information in the Summed
Area Table of the evaluation buffer. One option is to remove the conflict
rectangle of each labeled point-feature from the conflict buffer, add
each positioned label into the label obstacles buffer, and calculate the
Summed Area Table of the evaluation buffer again. Unfortunately, this
approach leads to poor performance. Therefore, we update the Summed
Area Table of the evaluation buffer directly.

To remove a conflict rectangle of a labeled point-feature from the
conflict buffer, we need to subtract 1 from each pixel in the conflict
buffer inside the conflict rectangle of the labeled point-feature. Based
on this, we can update the Summed Area Table of the evaluation buffer
directly.

First, let us consider a conflict rectangle that is completely inside
of a single block. For such a conflict rectangle, we need to update
the rectangle from the lower-left corner of the conflict rectangle to the
top right corner of the block, see Figure 7(a) for an example. We will
denote the rectangle as update rectangle. For the sum Sc in each pixel
p in the update rectangle, we need to subtract the number of pixels
C that are inside of the intersection of the positioned label and the
rectangle with lower-left corner c0 and top right corner p. In Figure 8,
we depict the intersection for four pixels in various quadrants of the
update rectangle. To calculate the number of pixels C for each pixel p,
we use the equation

C = (dmin(xp,xc1)e−bxc0c) · (dmin(yp,yc1)e−byc0c). (5)

If we consider that the conflict rectangle overlaps two or four blocks,
see Figures 7(c), 7(b), and 7(d), all we need to do is to determine
the update rectangle for each block, and for each update rectangle
determine the positions of pixels c0 and c1. We depict the positions
for each update rectangle in Figure 7. Then, we can use Equation 5 to
update all pixels in each update rectangle.

Similarly, to update the obstacles buffer, we need to add 1 to each
pixel in the obstacles buffer inside the label of the labeled point-feature.
Based on this, we can again update the Summed Area Table of the
evaluation buffer directly. The approach is the same as for the conflict
rectangle, but instead of the conflict rectangle, we use the positioned
label. Further, instead of subtracting from the Sc in each pixel, we are
adding to Sl .

Now let us discuss why we are calculating the Summed Area Table of
the evaluation buffer for the individual blocks instead of for the whole

c�

c�p

(a)
c�

c�
p

(b)

c�

c�

p

(c)
c�

c�

p

(d)

Fig. 8. The sum of values (indicated with gray color) that is subtracted
from pixel p in the update rectangle (red rectangle) when we are removing
the conflict rectangle (black rectangle) of a labeled point-feature from the
Summed Area Table. We depict the sum pixel p in four quadrants of the
update rectangle.

buffer. Let us consider that the Summed Area Table was calculated for
the whole buffer. In consequence, the update rectangles will be much
larger. Each rectangle will be from the lower-left corner of the conflict
rectangle (or the label) of the positioned point-feature to the top-right
corner of the buffer. Therefore, we need to update many more pixels
of the buffer. As a GPU has a fixed number of shader units, updating
more pixels will result in sequential processing of several pixels by
each shader unit, and thus the performance will decrease dramatically.

3.6 Supporting Priority Groups of Point-Features
In many real-world situations, we have several groups of point-features
with various priorities (e.g., capital cities and regular cities). To achieve
this with the proposed method, we establish a list of the groups where
the groups are sorted according to their priority in descending order.
Then, we sequentially run the algorithm for each group. We recommend
using the same grid of blocks for all runs of the algorithm.

For each run of the algorithm, we need to set up the obstacles buffer,
conflict buffer, ambiguity buffer, and label obstacles buffer correctly.
The conflict buffer should contain conflict rectangles of point-features
that are only in the processed group. On the other hand, the ambiguity
buffer should contain conflict rectangles of all point-features. This
way, the algorithm will evaluate the ambiguity of label candidates with
respect to all point-features. The label obstacles buffer should contain
the labels positioned by all preceding runs of the algorithm. Finally, the
obstacles buffer can be the same for all runs of the algorithm. Please
note that by providing different obstacles buffer for each group of point-
features, we can control which important visual features will not be
occluded by the labels of the point-features in the group. For example,
the labels of capital cities cannot overlap other capital cities, but can
overlap the regular cities and the regular cities cannot overlap both
capital cities and other regular cities.

3.7 Supporting Zoom and Pan
In interactive scenarios, users typically use zoom and pan to navigate
in the environment (e.g. in a 2D map). During zooming and panning,
the labeling of the point-features needs to be consistent. Been et al. [2]
provide four rules for consistent point-feature labeling: (R1) labels
are not vanishing when zooming in or appearing when zooming out,
(R2) position and size of a label is changing continuously under the
pan and zoom operations, (R3) labels are not vanishing or appearing
during panning, and (R4) the placement of any label is a function of the
current zoom and pan state (i.e., it is not influenced by previous states).

In order to support the zoom and pan scenario and fulfill all the
rules for consistent labeling, we need to sequentially calculate the label
layout of point-features at increasing discrete zoom levels. Further, for
each point-feature we need to store the zoom level zl at which its label

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2021.3114854

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



1000 2000 4000 8000
Width of the obstacles buffer

0

100

200

300

400

500
Co

m
pu

ta
tio

n 
tim

e 
[m

s]

11.6817.51
51.73

196.02

14.59
40.73

159.86

538.90Particle-Based Labeling
Rapid Labels

(a)

1000 2000 4000 8000
Number of point-features

0

500

1000

1500

2000

2500

Co
m

pu
ta

tio
n 

tim
e 

[m
s]

43.03 51.74 59.08 79.01
31.19

160.54
602.17

2520.00Particle-Based Labeling
Rapid Labels

(b)

8 12 16 32
Font size

0

10

20

30

40

50

Co
m

pu
ta

tio
n 

tim
e 

[m
s]

16.41 15.97
16.16

21.37

8.16
14.79

22.64

55.76Particle-Based Labeling
Rapid Labels

(c)

1000 2000 4000 8000
Width of the obstacles buffer

0

200

400

600

800

N
u
m

b
e
r 

o
f 
p
o
si

ti
o
n
e
d
 la

b
e
ls

764.8 781.2 791.2 794.7

825.4 832.5 836.3 837.5

686.3 707.4 718.1 723.7

Simulated Annealing
Rapid Labels
Particle-Based Labeling

(d)

1000 2000 4000 8000
Number of point-features

0

200

400

600

800

N
u
m

b
e
r 

o
f 
p
o
si

ti
o
n
e
d
 la

b
e
ls

823.5 791.2

448.4

117.4

845.8 838.2

473.8

124.1

738.2
718.1

422.8

106.2

Simulated Annealing
Rapid Labels
Particle-Based Labeling

(e)

8 12 16 32
Font size

0

200

400

600

800

N
u
m

b
e
r 

o
f 
p
o
si

ti
o
n
e
d
 la

b
e
ls 817.2

429.9

224.8

8.8

843.3

461.6

244.2

8.9

734.0

393.8

208.7

7.6

Simulated Annealing
Rapid Labels
Particle-Based Labeling

(f)

Fig. 9. (top) The measured computation time in dependence on the resolution of the obstacles buffer (a), the number of point-features in the dataset
(b), and the font size (c). (bottom) The number of positioned labels in dependence on the resolution of the obstacles buffer (d), the number of
point-features in the dataset (e), and the font size (f). In charts (a) and (d), we show on the x axis only the width of the obstacles buffer as the size of
the buffer was always in the 4 : 3 ratio.

was positioned. Please note that during the label layout calculation, we
do not scale up the environment. Instead, with the increasing zoom
level, we scale down the labels with 1/zl .

We start with zoom level zl = 1 and subsequently multiply the zoom
level zl with zoom factor z f until the desired maximum zoom level is
reached. In our case, we are using zoom factor z f = 1.05. Before we
calculate the label layout for zoom level zl > 1, we render the labels of
point-features labeled on lower zoom levels to the label obstacles buffer
and calculate label positions only for the remaining point-features.

Finally, during the rendering of the labels, we render only the labels
with zoom level zl ≤ zr, where zr is the rendering zoom level.

4 RESULTS AND DISCUSSION

In this section, we present the results of the proposed method. Further,
we compare the performance and the quality of the resulting label
layouts of the proposed method with existing methods. To assess the
quality of the resulting label layouts, we use the number of labeled
point-features. For the comparison, we have used the implementation
of the proposed method in Java and OpenGL.

We compare the proposed method with the available Java implemen-
tation [15] of Particle-based labeling [16]. For one dataset, we compare
the proposed method also with the improved Particle-based labeling
by Kittivorawong et al. [12]. The comparison is made based on their
reporting of performance improvement over Particle-based labeling for
the particular dataset. To assess the impact of the greedy approach used
in the proposed method on the number of labeled point-features, we
compare the proposed method with the modified meta-heuristic method
of Zoraster [33] based on simulated annealing. We have modified the
method to consider the obstacles buffer and eliminate label candidates
that overlap the important visual features.

Please note that comparing the performance of the proposed method
with existing methods is complicated as the proposed method is running
on GPU while the existing methods are running on CPU. We have
approached the comparison from the point of the end-user. Therefore,
we have measured the performance of all methods on the same computer
equipped with Intel Xeon E3-1275 V2 running at 3.5 GHz, 16 GB of
RAM, and NVIDIA GeForce GTX 1660 Ti with 6 GB of RAM and
1536 unified shaders.

For the comparison, we also consider the visual representation of
the point-features. In other words, each point-feature can be visually
represented as a small circle, square, or any other shape. This is usual
in visualization, geographic maps, geographic information systems,
and many other areas. Please note that while we are rendering the
point-features as small circles (or any other shape), we are still labeling
them as points. To ensure that the labels will not overlap the visual
representations of the point-features, the visual representations need to
be treated as important visual features that the labels cannot overlap.
Therefore, we provide the same obstacles buffer as an input to all
compared methods.

First, we have measured the time needed to calculate the label layout
and the number of positioned labels in dependency on the number
of labeled point-features, on the precision with which we evaluate
the overlaps with important visual features (e.g., the point-features
rendered as small circles) and already placed labels, and on the size of
the font used for the labels. Please note that in all compared methods,
the precision depends on the resolution of the input obstacles buffer.

To measure the dependencies, we rendered the given number of
pseudo-randomly distributed point-features into the obstacles buffer
of the given resolution, calculated the sizes of the labels based on the
given font, and provided the point-features together with the label sizes
and the obstacles buffer as the input of all compared methods.

For each given number of point-features, we repeated the measure-
ment 100 times, that is 10 times for each of the 10 variants of distributed
point-features. From these measurements, we calculated the average
computation time and the average number of positioned labels that we
report. In the supplemental material, we depict a cut-out from one of
the ten random datasets used for the performance test.

We depict the computation times of the methods and the number of
positioned labels in dependency on the resolution of the input obstacles
buffer in Figures 9(a) and 9(d). The number of point-features was
fixed at 2000. For the obstacles buffer resolution 1000× 750, the
font size was 8 pt. The font size was increasing with the increasing
resolution of the obstacles buffer. This way, the same configuration of
point-features and label candidates was evaluated but with increasing
precision. Our measurement indicates that the computation time of the
proposed method increases with the resolution of the obstacles buffer
more slowly than the computation time of Particle-based labeling. For

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2021.3114854

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



(a)

1000 2000 4000 8000
Width of the obstacles buffer

0

500

1000

1500

2000

2500

3000

C
o
m

p
u
ta

ti
o
n
 t

im
e
 [

m
s]

1262 1338
1459

1874

20.03 31.16 71.55
257.48

143.14
556.51

2244.17

47.58

Simulated Annealing
Particle-Based Labeling
Fast Labels
Rapid Labels

(b)

1000 2000 4000 8000
Width of the obstacles buffer

0

50

100

150

200

250

300

N
u
m

b
e
r 

o
f 
p
o
si

ti
o
n
e
d
 la

b
e
ls

226
245 257 266243 258 286 286

270 280
296 297

Simulated Annealing
Rapid Labels
Particle-Based Labeling

(c)

Fig. 10. (a) The US airports dataset labeled with the proposed method. (b) The measured computation time in dependence on the resolution of the
obstacles buffer. (c) The number of positioned labels in dependence on the resolution of the obstacles buffer.

the highest measured resolutions of the obstacles buffer, the proposed
method needed 36% of the computation time of Particle-based labeling.
We do not depict the computation time for the method of Zoraster
as it required from 1 s for the resolution 1000× 750 to 1.5 s for the
resolution 8000×6000. Further, the proposed method positioned labels
for more point-features than Particle-based labeling, but less than the
method of Zoraster. Please note that the slight increase in the number of
positioned labels with the increasing resolution of the obstacles buffer
for all methods is due to the increasing precision of the evaluation.

In Figures 9(b) and 9(e), we show the computation times of the
methods and the number of positioned labels in dependency on the
number of point-features. For this measurement, the resolution of
the obstacles buffer was fixed at 4000× 3000 and the font size was
fixed at 8pt. The measurement indicates that while Particle-based
labeling is faster for a lower number of point-features (n = 1000), the
computation time of the proposed method increases with the number of
point-features much more slowly than the computation time of Particle-
based labeling. For the highest measured number of point-features, the
proposed method needed only 3% of the computation time of Particle-
based labeling. Particle-based labeling was faster for a lower number of
point-features (n = 1000) due to the cost associated with the Summed
Area Table calculation that is resolution-dependent. For higher numbers
of point-features, the speed up in evaluation of the label candidates
outweighs this cost. Again, we do not depict the computation time for
the method of Zoraster as it required 0.9 s for 1000 point-features and
4.7 s for 8000 point-features. The proposed method positioned more
labels in dependency on the number of point-features than Particle-
based labeling, but less than the method of Zoraster. The reason for
the decreasing number of positioned labels with the increasing number
of point-features is less free space for the labels with the increasing
number of point-features.

We depict the computation times of the methods and the number of
positioned labels in dependency on the font size in Figures 9(c) and 9(f).
For this measurement, the resolution of the obstacles buffer was fixed at
2000×1500 and the number of point-features was fixed at 1000. The
measurement indicates that the proposed method is slightly font-size-
dependent. This comes from the fact that the number and dimensions
of blocks are dependent on the font size. Particle-based labeling was
faster for small fonts, but the computation time of the proposed method
increased with the font size much more slowly than the computation
time of Particle-based labeling. For the highest measured font size,

the proposed method needed 38% of the computation time of Particle-
based labeling. Again, we do not depict the computation time for the
method of Zoraster as it required 0.8 s for the font size of 8 pt and 0.7 s
for the font size of 32 pt. As expected, the number of positioned labels
decreased with the increasing font size, as every label takes up more
space. Still, the proposed method was able to position more labels than
Particle-based labeling, but less than the method of Zoraster.

From the measurements, we can see that the performance of the
proposed method decreases the most with the increasing resolution of
the obstacles buffer. This is due to the calculation of the Summed Area
Table, and its update as the performance of these steps decreases with
increasing resolution of the obstacles buffer. For more details, please
see the supplementary material.

Next, we have measured the computation time and the number
of positioned labels on a real-world dataset of 3340 airports in the
USA [27]. For this dataset, we measured the computation time and
the number of positioned labels in dependency on the resolution of the
input obstacles buffer. Again the font size was decreasing or increasing
with the resolution of the obstacles buffer to preserve the configuration
of point-features and label candidates, but increase the precision of
the evaluation. For the measurement, we have divided the input point-
features into two priority groups. In the first priority group were 56
airports with direct flights to Seattle-Tacoma airport. The remaining
airports were in the second priority groups. The point-features in the
first group were labeled with red font of size 26 pt. The point-features
in the second group were labeled with black font of size 19 pt. These
font sizes were used for the obstacles buffer resolution 4000× 3000.
Please see Figure 10(a) for the result of the proposed method. The
labels of the point-features in the first group (in red color) were not
allowed to overlap the connecting lines and visual representations of
the point-features in the first group. The labels of the point-features
in the second group (in black color) were not allowed to overlap the
connecting lines, visual representations of the point-features in both
groups, and the boundaries of US states.

We depict the performance of the methods and the number of po-
sitioned labels in dependency on the resolution of the input obstacles
buffer in Figures 10(b) and 10(c). Our measurement indicates again
that the computation time of the proposed method increases with the
resolution of the obstacles buffer much more slowly than the computa-
tion time of Particle-based labeling. For the highest resolutions of the
obstacles buffer, the proposed method needed 11% of the computation

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2021.3114854

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



(a) (b) (c)

Fig. 11. Connected scatter-plot dataset labeled with the proposed method. To evaluate the label candidates, we have used the overlaps and
preference of the label candidates (a), the overlaps, conflicts, and preference of the label candidates (b), and the overlaps, conflicts, ambiguity, and
preference of the label candidates (c).

time of Particle-based labeling. Interestingly, the method of Zoraster
was faster than Particle-based Labeling for the highest resolution. This
was due to the extreme number of label candidates removed based on
the obstacles buffer. The proposed method positioned labels for more
point-features than Particle-based labeling, but less than the method of
Zoraster. The slight increase in the number of positioned labels with
the increasing resolution of the obstacles buffer for all methods is again
due to the increasing precision of the evaluation.

In Figure 10(b), we also indicate the performance of the Fast Labels
method by Kittivorawong et al. [12] based on their reporting of a
performance increase for the same dataset. The computation time of
the proposed method increased with the resolution of the obstacles
buffer much more slowly than the computation time of the Fast Labels
method. Kittivorawong et al. [12] report that the Fast Labels method
positions labels of slightly fewer point-features than Particle-based
labeling. Therefore, we can expect that the proposed method will
position labels of more point-features than the Fast Labels method.

Further, we used the proposed method to support zoom and pan for
the US airports dataset and the GapMinder dataset [7]. The proposed
method calculated label positions for all 62 zoom levels between 1 and
20 (zoom factor z f = 1.05) in 1644 ms for the US airports dataset and
in 756 ms for the GapMinder dataset for the year 2008. Please see the
supplementary material for images of the results and the supplementary
video for the live capture of interaction with the results.

In Figure 11, we demonstrate the effect of the evaluation of con-
flicts between the label candidates and the evaluation of ambiguity
of the label candidates on the connected scatter-plot dataset [26]. In
Figure 11(a), the labels were positioned without evaluating conflicts
and ambiguity, the label candidates were evaluated based on overlaps
with important visual features and already positioned labels and their
preference. In the figure, we have magnified five areas (purple boxes)
where the label layout can be improved (red boxes). In Figure 11(b),
the labels were positioned based on overlaps, conflicts, and preference.
The evaluation of conflicts between the label candidates improved the
label layout in two of the five areas. In Figure 11(c), the labels were
positioned based on the overlaps, conflicts, ambiguity, and preference.
The evaluation of ambiguity of the label candidates further improved
the label layout in two more areas. In the figure, we have highlighted
with a red box the single problematic part of the label layout. As it
can be seen, the evaluation of conflicts and ambiguity improves the
label layout. Please note that the single problematic label for the year
1966 was not centered below the point-feature due to the overlapping
conflict rectangles of the previous and next point-features in that re-
gion. In consequence, the algorithm considers such positions as more
ambiguous.

To assess the impact of the evaluation of ambiguity on areas with
densely positioned point-features, we labeled the US airports dataset
with and without the evaluation of ambiguity. Please see the supple-
mentary material for the results. The evaluation of ambiguity had a
small effect on the resulting layout. In both cases, the proposed method

positioned labels for the same 939 point-features, and only 13 labels
were positioned at different positions.

4.1 Limitations
In this section, we discuss the limitations of the proposed method.
Foremost, it is a greedy algorithm that cannot recover from a local
minimum/maximum. Therefore, we cannot guarantee that the algorithm
finds the optimal solution nor that the found solution will be close to
the optimal solution.

We are using the grid of blocks to label multiple point-features in
each iteration. However, we cannot guarantee that a point-feature with
a low priority from the processed quadrant will not use the space of
a point-feature with a higher priority in the remaining quadrants. In
consequence, this may lead to a lower number of labeled point-features.
Fortunately, the evaluation of the conflicts and the ambiguity for each
label candidate helps to decrease the problem.

The proposed method works well only with rectangular labels. La-
bels of different shapes (e.g., circles) need to be enclosed by rectangles
which may lead to inefficient utilization of the space available for labels.

If the difference in the size between the smallest label and the largest
label is large, then the used blocks may contain many small labels,
which will lead to a higher number of iterations of the algorithm and to
a decrease in performance.

5 CONCLUSIONS AND FUTURE WORK

In this work, we propose a screen space greedy method to solve the
point-feature labeling problem. In contrast to other existing methods,
the proposed method positions labels of several point-features in par-
allel based on a grid of blocks. When determining the position of the
label of a point-feature, the proposed method evaluates overlaps of the
label candidates with important visual features and already positioned
labels, conflicts of the label candidates with label candidates of other
point-features, and ambiguity of the label candidates.

We have demonstrated that the proposed method supports point-
features divided into several priority groups, that the proposed method
can be utilized in the zoom and pan scenario, and that the evaluation
of conflicts and ambiguity of the label candidates improves the label
layout. Further, we have compared the proposed method with Particle-
based labeling of Luboschik et al. [16] and with the modified meta-
heuristic method of Zoraster [33]. Our measurements indicate that
for the number of point-features greater than 1000 and the font size
greater than 10 pt, the proposed method achieves significantly lower
computation times while positioning labels for more point-features
than Particle-based labeling, but fewer point-features than the modified
meta-heuristic method of Zoraster.

ACKNOWLEDGMENTS

This research has been supported by MEYS of Czechia OP VVV
grant No. CZ.02.1.01/0.0/0.0/16 019/0000765 – Research Center for
Informatics.

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2021.3114854

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



REFERENCES

[1] A. C. Alvim and É. D. Taillard. Popmusic for the point feature label place-
ment problem. European Journal of Operational Research, 192(2):396–
413, 2009.

[2] K. Been, E. Daiches, and C. Yap. Dynamic map labeling. IEEE Transac-
tions on Visualization and Computer Graphics, 12(5):773–780, 2006.

[3] B. Chazelle and N. Amenta. Application challenges to computational
geometry. Technical Report TR-521-96, Computational Geometry Impact
Task Force, 1999.

[4] L. Čmolı́k, V. Pavlovec, H. Y. Wu, and M. N ollenburg. Mixed labeling:
Integrating internal and external labels. IEEE Transactions on Visualiza-
tion and Computer Graphics, Early access, 2020. doi: 10.1109/TVCG.
2020.3027368

[5] F. C. Crow. Summed-area tables for texture mapping. SIGGRAPH Comput.
Graph., 18(3):207–212, Jan. 1984. doi: 10.1145/964965.808600

[6] M. Formann and F. Wagner. A packing problem with applications to
lettering of maps. In Proceedings of the Seventh Annual Symposium on
Computational Geometry, SCG ’91, p. 281–288. ACM, New York, NY,
USA, 1991. doi: 10.1145/109648.109680

[7] Gapminder Foundation. https://www.gapminder.org/data/. Ac-
cessed 2021-06-20.

[8] S. P. Gomes, L. A. N. Lorena, and G. M. Ribeiro. A constructive ge-
netic algorithm for discrete dispersion on point feature cartographic label
placement problems. Geographical Analysis, 48(1):43–58, 2016.

[9] J.-H. Haunert and A. Wolff. Beyond maximum independent set: An
extended model for point-feature label placement. International Archives
of the Photogrammetry, Remote Sensing & Spatial Information Sciences,
41, 2016.

[10] J. Hensley, T. Scheuermann, G. Coombe, M. Singh, and A. Lastra. Fast
summed-area table generation and its applications. Computer Graphics
Forum, 24(3):547–555, 2005. doi: 10.1111/j.1467-8659.2005.00880.x

[11] C. Iturriaga and A. Lubiw. Np-hardness of some map labeling prob-
lems. Technical Report CS-97-18, University of Waterloo, Waterloo, ON,
Canada, 1997.

[12] C. Kittivorawong, D. Moritz, K. Wongsuphasawat, and J. Heer. Fast and
flexible overlap detection for chart labeling with occupancy bitmap. In
2020 IEEE Visualization Conference (VIS), pp. 101–105, 2020. doi: 10.
1109/VIS47514.2020.00027

[13] A. Lhuillier, M. van Garderen, and D. Weiskopf. Density-based label
placement. The Visual Computer, 35(6):1041–1052, 2019.

[14] L. Li, H. Zhang, H. Zhu, X. Kuai, and W. Hu. A labeling model based
on the region of movability for point-feature label placement. ISPRS
International Journal of Geo-Information, 5(9):159, 2016.

[15] M. Luboschik. Java implementatin of particle-based labeling. https://
sourceforge.net/projects/fpf-labeling/. Accessed: 2021-03-
31.

[16] M. Luboschik, H. Schumann, and H. Cords. Particle-based labeling:
Fast point-feature labeling without obscuring other visual features. IEEE
Transactions on Visualization and Computer Graphics, 14(6):1237–1244,
2008. doi: 10.1109/TVCG.2008.152

[17] A. Marın and M. Pelegrın. Towards unambiguous map labeling-integer
programming approach and heuristic algorithm. Expert Systems with
Applications, 98:221–241, 2018.

[18] J. Marks and S. Shieber. The computational complexity of cartographic
label placement. Technical Report TR-05-91, Harvard University, Cam-
bridge, MA, USA, 1991.

[19] G. R. Mauri, G. M. Ribeiro, and L. A. Lorena. A new mathematical model
and a lagrangean decomposition for the point-feature cartographic label
placement problem. Computers & Operations Research, 37(12):2164–
2172, 2010.

[20] K. Mote. Fast point-feature label placement for dynamic visualizations.
Information Visualization, 6(4):249–260, 2007.

[21] I. Petzold, G. Gröger, and L. Plümer. Fast screen map labeling –
data-structures and algorithms. In Proc. 21th Internat. Cartographic
Conf.(ICC’03), pp. 288–298, 2003.

[22] R. L. Rabello, G. R. Mauri, G. M. Ribeiro, and L. A. N. Lorena. A cluster-
ing search metaheuristic for the point-feature cartographic label placement
problem. European Journal of Operational Research, 234(3):802–808,
2014.

[23] M. Schreyer and G. R. Raidl. Letting ants labeling point features [sic.:
for’labeling’read’label’]. In Proceedings of the 2002 Congress on Evo-
lutionary Computation. CEC’02 (Cat. No. 02TH8600), vol. 2, pp. 1564–

1569. IEEE, 2002.
[24] B. Shneiderman. Dynamic queries for visual information seeking. IEEE

Software, 11(6):70–77, 1994. doi: 10.1109/52.329404
[25] T. Strijk, B. Verweij, and K. Aardal. Algorithms for maximum independent

set applied to map labelling. Technical Report UU-CS-2000-22, Dept of
Computer Science, Utrecht University, 2000.

[26] UW Interactive Data Lab. Connected scatter-plot dataset. https://vega.
github.io/editor/#/examples/vega/connected-scatter-plot.
Accessed: 2021-03-31.

[27] UW Interactive Data Lab. Us airports dataset. https://vega.github.
io/editor/#/examples/vega-lite/geo_rule. Accessed: 2021-03-
31.

[28] S. Van Dijk, D. Thierens, and M. De Berg. Using genetic algorithms for
solving hard problems in gis. GeoInformatica, 6(4):381–413, 2002.

[29] O. V. Verner, R. L. Wainwright, and D. A. Schoenefeld. Placing text labels
on maps and diagrams using genetic algorithms with masking. INFORMS
Journal on Computing, 9(3):266–275, 1997.

[30] F. Wagner, A. Wolff, V. Kapoor, and T. Strijk. Three rules suffice for
good label placement. Algorithmica, 30(2):334–349, 2001. doi: 10.1007/
s00453-001-0009-7

[31] A. Wolff and T. Strijk. Map labeling bibliography. http://i11www.
iti.uni-karlsruhe.de/map-labeling/bibliography. Accessed:
2021-03-31.

[32] M. Yamamoto, G. Camara, and L. A. N. Lorena. Tabu search heuristic for
point-feature cartographic label placement. GeoInformatica, 6(1):77–90,
2002.

[33] S. Zoraster. Practical results using simulated annealing for point feature
label placement. Cartography and Geographic Information Systems,
24(4):228–238, 1997.

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2021.3114854

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.


