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Abstract—Terrains are visually important and commonly used in computer graphics. While many algorithms for their generation exist,
it is difficult to assess the realism of a generated terrain. This paper presents a first step in the direction of perceptual evaluation of
terrain models. We gathered and categorized several classes of real terrains and we generated synthetic terrains by using methods
from computer graphics. We then conducted two large studies ranking the terrains perceptually and showing that the synthetic terrains
are perceived as lacking realism as compared to the real ones. Then we provide insight into the features that affect the perceived
realism by a quantitative evaluation based on localized geomorphology-based landform features (geomorphons) that categorize terrain
structures such as valleys, ridges, hollows, etc. We show that the presence or absence of certain features have a significant perceptual
effect. We then introduce Perceived Terrain Realism Metrics (PTRM); a perceptual metrics that estimates perceived realism of a terrain
represented as a digital elevation map by relating distribution of terrain features with their perceived realism. We validated PTRM on
real and synthetic data and compared it to the perceptual studies. To confirm the importance of the presence of these features, we
used a generative deep neural network to transfer them between real terrains and synthetic ones and we performed another perceptual
experiment that further confirmed their importance for perceived realism.
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1 INTRODUCTION

Terrains are among the most visually stunning structures
and their modeling has attracted attention of computer
graphics researchers for decades. Patterns in terrains re-
sult from eons of complex interacting geomorphological
processes with varying strength at differing spatial and
temporal scales, which makes them difficult to simulate.

Humans experience terrains through their entire life and
our visual perception system has evolved into a precise
tool for judging their realism. Humans are excellent in
detecting anomalies [1] such as inconsistent rivers, non-
realistic shapes of mountains, or incorrectly positioned ter-
rain features, which makes synthetic terrain modeling chal-
lenging as quantifying those inconsistencies remains highly
complex. Although a wide variety of algorithms exists for
modeling terrains (see the recent review of Galin et al. [2]),
existing methods often consider the geomorphological phe-
nomena in separation and their mutual dependencies are
neither well-studied nor understood.

Previous methods focused on replicating phenomeno-
logical processes of terrain formation, but none, to the best
of our knowledge, have focused on the perceived realism
of terrain models. The evaluation of results of algorithms
simulating natural phenomena has been always a difficult
question and is usually addressed by providing side-by-side
comparison of the generated structures or is assumed to be
correct if the underlying simulations are physically-based.

This paper is a first step in the direction of perceptual
validation of realism of computer graphics terrain models.
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In particular, we attempt to answer the questions: What
are the visually important features in terrains that make
them realistic? and What is the level of perceived real-
ism of synthetic terrains generated by techniques used in
computer graphics? A recent work in geology allows for
a quantitative evaluation of terrains by using so called
geomorphons that are geomorphological features (valleys,
ridges, slopes, spurs, hollows, etc.) that are present in ter-
rain. A geomorphon is a histograms of features present in
a digital elevation map [3]. We performed an extensive user
study measuring the perceived realism of real and synthetic
terrains and we related the realism to geomorphons. We
introduce PTRM (Perceived Terrain Realism Metrics) that
assigns a normalized value of perceived perception to a
terrain represented as a digital elevation model based on
the present geomorphons. We validate the PTRM on both
real and synthetic terrain models.

Our hypothesis is that some features are visually more
important for perceived realism. We used the state of the
art deep neural networks CycleGAN [4] to transfer features
(valleys, ridges, etc.) from the DEMs that were ranked high
to those ranked low and vice versa. We performed another
user study that shows that the landforms transferred from
highly ranked sets to lowly ranked ones improve the visual
perception and that the landforms transferred from low-
ranked images to high ranked ones demote them percep-
tually. Results of the two user-studies combined with the
analysis of features show that synthetic terrains do not
often include geomorphological features such as depressions,
summit, flat, valley, ridge, hollow and spur.

An example in Fig. 1 shows a procedural terrain and the
distribution of its landform features based on geomorphons
as well as a real terrain with its accompanying features.
The feature vector of the geomorphons is sorted so that the
ones contributing to perceived quality are on the right hand
side. The real terrain was ranked as highly realistic (77%)
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Feature transfer (real terrain to synthetic)
Feature transfer (synthetic to real)

Real Synthetic Synthetic with
Real Features

Real with Synthetic 
Features

Feature transfer

PTRM=0.76 PTRM=0.51
PTRM=0.69 PTRM=0.33

Fig. 1. The real terrain from the state of Arizona USA with complex geomorphological patterns has estimated PTRM=0.76 (1=perfect, 0=poor). It
has been also ranked by a perceptual as top 78%. The synthetic terrain models with patterns generated by thermal erosion has PTRM=0.51 and it
ranked as 49% in the study. The corresponding geomorphons show the distribution of patterns in each model with strong presence of valleys, ridges,
and hollows landform in real terrain (circled in the graph) that were not so present in the synthetic variety. By using a CycleGAN, we transferred the
visually important features to the low-ranked synthetic terrain (orange arrows) and we transferred the features in synthetic terrain to the high-ranked
real terrain (green arrow) assuming the real terrain should worsen and the synthetic should improve. The second perceptual study showed that the
transferred features improved to PTRM=69 (77% ranking in our study) and transferring the visually unattractive features from synthetic terrain to the
real one demoted its PTRM=0.33 (29%). The transferred features are circled in the corresponding graphs of geomorphons.

in our user study and the procedural terrain was on the
opposite scale (51%) as can be also seen in the distribution
of the geomorphons. We then used deep learning to transfer
the features from the procedural terrain to real and vice
versa and we show the corresponding distribution of the
geographic features that indicates that the distributions of
the geomorphons changed so that the high-ranked worsen
and low-ranked improved. This quantitative validation has
been then confirmed by a perceptual study that showed
that the procedural terrain after the style transfer improves
its perceived quality to 69% and the real terrain worsens
to 29%. We also show the PTRM that predicts how a person
would perceive it as realistic (1=perfect, 0=poor).

We claim the following contributions: 1) we introduce
Perceived Terrain Realism Metrics that assigns a normalized
value of perceived realism to a terrain represented as a
digital elevation model, 2) we have conducted user studies
that validate and measure the perceived realism of real and
synthetic terrain models, 3) we have determined geological
features that have effect on perceived reality of terrains,
and 4) we provide a publicly available data-set of real and
procedural terrains with assigned perceptual evaluation and
calculated geomorphons.

2 RELATED WORK

Perception-based computer graphics approaches: The knowledge
of human perception has been applied in computer graphics
since the beginnings and a common way is to incorporate it
as a computational model of a particular human visual sys-
tem (HVS) feature, e.g., visual masking [5], visual attention
and saliency [6], [7], or to fully replace it by a hardware such
as an eye tracker [8].

Photorealistic rendering traditionally exploits perception
limitations to accelerate costly light transport computa-
tions [9] and in 3D graphics, HVS models allow remov-
ing nonperceptible components [10], [11] and/or predicting
popping artifacts [12].

Perceptual models have been further applied to improv-
ing virtual simulations [13], character animations [8], [14],
human body modeling [15], fluid simulations [16], [17], and
crowd simulations [18], [19]. High dynamic range imaging
and tone mapping benefits from models of human light

adaptation [20], [21], color to grey conversions simulate
human color sensitivity [22], [23]. Interestingness [24] and
aesthetic properties of photographs [25], paintings and frac-
tals [26], [27] have also been approximated by computa-
tional models of HVS.

Close to our work is research on procedural textures [28]
that aims to define perceptual scales which can steer texture
model. The perceived quality of a geometry replaced with
texture has also been studied [29].

Image quality metrics (IQM) utilize HVS models to pre-
dict perceptual image quality. Full-reference IQMs compute
perceptual differences between the reference and distorted
images [30], [31], [32], while no-reference metrics [33], [34]
predict the quality in a reference-less setup. Video quality
metrics [35], [36] simulate temporal HVS properties to faith-
fully comparing video sequences.

Recent research works study perceptual quality of 3D
models [37] and meshes [38], [39] including textured mod-
els [40]. Visual saliency predictors for 3D meshes have been
also proposed [41].

Unfortunately, no existing metrics is applicable to com-
parison of synthetic and real terrain images or models,
because the compared contents differ significantly.

Perception of terrains: Synthetic terrains have not been
studied in perception experiments and we are not aware
of any computational perception quality metrics that could
be applied. Furthermore, a data-set of synthetic and real ter-
rains comprising human judgments which could be used for
an evaluation of terrain generating methods or for training
of data-driven techniques is missing as well.

Nevertheless, a few research works on classification and
perception of real-world terrains have been presented in
the fields of environmental psychology and geomorphology.
Dragut and Blaschke [42] proposed a system for landforms
classification on the basis of profile curvature. Several data
layers are extracted from the digital terrain model to feed an
image segmentation which classifies the terrain into classes
like toe slopes, peaks, shoulders, etc. Fractal characteristics
of terrains were studied in [43] and they conclude that
there is a relationship between preference and the fractal
dimension, meaning that fractal dimension may be part of
the basis for preference. Finally, scenic beauty and aesthetics
have been addressed by [44], [45], [46], [47]. These works lay
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the foundation of landscape perception, but they cannot be
directly applied to quality assessment of synthetic terrains.
Automated tools of measurement and analysis of terrains
are sought [44] to advance this area of research.

Terrains in computer graphics have been studied for
decades (see the recent review [2]). Here we list the three
major categories of terrain generation techniques: procedu-
ral approaches, erosion simulation and by-example.

Historically, the first methods to synthesize terrains re-
lied on procedural and fractal approaches. It consists in
finding a way to generate a fractal surface that exhibits
self-similarity either by using subdivisions [48], [49], fault-
ing [50], or by summing noises [51]. Approaches that con-
trol [52] or more specific curve-based constructions [53]
have been introduced. The overall realism of the generated
landscape depends on the fine tuning of control parameters
and requires a deep knowledge and understanding of the
underlying generation process which restrict those methods
to skilled technical artists.

Erosion simulations generate terrain features by approx-
imating the natural phenomena, such as hydraulic [54],
[55], [56] or thermal erosion [51], [57] processes at different
scales. They are computationally intensive, and only capture
a limited set of small scale structures features [58], such as
ravines or downstream sediment accretion regions. When
combined at a larger scale with uplift [59], erosion simula-
tions generate realistic mountain ranges with dendritic ridge
networks and their dual drainage network forming rivers.

Another option to obtain realism by synthesizing new
terrains by-example, for example by stitching together ter-
rain patches from existing data-sets. By using techniques
from texture synthesis [60] using sparse modeling Guŕin
et al. [61] generate large terrain with realistic small-scale
features. The large scale plausibility remains an open chal-
lenge as existing methods, even deep learning [62] oriented
approaches, rely on user-sketching and authoring.

Despite recent advances in simulation, the user-control
remains an open problem and terrain generation methods
only generate a limited set of landforms. Moreover, vali-
dation of the generated structures remains an outstanding
problem and has been addressed only partially.

3 GEOMORPHONS

The fundamental theory behind our method is the recently
introduced concept of geomorphons [3] that provide an ex-
haustive classification of terrain features from digital ele-
vation models (DEMs). Geomorphons decompose a DEM
into local ternary patterns [63] based on the local curvature
that provide an oriented eight directional feature vector
for each location of the DEM; one value for the Moore
neighborhood (see the circles in Fig. 2). This gives rise to
ten geomorphons: flat, peak, ridge, shoulder, spur, slope,
depression (or pit), valley, footlsope, and hollow, as shown
in Fig. 2 from [3]. Geomorphons depend on the resolution of
the DEM, in our setting one pixel of the DEM corresponds
to approximately 200m, so each geomorphon describes an
area of about 800× 800 m2.

We utilize geomorphons to provide understanding of
the importance of individual geomorphological landform
features and how they affect the perception of terrains.

Fig. 2. Ten most common land form patterns can be uniquely classified
by geomorphons from a DEM. Blue disc identify lower, red higher, and
green the same altitude (image from [3]).

Later we show how they are present or missing in differ-
ent terrains. The order of the geomorphons in the color
coding in Fig. 3 is arbitrary and to compare the wide
variety of terrains used in this paper, we decided to sort
the geomorphons according to their presence in the most
realistically perceived terrain category from our user study
that are glacial patterns of real terrains (Sec. 6.1). Fig. 11
shows the normalized frequency of geomorphons in all
datasets used in this paper and we use the ascending order
of geomorphons as: Depression (or pit) (the least present),
Summit, Flat, Valley, Ridge, Hollow, Spur, Shoulder, Slope, and
Footslope (the most frequently present).

We used an open implementation of geomorphons in
GRASS GIS tool [64] that generates color-coded image
corresponding to the input DEM as shown in example
in Fig. 3. The output of the algorithm is the normalized
coverage of each geomorphon in the input DEM (the values
of geomorphons for all datasets from this paper are in the
supplemental material).

a) b)

c) d)

Depression
Summit
Flat
Valley
Ridge
Hollow
Spur
Shoulder
Slope
Footslope

Fig. 3. a) The input DEM b) its rendering and c) the geomorphons d)
with the explanation of the color-coding.

4 METHOD OVERVIEW

The key question we are trying to answer is the perceived
realism of terrains and the visual perception and evaluation



4

Real Terrains

Synthetic 
Terrains

Shuttle Radar 
Topography 

Mission 

Computer 
Graphics 

Algorithms

Geomorphons

Random 
pairing
Test 1

Terrain 
Perceptual 

Ranking

Feature 
Transfer

Real⇒Synth

Feature 
Transfer

Synth⇒Real

Real Terrains
& Synthetic 

Features

Synth Terrains
& Real 

Features

Random 
pairing
Test 2

Terrain 
Perceptual 

Ranking

Initial Data Generation Experiment 1 Feature Transfer Experiment 2

Geomorphons
Generation

Geomorphons

Geomorphons
Generation

Fig. 4. Overview (rounded boxes - processes, squared boxes - data): The initial data for Experiment 1 were acquired from two sources: real and
synthetic, they were rendered and we also generated geomorphons for each image that quantitatively describe their landform features. During the
Experiment 1 we acquired perceptual ranking of each image. The feature transfer transferred features from highly ranked images (Real⇒Synth)
and vice versa (Synth⇒Real) resulting in two new datasets. The Experiment 2 perceptually evaluated the initial data and the newly generated ones,
confirming that the transferred features have importance on the perceived realism.

of synthetic terrains generated by terrain modeling methods
in computer graphics. We focus on the terrain geometry
only and we do not consider any additional features such
as snow, vegetation, or water bodies. Our work builds on
the recent advances in geomorphology, in particular we
use the concept of geomorphons that are features extracted
from Digital Elevation Models (DEMs) that quantitatively
measure presence of various shapes in terrain (Sec. 5).

We performed two large scale user study (Sec. 6). The
first quantifies the perception of real and synthetic data-set
and the second one quantifies the effect of the transferred
features. Fig. 4 shows the overview of our testing.

During the initial data generation, we acquired data of
real terrains from Shuttle Radar Topography Mission and
we carefully selected several classes featuring prevalent
geological patterns (see Tab. 1): Aeolian, Coastal, Fluvial,
Glacial, and Slope. Then we generated synthetic data-sets
by using terrain generation algorithms used in computer
graphics: coastal, thermal and fluvial erosion, fractional
Brownian motion, noise and ridged-noise terrain models.
Geomorphons were generated for each image.

Experiment 1 (E1) was two-alternative forced choice de-
sign – 2AFC by using Mechanical Turk. We have shown
pairs of images and we asked the viewers the question:
”Which terrain looks more realistic (left or right)?”. Each image
received multiple rankings and the number of votes deter-
mined its positioning in the overall test. The experiment
provided initial terrain ranking for each image and for
each image category within each group (real or synthetic).
The results were used to construct the PTRM that relates
the presence of geomorphons to the perceived realism. In
order to evaluate a new terrain, geomorphons need to be
calculated, normalized, and input into the PTRM.

Feature Transfer: we used the CycleGAN [4] to transfer
features from the images that were ranked high to those
ranked low and conversely (Sec. 6.2). The motivation for this
step is the underlying assumption that certain features have
important effect on the visual perception of terrains. This
step generated a new data-set that we call S2R (synthetic to
real) and R2S (real to synthetic). S2R indicates that procedu-
ral features were transferred to the real terrains and R2S is
the opposite process. Geomorphons were also generated for

the new data-sets.
Experiment 2 (E2) was also 2AFC, but it included the

newly generated sets S2R and R2S (Sec. 6.3). The underlying
assumption was that the features from the highly ranked ter-
rains will be transferred to the low ranked terrains and the
new terrains will improve their perceived realism. Similar
expectation was hold for the low-ranked terrains, assuming
the transferred features would improve their rank. More-
over, for each terrain we also generated the corresponding
geomorphons and we kept a careful track of which features
were transferred (Sec. 7.4).

5 TERRAIN DATA

The objective of this study was to compare the terrains
with the most prevalent geomorphological processes with
visually distinguishable features and the common terrain
synthesis methods in computer graphics. The DEMs used
in this study come from Shuttle Radar Topography Mission
(SRTM) data-set [65]. We used the three arc-second capture
resolution (90m pixel resolution along the equator) tiles
from the data set as some of the tiles from the one arc-second
(30m pixel resolution along the equator) data that covers
the whole globe is not made available to public yet. The
resolution roughly translates to 1◦ Longitude ×1◦ Latitude
or 100 × 100 km resolution approximately depending on
the DEM’s location on Earth. All the DEMs maintained a
resolution of 512 × 512 that gives sizes of the land features
around 200 meters per pixel.

5.1 Real terrains
We used terrains that include patterns that commonly re-
sults from aeolian, glacial, coastal, fluvial, and slope pro-
cesses [66] along with the retrievability of suggested pat-
terns from the SRTM data-set [65]. It is important to note
that the geoforming processes are not well-understood and
most of the terrains are affected by several of them either at
the same time period or in an indeterminable unknown se-
quence. So instead of discussing processes, we consider ter-
rains that include the specified geomorphological patterns
and structures. The two top rows of Fig. 5 show examples
of several renderings of real terrains and the supplementary
materials include all data.
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Real Aeolian (RA)
PTRM=0.75

Real Costal (RC)
PTRM=0.77

Real Glacial (RG)
PTRM=0.69

Real Fluvial (RF) 
PTRM=0.86

Real Slope (RS)
PTRM=0.66

Synth Noise (SP)
PTRM=0.24

Synth Ridge (SR)
PTRM=0.18

Synth fBM (SM)
PTRM=0.27

Synth Thermal (ST)
PTRM=0.22

Synth Fluvial (SF)
PTRM=0.23

Synth Coastal (SC)
PTRM=0.24

Fig. 5. (Top) Examples of real terrains rendering used in our experiment and their PTRM: RA) aeolian patterns from Moab Arches National
Park Utah USA, RC) coastal patterns from Gobi desert Mongolia, RG) glacial erosion patterns from Himachal Pradesh Western Himalaya India,
RF) fluvial pattern from Chichiltepec Mexico Guerrero, and RS) slope pattern from Death Valley California USA. (Bottom) Examples of synthetic
terrains SP) noise-based, SR) ridged-noise, SM) fractional Brownian motion surface, ST) thermal erosion, SF) fluvial erosion, and SC) coastal
erosion (see supplementary material for high-resolution images).

5.2 Synthetic Terrains

We used terrains generated by noise [67], ridged-noise [2],
fractional Brownian motion (fBm) surfaces [48], thermal
erosion [51], fluvial erosion (we used the implementation
of Šťava et al. [54], but [56], [68], [69] could be used), and
coastal erosion approximated by hydraulic erosion applied
only to coastal areas. Eroded terrains were generated from
noise-based terrains (Fig. 5 two bottom rows).

While procedural generation of terrains is simple so
we could have generated an arbitrary number of DEMs, it
is rather difficult to find good samples for all the above-
mentioned examples of real patterns. Tab. 1 shows how
many terrain models we had for each category and also
establishes nomenclature for each set. Each real image starts
with the letter R and synthetic with S, the second letter
indicates subcategory. We refer to all images from real
datasets, R and all synthetic as S. The size of each data-set
was the same: |S| = |R| = 150.

5.3 Rendering

All terrains were rendered by using the same settings to
avoid bias. The camera position was set to display the
terrain from about 45o angle that is a common viewing
distance from a top of a mountain or a low flying aircraft.
This location shows enough details as opposed to a top view
and does not cause self occlusions as opposed to a side view.

Type Category Abbr. Sampl.
Real (R) Aeolian RA 55

Coastal RC 19
Fluvial RF 64
Glacial RG 07
Slope RS 05

Synthetic (S) Coastal SC 25
fBm SM 25
Fluvial SF 25
Noise SP 25
Ridged-noise SR 25
Thermal ST 25

Transferred Synth features to real terrains S2R 25
Features (2) Real features to synth terrains R2S 25

TABLE 1
Terrain type (real/synthetic/transferred features), categories,

abbreviations, and the number of terrain samples in each category.

The camera was positioned above one of the corners. We
assumed viewers are familiar with this viewing angle.

We used sky sphere for illumination with gradient
from 50% of gray near the horizon to full white in zenith.
The rendering was performed by using global illumination
with no additional lights, by using 500 reflections and 9×
super-sampling for anti-aliasing. Each terrain was textured
by the same color map that changed from low-level and
flat areas with yellow color (sand), medium levels flat
green (grass) to high and steep slopes gray (stone). We
intentionally used non-photorealistic rendering [70] so as to
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avoid any bias introduced by the simulation of vegetation
and realistic rock, sand or grass rendering. Moreover, non-
photorealistic rendering enhances the shape and structure of
the bare elevation of terrain which is the focus or this study.

The image resolution used for the perceptual experiment
was given by the size of the screen used in Mechanical
Turk. The terrain DEM resolution was calculated by scaling
down a terrain from 1, 201 × 1, 201 that was the maximum
available resolution for LIDAR scans by 10% down to
128× 128 and comparing the Peak Signal to Noise Ratio of
the heightmaps and the rendered images. The error between
the maximum resolution and 5122 was only 19.3% and it
provided a good compromise in terms of training deep
neural networks, rendering, viewing image pairs without
zooming in and out while testing.

6 PERCEPTUAL STUDY AND FEATURE TRANSFER

The perceptual study was run on the Amazon Mechanical
Turk and we asked the subjects: ”Which terrain looks more
realistic (left or right)?” by showing a pair of terrain images
without giving any other information about the terrain.
Each image pair was shown only once to each participant,
but each image repeated several times in different pairs.
The survey was blinded such that the participants only see
an image pair with responses restricted to ’Left’ or ’Right’
option. The experiment involved 70 participants with no
particular constraints on their education or previous knowl-
edge and all participants were older than 18 years. However,
only qualified ”Mechanical Turk Masters”, i.e., users who
consistently demonstrate accuracy in answers, were allowed
to answered the survey.

For each image pair we denote the category by a dash, so
R-S indicates pair of images where one is from the real and
one from the synthetic sample. The actual position of each
image (left or right) was randomized making this relation
symmetrical: R-S is the same as S-R.

6.1 Experiment 1: Real and Synthetic Terrains
We generated random image pairs by using the rendered
images from Sec. 5. We randomly paired one real with one
synthetic image resulting in 150 image pairs. This pairing
happened five times for each image from R resulting in |R−
S| = 750 images.

We made sure that the pairing did not miss any image,
each image was repeated exactly five times, and pairing
occurred always with a different image. The order of the
images within each pair was randomized so that the syn-
thetic image could be on the left hand or right hand side of
the pair with the same probability.

Each image pair was shown to five different participants
resulting in a total 3,750 image pair observations by a total of
70 subjects with varying degree of participation (determined
based on the unique count of anonymized ’workerID’ pro-
vided by Amazon Mechanical Turk).

Each time an image was selected as more realistic, it
received a point, and the total number of points determined
the overall ranking of each image that was normalized (see
Sec. 7). Moreover, we also calculated the normalized ranking
of each category of real (RA, RC, RG, RF, and RS) and
synthetics (SP, SR, SM, ST, SF, and SC) terrains.

6.2 Feature Transfer

E1 provided ranking of each category of real and synthetic
terrains and the distribution of geomorphons confirmed (see
Sec. 7.3) that they are related to the perceived quality. High-
ranking real terrains contained features such as the valley
topology in the terrains with fluvial erosion that were almost
absent in low-ranking ones.

We assumed that a deep neural network could learn the
features that make real terrains visually plausible and that
such features can be transferred onto the synthetic terrains
to make them more visually plausible. Similarly, we hypoth-
esize that the transfer could diminish features if it occurs
from synthetic to real terrains that would further justify the
importance of specific features for perceived realism.

Because the explicit pairing between the real and syn-
thetic terrains is difficult, we used the unpaired image
to image translation [4] to transfer features from the real
domain to the synthetic domain, and vice versa (see Fig. 6).
We use a pair of generators GR and GS with a pair of
discriminators DR and DS . The generator GR translates ter-
rains from the synthetic domain S to the real domainR with
real features. The discriminator DR discriminates between
terrains {r} and {GR(s)}, where {r} ∈ R and {s} ∈ S.
Moreover, GS translates terrains within the real domain R
to the synthetic domain S with synthetic features. Simi-
larly, DS discriminates between terrains {s} and {GS(r)},
where {r} ∈ R and {s} ∈ S. Besides the adversarial loss,
a cycle consistency loss is used to make GS (GR(s)) ≈ s
and GR (GS(r)) ≈ r. This process is indicated with the
dashed arrows in Fig. 6. The cycle consistency ensures the
high-quality feature transfer.

Synthetic Terrains
Synthetic Terrains
& Real Features

Real Terrains
Real Terrains &

Synthetic Features

Discriminator
Real

Discriminator
Synthetic

Generator
Real

Generator
Synthetic

Start

Start

Fig. 6. Feature transfer: The blue arrows indicate the working flow of
R2S; the orange arrows indicate the working flow of S2R. The dotted-
and-dashed arrows indicate the cycle consistency process.

We adopt a nine res-block generator and a 70×70 Patch-
GAN discriminator [71]. The transfer generated checker-
board patterns caused by fractionally-strided convolution
and the artifacts decrease if the training epochs increase. We
also applied resize-conv with Nearest Neighbor and Bilinear
as suggested in [72].

Our training set contains 9, 800 real terrain height maps
selected from the SRTM DEMs excluding the terrains that
have been used in E1 and E2. We generated additional
synthetic height maps for use in training based on afore-
mentioned synthetic categorization and same size as the real



7

terrain training data which is 9, 800 (see the data collection
in Sections 5.1 and 5.2).

We trained the model with 20 epochs, and then gen-
erated 150 images of real terrains with synthetic features
denoted by S2R. The term S2T denotes the transfer, meaning
”synthetic features were transferred to real terrains”. We
also generated another 150 images of synthetic terrains with
real features denoted by R2S. Figures 1 and 7 show example
result of the feature transfer in both directions (from real
to synthetic and from synthetic to real) and Sec. 7 further
discusses results.

a) b)

c) d)

Fig. 7. Example of feature transfer: a) Real terrain with strong fluvial pat-
terns from Colombian Amazonian forest area (S01 W072) (PTRM=0.67)
and b) synthetic terrain generated by thermal erosion (PTRM=0.46).
c) Synthetic features transferred to real terrain worsen its perceived
visual quality (PTRM=0.49) and d) real features transferred to synthetic
terrain improve it (PTRM=0.63).

6.3 Experiment 2: Real, Synthetic, and Terrain Models
with Transferred Features

The objective of the second experiment (E2) was to evaluate
how the terrains with transferred features score perceptually
against real and synthetic terrains. We have reused the 750
R-S image pairs from E1 (Sec. 6.1) and added another 750
images for each missing combination. Tab. 2 shows the
naming of the image pairs. The first column shows the
reused pairs from E1 (R-S). The newly added pairs compare
newly created transferred features from synthetic to real
R2S combined with all options R2S-R, R2S-S, and S2R-R2S.
Also, we added combinations for feature transfer from real
to synthetic S2R i.e., S2R-R and S2R-S. R2S-S2R is already
included because it is symmetrical with S2R-R2S.

S R2S S2R
R R-S R2S-R S2R-R
S • R2S-S S2R-S

R2S • • S2R-R2S

TABLE 2
Image pairing for Experiment 2. R-S pairs are reused from E1.

As in E1, each shuffling was generated five times re-
sulting in 750 images for each item of Tab. 2 resulting in
total of 4, 500 image pairs. We have repeated each test for
five independent viewers and this resulted in the total of
22, 500 views by 128 subjects. All participants were older
than 18 years and we again used only qualified Mechanical

Turk Masters. Note that because the R-S set from the first
experiment were also included in the second one, we have
validated the first experiment, because the ranking of the
results was consistent between E1 and E2 suggesting the
data saturation point has been attained (Sec. 7).

7 RESULTS

Here we discuss results of our two experiments and feature
transfer. We show results of E1 and E2, discuss the features
in geomorphons, and the feature transfer. Finally, we intro-
duce the perceptual terrain quality metrics PTRM.

SR SC SMSF SP ST RS RC RA RF RG

Less realistic More realistic

SR SC SM SF SP S2R ST RS RC R2S RA RF RG

Less realistic More realistic

Fig. 8. Perceptual ranking of terrains from E1 (top) and E2 (bottom).
The abbreviations are from Tab. 1 and the terrains are sorted by the
average perceived realism from worse (left) to the best (right). While the
order of the rankings in E2 is very similar to E1, note that the S2R i.e.,
synthetic terrains improved with features from real terrains ranked high.
At the same time, real terrain with features transferred from procedural
R2S ranked lower. The figure has been plotted based on their average
scores. The ×, •, and the − sign represent the mean, outlier points, and
the median markers respectively.

7.1 Perceptual Experiments

Experiment 1 assigned each image a number of how many
times it was selected as more realistic in a pair-wise choice
randomized test. We normalized the counts so that the most
realistically perceived image had a score of 1.0. We then
calculated the average, standard deviation, mean, and range
for each category of R and S from Tab. 1. The sorted results
by the average value are shown in Fig. 8 top. The ranking of
terrains from least realistic to the best was: SR-SC-SF-SM-SP-
ST-RS-RC-RA-RF-RG. All synthetic terrains were perceived
as visually less realistic than the real ones. The most realistic
synthetic terrains were generated by thermal erosion (ST)
(see Tab. 4).

We have also calculated the average and standard devi-
ation of values of ranking of all images in the sets S and R.
An unpaired T-Test evaluation suggested that the difference
is statistically significant with the two-tailed p < 0.01,
DF = 283, t = 17.91&α = 0.01.
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The perceptual experiment suggests that synthetic ter-
rains in our data-set are perceived as visually significantly
less realistic than the real ones.

Experiment 2 repeated E1 with the addition of pairs of
images with transferred features (Sec. 6.2). Our assumption
was that the features transferred from real terrains to syn-
thetic would improve their ranking and that the transfer
of features from synthetic to real terrains would do the
opposite. The normalized rank of each image and calculated
statistics for each category are in Fig. 8 and Tab. 4.

The perceived order of terrain categories is the same
as in E1 that confirms the validity of both tests. The cat-
egories with transferred features ranked as expected: the
synthetic terrains enhanced with features from real terrains
R2S ranked 10th, which is better than some of the real
terrains (RS and RC), but better than all synthetic ones.
This confirms our hypothesis that feature transfer affects
terrain perception. Similarly, the real terrain with transferred
procedural features S2R ranked significantly worse than real
terrains and even worse than thermal erosion simulation
(ST) at 6th place. This confirmed our hypothesis that fea-
tures of synthetic terrains do not contribute significantly to
terrain realism.

7.2 Statistical Tests

We performed statistical tests on our normalized perceptual
scores to determine if there are any differences in perception
of our terrain data groups: R, S, R2S and S2R. We state
the null hypothesis, H0 for our six statistical tests in E2
as follows: “There are no significant differences in the visual
perception scores between our terrain data groups.”.

We used T-Test to compare the means and variances
of the perception scores and the results are summarized
in Tab. 4. For testing our candidates in E2, we used the
significance level of α = 0.01, and get the statistics for,
R versus R2S (p = 0.02, DF = 149, t = 2.26), R ver-
sus S2R (p < 0.01, DF = 149, t = 22.10), R versus
S (p < 0.01, DF = 149, t = 22.59), R2S versus S2R
(p < 0.01, DF = 149, t = −23.52), R2S versus S (p < 0.01,
DF = 149, t = 29.12) and S2R versus S (p < 0.01,
DF = 149, t = 10.79). Tab. 3 summarizes the perception
scores. The scores are statistically different between the
terrain groups. The observers perceived the realism of the
terrains at different scales except the R vs R2S. This implies
that there are features in real terrains that increase the
perceived realism and we can reject our null hypothesis
stating that there is a significant difference in perception of Real
Terrains (R), Synthetic Terrains (S), Synthetic Terrains with Real
features (R2S), and Real Terrains with Synthetic features (S2R).

We performed an ANOVA (E1: calculated F = 320.91,
critical F = 3.87, p < 0.01, df = 298) (E2: calculated F =
465.78, critical F = 2.61, p < 0.01, df = 596) to determine
if there are any significant differences in the variances of the
scores. After establishing that there are differences in the
groups, we proceeded with the T-Tests to determine among
which groups the significant differences lie. Additionally, a
post-hoc test Tukey’s Honestly Significant Difference (HSD)
test indicated that there is no statistically significant differ-
ence in the perception scores between the terrain groups, R
and R2S with a p = 0.0511 and standard error of 1.0938

R S R2S S2R
R • X × X
R2S • • X X
S2R • • • X
S • • • •

TABLE 3
The table shows the statistical significance of each terrain set

compared with the other set from our experiments: E1 and E2. The X
implies that the terrain set in the vertical column are statistically

significant than the terrain set in the horizontal row, × to suggest that
the difference is not statistically significant and • to suggest that the

test is not available or compared already.

while there is a statistically significant difference between
the rest of the terrain groups with p < 0.001 and standard
error of 1.0938 with α = 0.01 which is consistent with T-Test
results.

7.3 Geomorphons
Geomorphons (Sec. 3) characterize local terrain features
(valleys, ridges, peaks, etc.). A geomorphon is a 10D feature
vector that describes a terrain. The spatial distribution of
geomorphons brings further insight into the features and
the corresponding data-sets. Fig. 9 shows the points corre-
sponding to all our data-sets (R, S, R2S, and S2R) projected
from 10D space to 2D by using t-Distributed Stochastic
Neighbor Embedding algorithm [73] that preserves dis-
tances among points across the dimensions.

Synthetic terrains appear clustered, while features of
real terrains are scattered over a wide area. This is further
confirmed by the variance of the features as can be seen in
graphs in Fig. 11. When the real features are transferred to
synthetic terrains, they tend to scatter the images apart and
when synthetic features are transferred to real terrains they
tend to get close to each other. This seems to indicate that
a high variability in geomorphological features is beneficial
for perceived realism.

Fig. 9. Projection of geomorphons from all terrains to 2D. Synthetic ter-
rains appear clustered, while real terrains are more scattered. Transfer
of real features scatters the terrains and transfer of procedural features
cluster the resulting terrains.

Moreover, we visualize domain-wise comparisons
among R, R2S, S, and S2R on the distributions of the
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E1 E2
T Ab. AVG MED MODE RNG STDEV SE 95% C.I. AVG MED MODE RNG STDEV SE 95% C.I.
R RG 80 84 92 52 19 7 14 80 851 N/A 58 19 7 13

RF 71 74 88 80 20 3 5 77 79 86 58 13 2 3
RA 70 72 92 88 22 3 6 74 80 89 65 19 3 5
RC 63 64 96 68 21 5 9 67 65 63 63 17 4 8
RS 60 76 N/A 56 28 12 24 67 71 N/A 53 20 8 16

S ST 46 48 48 64 17 3 7 41 40 32 21 7 1 3
SP 40 44 48 56 13 3 5 34 34 34 17 5 1 2
SM 34 32 36 56 14 3 6 28 29 32 24 6 1 2
SF 22 16 16 40 12 2 5 33 33 35 31 8 2 3
SC 24 28 28 48 11 2 4 12 11 10 16 5 1 2
SR 17 16 20 48 10 2 4 8 8 13 16 4 1 2

2 R2S N/A N/A N/A N/A N/A N/A N/A 71 72 70 68 13 2 2
S2R N/A N/A N/A N/A N/A N/A N/A 40 39 33 39 9 1 1

TABLE 4
The Average (AVG), Median (MED), Mode (MODE), RANGE (RNG), Standard Deviation (STDEV), Standard Error (SE), and 95% Confidence

Interval (95% C.I.) of the normalized scores for the terrain sets: E1 and E2.

element-wise geomorphon feature of terrains in Fig. 10.
The geomorphon features of real terrains (blue curve) tend
to distribute normally with a wide span. However, the
synthetic features (green curve) show significant differences
from the real with multi-modal and low-variability distribu-
tions on depression, summit, flat, valley, and ridge (Fig. 10
top row). We believe the high-peak distributions of synthetic
terrains lead to less attractive perceptions than the real.
The process of R2S transfer (orange curve) smooths and
normalizes the multi-modal high-peak distributions in the
synthetic terrains, and improves the perception (refer to
Sec. 7.1). It seems that the lack of geomorphon diversity or
variability of individual geomorphon feature in distribution
may decrease the perceived terrain realism.

7.4 Perceived Terrain Realism Metrics (PTRM)

The results suggest that the presence of geomorphons is
a good indicator of the perceived realism. We devised a
Perceived Terrain Realism Metrics (PTRM) that takes as the
input a set of normalized geomorphons for a DEM terrain
with the spatial resolution of 200m per pixel and returns the
estimated perceived realism.

The Pearson correlation coefficients (Tab. 5) show that
there is a strong correlation between each of the geomor-
phons (our predictor variables) at various levels (Positive
and Negative Correlation) on the Perception Score. The
order of the influence on the perception score is given by:
Valley (0.66), Ridge (0.64), Summit (0.44), Depression (0.42),
Spur (0.33), Hollow (0.22), Flat (-0.10), Foot (-0.15), Shoulder
(-0.17), and Slope (-0.65).

We performed a multiple linear regression (MLR) model
on our dataset with the hypothesis, H0: “There is no linear
relationship between the 10 geomorphon landform categories and
the perception scores for our terrain data groups.” The regres-
sion gave us the following statistics: DFn = 10, DFd =
588, F = 153.5276, p < 0.01, and with α = 0.01. Therefore,
we rejected the null hypothesis concluding that the coeffi-
cients are statistically significant with a p < 0.01.

The coefficients from the linear regression model be-
tween the 10 geomorphons categories are then used to
weight the effect of each geomorphon giving the PTRM. The

scale for the metrics is 〈0.0, 1.0〉 (0=poor, 1=realistic):

PTRM = (−38.02 + 3.55Gdepression + 1.75Gsummit +

25.12Gflat + 9.61Gvalley + 7.59Gridge + (1)
6.71Ghollow + 9.02Gspur + 7.31Gshoulder +

28.95Gslope + 7.63Gfootslope)/69.96.

Tab. 6 and Fig. 12 show the comparison of PTRM with the
calculated perception score averages for each category.

The resulting R-Squared value for the PTRM is 0.72
signifying that the 72% of variation in the visual realism
of terrains (i.e., the perception score) can be explained
by the full model with all of our predictor variables i.e.,
10 geomorphon distribution values with a standard error
of 0.13. All of the landform factors are significant predictors
of the perception score.

PTRM Validation: We have collected a large dataset
of various real and generated many synthetic DEMs (Sec-
tions 5.1 and 5.1). We validated the PTRM by splitting
the data five times randomly into 80:20%, recalculating the
PTRM (Eqn 2) on the 80% and validating on the remaining
20%. The average regression PTRM for the five dataset is:

PTRM = (−38.44 + 3.61Gdepression + 1.77Gsummit +

25.40Gflat + 9.71Gvalley + 7.65Gridge + (2)
6.77Ghollow + 9.14Gspur + 7.40Gshoulder +

29.26Gslope + 7.69Gfootslope)/69.22.

that is very close to the PTRM model with the amount of
explained variation (72%) and standard error (0.13). Both
values remained consistent as the regression model with
95% confidence interval.

Please note that we also show the PTRM for examples
shown in this paper in Figs 1,5, 7 and all PTRM values for all
images as well as perceived scores are in the sumplemental
material.

8 CONCLUSION

This paper presented a first step in the direction of evaluat-
ing the perceptual quality of procedural models of terrains.
We have conducted two large scale perceptual studies that
allowed us to rank synthetic and real terrains. Our results
show that synthetic terrains are perceived worse than real
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Fig. 10. The geomorphon feature comparisons among Real, R2S, Synthetic, and S2R (x-axis is the normalized value, the y-axis the count).
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Fig. 11. Distribution of the detected geomorphons in real and synthetic terrains from our dataset.

terrains with statistical significance. We have performed
a quantitative study by using geomorphons that indicate
that features such as valleys, ridges, summits, depressions,
spur, and hollows have significant perceptual importance.
We used deep neural network to transfer the features and
the second perceptual study confirmed this observation.
Eventually, we have designed PTRM that is a novel percep-
tual metrics based on geomorphons that allows to assign a
number of estimated visual quality of the generated terrain.

Our study has several limitations. Geomorphons are
localized to small areas of the terrain and they do not reflect
the distributions of the large features such as rivers, large

valleys, etc. It is possible that two terrains with the same
feature vector may be perceived as different because of
the variety of distributions. Also, our study made several
assumptions on terrain size. Changing the scale of the
terrains may have an effect on our results because features
of different scales would be captured. Another limitation
is the assumption about the terrain classification. While
we motivated our classification into terrains with different
geomorphological patterns, it is well known that probably
every terrain on Earth has been exposed to various morph-
ing phenomena and it is not entirely clear what caused the
patterns. Also, we assumed fixed position of the camera,
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CORR. DEPR. SUMM. FLAT VALL. RIDG. HOLL. SPUR SHOU. SLOP. FOOT. SCORE
DEPR. 1.00 • • • • • • • • • •
SUMM. 0.99 1.00 • • • • • • • • •
FLAT -0.41 -0.41 1.00 • • • • • • • •
VALL. 0.85 0.87 -0.42 1.00 • • • • • • •
RIDG. 0.86 0.87 -0.42 1.00 1.00 • • • • • •
HOLL. 0.41 0.42 -0.77 0.49 0.49 1.00 • • • • •
SPUR 0.45 0.46 -0.76 0.56 0.57 0.99 1.00 • • • •
SHOU. -0.50 -0.51 0.71 -0.53 -0.54 -0.94 -0.93 1.00 • • •
SLOP. -0.51 -0.53 -0.32 -0.67 -0.66 0.18 0.08 -0.18 1.00 • •
FOOT -0.50 -0.50 0.72 -0.51 -0.52 -0.95 -0.93 1.00 -0.20 1.00 •
SCORE 0.42 0.44 -0.10 0.66 0.64 0.22 0.33 -0.17 -0.65 -0.15 1.00

TABLE 5
The correlations among ten geomorphons (Depression, Summit, Flat, Valley, Ridge, Hollow, Spur, Shoulder, Slope, and Footslope) and the

perception score.

Type Category Measured Perception Score PTRM
Real RG 0.61 0.57
(R) RF 0.78 0.73

RA 0.75 0.69
RS 0.73 0.74
RC 0.69 0.65

Synthetic ST 0.50 0.53
(S) SP 0.35 0.36

SF 0.40 0.42
SM 0.35 0.36
SC 0.24 0.24
SR 0.02 0.02

Transfers R2S 0.67 0.71
(T) S2R 0.38 0.41

TABLE 6
A comparison of perception scores generated based on our introduced

metrics and our previously normalized score from the study.
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Average      PTRM

Fig. 12. Average value of measured perception score for each category
vs. the PTRM.

consistent texturing, and illumination. While these aspects
were carefully selected and made constant, it would be
interesting to see the effect of each of them on the results.
Last but not least, deep feature transfer with GAN provides
limited control on the content to be or not to be transferred.
With the metrics we provided, the transferred results can be
further improved in perception with a better control schema
of the generative network. We also did not study the spatial
correlation between geomorphons.

There are many possible avenues for future work. Per-
ceptual studies have the potential to answer longstand-
ing questions of visual quality of procedural models. Our
work is based on the underlying concept of geomorphons
that may be difficult to generalize to different domains. A
global metrics considering large geomorphological struc-

tures could be also combined with our perceptual study to
create another metrics. We intentionally used non-experts to
evaluate terrains. it would be interesting to use professional
geologists to provide perceptual evaluation. Also, we used
only structures commonly found on Earth, non-terrestrial
data are increasingly available and it would be interesting
to include them as well.
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local visibility of geometric artifacts,” in Proceedings of the ACM
SIGGRAPH Symposium on Applied Perception, ser. SAP ’15. ACM,
2015, pp. 91–98.

[40] J. Guo, V. Vidal, I. Cheng, A. Basu, A. Baskurt, and G. Lavoue,
“Subjective and objective visual quality assessment of textured 3d
meshes,” ACM Trans. Appl. Percept., vol. 14, no. 2, pp. 11:1–11:20,
Oct. 2016.

[41] J. Wu, X. Shen, W. Zhu, and L. Liu, “Mesh saliency with global
rarity,” Graph. Models, vol. 75, no. 5, pp. 255–264, Sep. 2013.
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