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Figure 1: Diffusion Image Analogies in action—a pair of input images 𝐴 and 𝐴′ defines an analogy, i.e., a semantic transition
according to which the target image 𝐵 is modified to produce the output image 𝐵′. In this case the user’s intention is to
change oranges to apples. Note, how our method captures the analogy implicitly without the need to have objects aligned in a
similar scale or provide an additional guidance which is a vital requirement for previous techniques based on image analogies
paradigm [Hertzmann et al. 2001]. Source images: Adobe Stock 𝐴, © Dllu 𝐴′, © The Busy Brain 𝐵.

ABSTRACT
In this paper we present Diffusion Image Analogies—an example-
based image editing approach that builds upon the concept of image
analogies originally introduced by Hertzmann et al. [2001]. Given
a pair of images that specify the intent of a specific transition, our
approach enables to modify the target image in a way that it follows
the analogy specified by this exemplar. In contrast to previous tech-
niques which were able to capture analogies mostly on the low-level
textural details our approach handles also changes in higher level
semantics including transition of object domain, change of facial
expression, or stylization. Although similar modifications can be
achieved using diffusion models guided by text prompts [Rombach
et al. 2022] our approach can operate solely in the domain of images
without the need to specify the user’s intent using textual form. We
demonstrate power of our approach in various challenging scenar-
ios where the specified analogy would be difficult to transfer using
previous techniques.
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1 INTRODUCTION
In 2001 Hertzmann et al. [2001] pioneered the idea of image analo-
gies where a given pair of images (denoted 𝐴 and 𝐴′) defines a
visual relationship, which can be applied to a query image 𝐵 to
create an analogy 𝐵′. While Hertzmann et al. used a simple pixel
window-based approach to realize the analogy, in the following
decades this concept became quite popular. It inspired an entire
family of methods which developed more sophisticated algorithms
for more general approaches of guided image synthesis [Barnes
et al. 2009; Bénard et al. 2013; Diamanti et al. 2015; Fišer et al. 2016;
Freeman et al. 2002; Futschik et al. 2021; Jamriška et al. 2019; Ritter
et al. 2006; Texler et al. 2020b] which became a powerful tools for
various practical scenarios (image/video editing, stylization, or com-
pletion). A key limitation of all these methods is that they transfer
appearance at quite low (pixel) level and have little notion of higher
level context or ability to modify higher-level structure. High-level
contextual analogies, such as presenting a no-smile/smile pair on
the input and make a person in the target photo smile is difficult to
achieve.

https://orcid.org/0000-0002-0694-2096
https://orcid.org/0000-0002-9664-7786
https://orcid.org/0000-0002-2181-5917
https://orcid.org/0000-0003-3254-0290
https://orcid.org/0000-0002-6783-1795
https://orcid.org/0000-0002-6145-5151
https://doi.org/10.1145/3588432.3591558
https://doi.org/10.1145/3588432.3591558
https://doi.org/10.1145/3588432.3591558


SIGGRAPH ’23 Conference Proceedings, August 6–10, 2023, Los Angeles, CA, USA Šubrtová, et al.

Recently, rapid development of large language models [Brown
et al. 2020] paired with images [Radford et al. 2021] and combined
with the power of diffusion models [Ho et al. 2022] lead to a revolu-
tionary text-guided image generation approach [Nichol et al. 2022].
Systems such as Stable Diffusion [Rombach et al. 2022] demon-
strate a breathtaking ability to govern high-level semantics and
generate photorealistic as well as artistic images of high quality,
following the users’ specification. Upon this success text-based
guidance gained significant popularity and prompt engineering
become a new content creation skill. Although in less restrictive
scenarios text prompts provide sufficient power to specify content
that needs to be generated when going more into specific details the
process may become difficult and leads to tedious trial-and-error
workflow. Even longer text prompts may not sufficiently describe
the user’s intent so that the adage "a picture is worth a thousand
words" become highly relevant.

In our work we aim to overcome above-mentioned difficulties by
elevating the original concept of image analogies into a next level
where also high-level contextual information is taken into account.
To achieve this goal we employ the power of diffusion models and
demonstrate how to achieve image-based analogy without the need
to rely on text prompts yet still being able to leverage the ability of
large language models to govern high-level semantics.

A key idea behind ourmethod is to invert guiding/content images
to get their initial random noise and conditioning matrix which can
then be used to closely reproduce the original images using diffusion
process. Then we leverage a principle known from natural language
processing [Mikolov et al. 2013] where algebraic operations applied
to vector representations of input words can lead to equations such
as: King+ (Woman−Man) = Queen. We demonstrate that a similar
approach can be used in the context of diffusion models where the
conditioning matrix (originally extracted from a given text prompt)
serves as a vector representing the semantics of the input image
and thus can be used to express and apply high-level analogy.

2 RELATEDWORK
The concept of image analogies [Hertzmann et al. 2001] was intro-
duced in an application setting where an exemplar pair of images
(the unfiltered and filtered) is used to synthesize a filtered version
of a given target image. A guided texture synthesis algorithm simi-
lar to that proposed by Ashikhmin [2001] is used to perform the
transfer that enables to produce analogies only with respect to
low level details. Moreover, since only color information is used
for guidance the output can suffer from ambiguity. One of the ex-
tensions Hertzmann et al. proposed to mitigate this issue was the
texture-by-numbers concept where instead of a regular image a cus-
tomly created guiding channel (e.g., a segmentation map) is used to
define the analogy. This technique inspired others to develop more
advanced guided patch-based synthesis [Diamanti et al. 2015; Fišer
et al. 2016, 2017; Zhou et al. 2017] that can deliver compelling results
in more complex scenarios where additional contextual information
is necessary, e.g., when synthesizing an image that respects pre-
scribed depth, illumination, weathering effects or facial expressions.
Nonetheless, guiding channels that inject such semantics need to
be prepared explicitly in advance and are application specific.

Gatys et al. [2016] proposed a complementary approach to image
analogies called neural style transfer. In this technique instead of
specifying a full analogy only the style image is provided. The
assumption here is that responses of VGG network trained on
object recognition tasks [Simonyan and Zisserman 2014] can distill
higher level semantics as well as low-level details so that one can
use them to guide the synthesis and combine visual characteristics
of the input style with the content of the target scene. This approach
was later extended by others [Kolkin et al. 2019; Li et al. 2017] and
combinedwith the principles of patch-based synthesis [Li andWand
2016; Liao et al. 2017; Texler et al. 2020a] that use responses of VGG
explicitly as a latent guiding channel. Although these techniques
can deliver impressive results in various practical scenarios their
ability to capture higher level context is bounded by capabilities
of VGG network and do not allow for more generic customization
that is possible in the concept of image analogies.

Above mentioned limitations can be to some extent addressed
by image-to-image translation methods [Futschik et al. 2019; Isola
et al. 2017; Park et al. 2020; Zhu et al. 2017] where the user specifies
a larger dataset of exemplar pairs as an input. Those are then used to
train a translation network that can deliver expected modification
of the target image. A key drawback here is that the creation of such
large input dataset can be non-trivial and also the training phase
requires huge computational overhead that can be prohibitive in
the case where the translation domain is not known in advance.

To overcome the necessity of larger set of aligned image pairs
methods have been proposed to handle unpaired exemplars [Zhang
et al. 2020; Zhu et al. 2017] as well as notably smaller datasets [Liu
et al. 2019] that in specific cases can be reduced to a single pair of
images [Futschik et al. 2021]. Nonetheless, since those techniques
do not consider larger contextual model to capture higher-level
semantics they still either transfer only lower level textural details
or require a few more examples to distill the analogy statistically.

Thanks to the advent of CLIP [Radford et al. 2021] that can em-
ploy large language model [Brown et al. 2020] to measure how
closely a given text describes an input image, text-guided image
generation [Gal et al. 2022b; Patashnik et al. 2021] started to gain
significant popularity namely in combination with diffusion mod-
els [Ho et al. 2022]. Systems such as Stable Diffusion [Rombach et al.
2022] become a revolutionary new tool for guided image synthesis
and editing [Avrahami et al. 2022]. To enable local editing Hertz et
al. [2022] inject attention maps from initially generated image to
retain the original structure. To preform the edit on real images dif-
fusion process needs to be inverted using DDIM [Song et al. 2021].
Mokady et al. [2022] improve on DDIM using null-text optimiza-
tion where only the unconditional textual embedding is modified.
Kawar et al. [2023] instead fine-tune the diffusion model to capture
appearance of the input image. Finally, Brooks et al. [2023] bypass
the inversion by training a conditional diffusion model using large
synthetically generated dataset of image editing examples.

Despite the unprecedented quality of results produced by tech-
niques mentioned above their key limitation is that their guidance
is dependent on specifying text prompts. Our aim is to relax such
a requirement and get closer to the idea of visual prompting [Bar
et al. 2022] where instead of text, analogy expressed by two images
is provided to guide the transfer yet contrary to the work of Bar et
al. in our approach we retain the semantic power of CLIP. A similar
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approach appeared recently in the works of Tumanyan et al. [2022]
and Kwon and Ye [2023] who let the user specify an appearance
exemplar and use another image to define the target structure.
Semantic transfer is then performed using deep features of pre-
trained vision transformer [Caron et al. 2021]. Ruiz et al. [2023]
instead fine-tune a diffusion model by binding a unique identifier
to a specific subject represented by a set of input images. Despite
impressive results those techniques produce they do not address
image analogies scenario.

Our approach bears resemblance to thework of Tewel et al. [2022]
who infer a caption for a given input image by combining visual-
semantic model (CLIP) with large language model (GPT-2) [Radford
et al. 2019]. Tewel et al. demonstrate that hybrid image/text anal-
ogy puzzles can be solved by using simple arithmetic operations
between estimated CLIP features; however, the output is always a
text and not an image.

3 OUR APPROACH
Similarly to Hertzmann et al. [2001] the input to our method is a
triplet of images 𝐴, 𝐴′, and 𝐵 where 𝐴 to 𝐴′ represent the intended
analogy and the aim is to modify the image 𝐵 to produce an im-
age 𝐵′ in such a way that the change performed follows the analogy
represented by𝐴 and𝐴′, i.e., formally:𝐴 : 𝐴′ :: 𝐵 : 𝐵′ (see Fig. 1). In
the solution proposed by Hertzmann et al. objects and other struc-
tures in images𝐴 and𝐴′ are assumed to be spatially aligned and the
change between them mostly happens on a pixel level. In our case
we consider arbitrary images that may not be spatially aligned and
focus more on higher level context. This shifts the problem setting
closer to deep image analogies [Liao et al. 2017] or a generic style
transfer scenario [Gatys et al. 2016], however, in contrast to those
previous approaches our solution provides a more explicit control
over the transfer by providing the analogy 𝐴 : 𝐴′. Moreover, since
our aim is to depart from pixel level features towards higher level
contextual information we employ CLIP [Radford et al. 2021] that
can interconnect the image with semantically meaningful prior of
large language model.

To achieve this goal we initially assume the input images 𝐴, 𝐴′,
and 𝐵 were generated synthetically using Stable Diffusion [Rom-
bach et al. 2022]. Here a diffusion process U+ is used to produce
images that follows a given text descprition. U+ consists of multi-
ple denoising steps where a pre-trained U-net U is applied repeat-
edly on an initial noise image 𝜖∗ while CLIP features 𝑐∗ derived
from the input text prompt are used to guide the diffusion, i.e.:
𝐴 = D(U+ (𝜖𝐴, 𝑐𝐴)),𝐴′ = D(U+ (𝜖𝐴′ , 𝑐𝐴′ )), and 𝐵 = D(U+ (𝜖𝐵, 𝑐𝐵)).
Since Stable Diffusion operates in latent representation with re-
duced dimensionality we need to use decoder D proposed by Rom-
bach et al. to reconstruct the final image.

Similarly to Tewel et al. [2022] or Ramesh et al. [2022] we express
the analogy 𝑒 ≈ 𝐴 : 𝐴′ algebraically by subtracting CLIP features
of images 𝐴 and 𝐴′, i.e., 𝑒𝐴:𝐴′ = 𝑐𝐴′ − 𝑐𝐴 . The output image 𝐵′ can
then be produced using diffusion process U+ and decoder D:

𝐵′ = D(U+ (𝜖𝐵, 𝑐𝐵 + _ · 𝑒𝐴:𝐴′ )), (1)
where _ is a hyper-parameter that describes the strength of the
analogy.

Such an operation can trivially be applied to images𝐴,𝐴′, and 𝐵
that were produced synthetically using Stable Diffusion. However,

𝑐𝐵 + _ · 𝑒𝐴:𝐴′

∑

𝜎
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Figure 2: Diffusion ImageAnalogies pipeline—input images𝐴,
𝐴′, and 𝐵 are fed into Stable Diffusion encoder E [Rombach
et al. 2022] to produce their lower dimensional latent repre-
sentations 𝑧𝐴, 𝑧𝐴′ , and 𝑧𝐵 . Subsequently, their corresponding
CLIP features 𝑐𝐴, 𝑐𝐴′ , and 𝑐𝐵 are estimated (c.f. Section 3.1)
and the analogy factor 𝑒𝐴:𝐴′ is computed. Initial noise im-
age 𝜖𝐵 is estimated (c.f. Section 3.2) from 𝑐𝐵 and 𝑧𝐵 and the
scaled factor _ · 𝑒𝐴:𝐴′ is added to the CLIP features 𝑐𝐵 to drive
the diffusion process U+ that is initiated by 𝜖𝐵 . Once the
diffusion process is completed in the latent space the final
image 𝐵′ is reconstructed from the latent space using Stable
Diffusion decoder D (included in the Diffusion block). The
user can influence the entire process by manipulating anal-
ogy strength parameter _ and guidance scale parameter 𝜎 .
Source images: Adobe Stock𝐴, © Dllu𝐴′, © The Busy Brain 𝐵.

a key question here is how to apply the same process to real images
for which the initial noise 𝜖∗ as well as CLIP features 𝑐∗ are not
known.

In our solution (c.f. Fig. 2) we infer 𝜖∗ and 𝑐∗ using optimiza-
tion. A key challenge here is that both the initial noise image as
well as CLIP features influence the image formation process jointly
through the diffusion process U+, albeit not interchangeably. A
naive joint optimization scheme would lead to an unstable solution,
where the image is reconstructed well, but the semantic informa-
tion is not cleanly factored out into 𝑐∗. In such a configuration,
minor perturbations to 𝜖∗ cause the diffusion to produce broken or
nonsensical images (see Fig. 8a).
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Figure 3: Results of Diffusion Image Analogies—the input analogy 𝐴 : 𝐴′ is applied to the target image 𝐵 producing the output
image 𝐵′. The analogies are used to: (a) make a person smile, (b) make a person wear glasses, (c) make a woman to look like a
vampire, (d) stylize an input photo, (e) make a man to look like an Indian god, (f) make a real car to look like a plastic toy.
Source images: © Kevin Bidwell (b) 𝐵, © Lucíola Correia (d) 𝐵, © The NRMA (f) 𝐵, Adobe Stock the rest.

The reason for this is that information from the training data is
not distributed uniformly over the space of all 𝑐∗, or even evenly
within a given 𝑐∗ matrix. Due to how CLIP is structured, informa-
tion is mostly concentrated in the upper rows of 𝑐∗, but because
unconstrained optimization is free to use the entire tensor, it can
recover a result that reconstructs the image faithfully, but does
not correspond to any meaningful sequence of text tokens. Such
solutions necessarily lie in a subspace where U is not well trained,
and therefore the output is not robust to 𝜖 .

To avoid such an instability, we need several layers of regular-
ization. Firstly, we recover the CLIP features and the initial noise in
a sequence rather than jointly. Then, we architect the optimization
and apply a regularization described below to ensure the recov-
ered features mimic meaningful word token sequences and actually
capture most of the high level features, thereby making the output
more robust to the initial noise.

3.1 Estimation of the CLIP Features
Although the CLIP feature parameters 𝑐∗ can be estimated directly
there is no guarantee they will contain desired semantic informa-
tion about the input image (see Fig. 8b). To alleviate this drawback
we regularize their values by plugging CLIP model C into the opti-
mization process. To do that we do not estimate 𝑐∗ directly instead
we optimize a set of tokensK that serves as an input to CLIP model
from which the desired features can be produced: 𝑐∗ = C(K). A
similar idea was recently proposed by Gal et al. [2022a], however,
in their solution only a single token (used in a variety of different

sentences) is optimized. We extend this estimation to handle multi-
ple tokens at the same time without any prior context. This enables
us to to distill a more information-rich embedding 𝑐∗.

To estimate 𝑐∗ for an image 𝐼 we aim to minimize the loss:

min
K

∑︁
𝑡 ∈T

|𝜖 − U(𝑧𝑡 , 𝑡,C(K)) |22 . (2)

Here T denotes individual steps of the diffusion process. We con-
struct a set of noisy images 𝑧𝑡 =

√
𝛼𝑡E(𝐼 ) +

√
1 − 𝛼𝑡𝜖 , 𝜖∼N(0, I), ac-

cording to the model’s noise schedule, and a feature encoding E(𝐼 )
of the image 𝐼 , as per Rombach et al. [2022]. Then we optimize
for a sequence K which, when encoded as C(K), conditions the
network U to predict the correct noise sample.

An essential part of our loss is that we restrict the number of
tokensK being optimized from the original length of 77 to a smaller
number 𝑁 . Remaining tokens are set to be end-of-text tokens. The
aim of this restriction is to encourage brevity and prioritize tokens
that represent more salient high-level information. In the ablation
experiments we demonstrate that such a sharpening effect has posi-
tive impact on the quality of the resulting CLIP features (see Fig. 13).

To further regularize the estimation of 𝑐∗, we augment the set of
noisy images with images that are slightly geometrically modified
versions of the original image. We use horizontal flip, random scale,
and translation (compare Figures 8c and 8d to see the positive effect
of this augmentation).

3.2 Estimation of the Initial Noise Image
In order to apply the analogy to the given image 𝐵 we need to
estimate its initial Gaussian noise 𝜖𝐵 so that 𝐵 = D(U+ (𝜖𝐵, 𝑐𝐵)).



Diffusion Image Analogies SIGGRAPH ’23 Conference Proceedings, August 6–10, 2023, Los Angeles, CA, USA

(a) (b) (c)

𝐴

𝐴′

𝐵

𝐵′

Figure 4: Results of Diffusion Image Analogies (cont.)—the
input analogy 𝐴 : 𝐴′ is applied to the target image 𝐵 produc-
ing the output image 𝐵′. The analogies are used to: (a) make
a bear to look like a panda, (b) transform three cats to three
dogs, (c) make a group of people practicing yoga to look like
a group of Buddha statues. Source images: © Artanisen (a) 𝐴,
© Cliff (a) 𝐴′, © George Hodan (b) 𝐵, Adobe Stock the rest.

𝐴

𝐴′

𝐵 𝐵′ 𝐵′

Hertzmann et al.our approach

Figure 5: Comparison with the original Image Analo-
gies [Hertzmann et al. 2001]. The intention of the given
analogy 𝐴 : 𝐴′ is to perform colorization. Despite the fact
images 𝐴 and 𝐴′ are aligned (a requirement of the origi-
nal method), the output is far from the original intention.
Here the reason is that the method of Hertzmann et al. use
intensity-based matching to retrieve similar features which
is not semantically meaningful in this case. Using our ap-
proach the target image 𝐵 is colorized appropriately. Source
images: © Subhamshome28 𝐵, Adobe Stock the rest.

Thanks to already estimated CLIP features 𝑐𝐵 we can optimize 𝜖𝐵
through the entire diffusion process U+ by minimizing the loss:

min
𝜖𝐵

��𝑧𝐵 − U+ (𝜖𝐵, 𝑐𝐵)
��2
2 +

��𝐵 − D(U+ (𝜖𝐵, 𝑐𝐵))
��2
2 . (3)

𝐴 = 𝐵

𝐴′

𝐵′

𝐴 ⊳𝐴′

our approach

Liao et al.

Figure 6: Comparison with Deep Image Analogies [Liao et al.
2017]. The method of Liao et al. does not support full image
analogies scenario. Only two images 𝐴 : 𝐴′ can be specified
with the aim to transfer visual attributes between them𝐴 ⊳𝐴′.
To simulate full image analogies 𝐴 : 𝐴′ :: 𝐵 : 𝐵′ we set 𝐵 = 𝐴.
From the resulting image 𝐵′ it is visible that our approach
handles high-level semantics better than the method of Liao
et al. which tends to transfer only low level textural details.
Source images: Adobe Stock 𝐴, © Dllu 𝐴′.

Here 𝑧𝐵 is a latent representation of image 𝐵, i.e., 𝑧𝐵 = E(𝐵) andU+

is the entire diffusion process that starts with the initial noise 𝑧𝑀 =

𝜖𝐵 at a time 𝑖 = 𝑀 . Then 𝑧𝑖 is refined 𝑧𝑖−1 = 𝛾𝑖𝑧𝑖 + 𝛾 ′
𝑖
U(𝑧𝑖 , 𝑖, 𝑐𝐵)

until 𝑖 = 0. Constants𝛾𝑖 and𝛾 ′𝑖 are scaling factors associated withU.
Note that we use the short schedule mode that relates to the original
schedule 𝑡 ∈ (0, . . . ,𝑇 ) as 𝑡 = 𝑖 𝑇

𝑀
, skipping 𝑇 /𝑀 denoising steps.

Besides minimizing difference of latent representations we also
minimize the difference of the original image 𝐵 to its reconstructed
and decoded counterpart D(U+ (𝜖𝐵, 𝑐𝐵)).

4 RESULTS
We implemented our approach in Python using source code of
Stable Diffusion [Rombach et al. 2022] as a basis (see our GitHub
repository: https://github.com/subrtadel/DIA). For the estimation
of CLIP embedding (2) we employed AdamW optimizer [Loshchilov
and Hutter 2019] and we set the number of active tokens 𝑁 = 10.
On the GPU (Tesla A100 with 40 GB of RAM) this process takes
approximately 8 minutes for 512×512 image. For the estimation
of initial Gaussian noise 𝜖𝐵 of image 𝐵 we use 𝑀 = 10 steps of
the diffusion process U+ (𝑇 = 1000) to minimize the loss (3) using
L-BFGS solver [Berahas et al. 2016]. On the same GPU and image
resolution this step takes around 9 minutes.

As soon as all necessary parameters (𝑐𝐴 , 𝑐𝐴′ , 𝑐𝐵 , and 𝜖𝐵 ) are
estimated we can compute the analogy (1). To enable better control
over the final result we first calculate images 𝐵′ for different values
of the analogy strength _ (each sample takes around 0.7 secs on
the GPU) and then we let the user to choose its optimal setting
interactively. Another value the user can fine tune is the guidance

https://github.com/subrtadel/DIA
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𝐴 𝐴′ 𝐵

our approach img2img variation

𝐵′

Figure 7: Comparison with Stable Diffusion [Rombach et al.
2022]. In our synthetic baseline BLIP [Li et al. 2022] is used
to estimate text prompts of the images from which CLIP
features are computed. In this case the output is: "a man with
a smile on his face" for 𝐴, "a big statue in a Chinese temple
with an overhang" for 𝐴′, and "a man in a white shirt looking
at the camera" for 𝐵. Those text prompts are used to produce
CLIP features 𝑐𝐴, 𝑐𝐴′ , and 𝑐𝐵 from which the CLIP features
of 𝑐′

𝐵
are computed: 𝑐𝐵′ = 𝑐𝐵 + _ · (𝑐𝐴′ − 𝑐𝐴). Then a img2img

mode of Stable Diffusion is used and conditioned with 𝑐𝐵′

to produce the output 𝐵′. Note, how the analogy derived
from the estimated text prompts does not capture semantics
properly. In the variationsmode a different model of Stable
Diffusion is used that is conditioned on images directly. The
analogy as well as the output conditioning with the image
embedding is computed using the same approach as with text
prompts. Note, that in this case the analogy is getting closer
to the original intention, nevertheless, the overall structure
is not preserved well. Source images: Adobe Stock.

scale 𝜎 , a built-in parameter of the diffusion process U+ (c.f. [Rom-
bach et al. 2022]). In a typical workflow the user first manipulates 𝜎
to tune the extent to which the target image 𝐵 is modified and then
the analogy strength _ is set to express the influence of prescribed
analogy 𝐴 : 𝐴′ (see Fig. 11 and also our supplementary material
for further examples of _ manipulation and video for live editing
sessions).

In Figures 1, 3, and 4 we present various analogies performed
by our approach. Note, how the input pair of images 𝐴 : 𝐴′ can be
highly diverse. There is no need to have objects aligned or be in a
similar scale. The desired analogy is distilled automatically from
the estimated CLIP features. Note also how our method preserves
the structure of the target image and automatically respects higher
level context (see, e.g., Fig. 3f where even though the image 𝐴′

depicts plastic toy locomotives; in the output, we see a plastic toy
car that does not resemble a locomotive).

4.1 Comparison
To our best knowledge our approach is the first technique that can
perform high level image analogies on natural images. Although we
can compare our method with the original image analogies [Hertz-
mann et al. 2001] it is obvious that the approach of Hertzmann et
al. could not deliver comparable results to ours since they lack the

(a)

(b)

(c)

(d)

Figure 8: Ablation study—an input image (left) accompa-
nied by a set of images (right) generated using Stable Diffu-
sion [Rombach et al. 2022] from a set of random input noises
and conditioned by: (a) jointly optimized CLIP features 𝑐 and
initial noise 𝜖, (b) CLIP features 𝑐 optimized directly without
the use of token regularization via CLIPmodel [Radford et al.
2021], (c) CLIP features 𝑐 optimized using token regulariza-
tion but without data augmentation (flipping, translation,
and scaling), (d) our full approach. Note, how our full-fledged
optimization better captures overall high level semantics.
Source images: Adobe Stock.

𝐴 𝐴′ 𝐵 𝐵′

Figure 9: Extension—our approach can also be used in a spe-
cific scenario where the user draws a rough sketch 𝐴′ over
the input photo 𝐴 to express the intended edit. In this case
making the person to wear glasses. Then a different photo
can be provided as a target image 𝐵 to which this edit is ap-
plied 𝐵′. Source images: Adobe Stock.

ability to deduce high level semantics, and assume aligned image
pair 𝐴 : 𝐴′ as an input. Even if we provide an aligned pair it is still
apparent (see Fig. 5) that the original image analogies only capture
low level textural details and thus are unable to handle high level
semantics without additional guidance.

Similar situation occurs when we compare our approach with
the state-of-the-art in neural style transfer. Here we consider Deep
Image Analogies [Liao et al. 2017] as a baseline solution, neverthe-
less, since the approach of Liao et al. does not support full image
analogies (only images 𝐴 and 𝐵 can be specified) we can compare
both techniques only in a specific scenario when 𝐴 = 𝐵. Even in
this limited setting it is visible (see Fig. 6) that high level semantics
is difficult to capture using Deep Image Analogies.
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𝐴 𝐴′ 𝐵 𝐵′

Figure 10: Limitations—as our method was primarily de-
signed to transfer high level features specified by the anal-
ogy 𝐴 : 𝐴′ and preserve the overall structure of the target
image 𝐵 it may encounter difficulties when the user’s intent
is to perform pixel level stylization. As a future work we
plan to combine our approach with previous image analogies
approaches that can handle low level features better [Fišer
et al. 2016; Texler et al. 2020a]. Source images: Adobe Stock.

To overcome the lack of comparable approaches to our method
we developed a synthetic baseline solution that one can imple-
ment using off-the-shelf tools. We use BLIP [Li et al. 2022] to
estimate text prompts for all input images 𝐴, 𝐴′, and 𝐵. From
those we then compute CLIP features, produce the desired anal-
ogy 𝑐𝐵′ = 𝑐𝐵 +_ ·𝑒𝐴:𝐴′ , and finally we run standard Stable Diffusion
in the img2img mode [Rombach et al. 2022]. Here the image 𝐵 is
first distorted by a small amount of Gaussian noise and then the
diffusion process𝑈 + is executed while CLIP features 𝑐𝐵′ are used to
guide the diffusion. Meng et al. [2022] use similar technique with-
out CLIP guidance. The output of this approach is visible in Fig. 7
(img2img). Although the result follows the structure of the origi-
nal image 𝐵 that is already baked in this slightly noised input the
analogy derived from the estimated text prompts does not capture
semantics properly (see Fig. 12 and also our supplementary mate-
rial for additional examples of this failure). When image variations
mode of Stable Diffusion [LambdaLabsML 2022] is used, see Fig. 7
(variation) where the diffusion is guided directly using CLIP em-
bedding of the input images (i.e., no optimization over text tokens
is performed) the analogy is expressed better, however, the overall
pose does not resemble the original 𝐵.

4.2 Ablation Study
To validate the necessity of all components in our proposed ap-
proach we performed a series of ablation studies. In Fig. 8 we
demonstrate the importance of having CLIP features 𝑐 and the
initial noise 𝜖 optimized independently (8a). We also demonstrate
the need for token-based regularization of CLIP features 𝑐 (8b), the
necessity of data augmentation (8c), and that to express the analogy
the subtraction needs to be computed in the space of CLIP features 𝑐
since the semantically meaningful ordering of tokens is unknown
(see Fig. 13). In Fig. 14 we demonstrate how the proposed scheme
that limits the number of tokens has positive impact on the ability
to distill high level semantics.

5 LIMITATIONS AND FUTUREWORK
In our experiments, we demonstrate the benefits of enhancing
image analogies framework with the capabilities of large language
models and diffusion networks. These allow the transition of high-
level features, which has been difficult to achieve using previous

approaches. Nevertheless, there are still some limitations which we
envision to be addressed in future work.

One of the limiting factors of our method is the fact that the user
may find difficult to fine tune the analogy selectively in order to
highlight specific details. Although it is possible to experiment with
the analogy and guidance strength parameters the control over
high level features being transferred to the target image is limited
(see Fig. 15). As a future work we envision the users may have a
possibility to specify their intent more closely, e.g., by sketching
(see an example of initial prototype of this extension in Fig. 9),
providing additional text prompts or by specifying multiple input
exemplars that will better describe the intended analogy.

Since in our design we focused mainly on the overall structure
and high level features, our approach may encounter difficulties
when the analogy is focused solely on low level details (see Fig. 10).
As a future work we envision to combine capabilities of our ap-
proach with traditional image analogies techniques [Fišer et al.
2016; Texler et al. 2020a] in order to properly capture high level
context as well as being able to faithfully reproduce pixel level
details.

6 CONCLUSION
We presented an approach to image analogies that in contrast to
previous techniques focused on low level textual details respects
semantics of the specified analogy and is able transfer high level
features while preserving the structure of the target image. A key
component that enables us to achieve such an upgrade of the orig-
inal image analogies framework [Hertzmann et al. 2001] is the
connection of large language model [Radford et al. 2021] with the
power of diffusion networks [Rombach et al. 2022]. Although a
similar combination was already used in previous works, in our
approach we demonstrate that one can leverage the power of large
language model without the need to work with text prompts ex-
plicitly. We believe that our work inspires future exploration of
possible extensions to a set of controls available to the users who
work with generative models.
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𝐴 𝐴′
𝐵

𝐵′

increasing analogy strength _

increasing analogy strength _

𝐴 𝐴′ 𝐵

𝐵′

A A’ B

B’

increasing analogy strength _

Figure 11: Examples of diffusion image analogies 𝐴 : 𝐴′ :: 𝐵 : 𝐵′ produced using our approach with gradually increasing analogy
strength _. Note, how increasing _ makes the prescribed analogy more apparent. Source images: © Artanisen (Brown Bear 𝐴),
© Cliff (Panda 𝐴′), © The NRMA (Volkswagen Golf 𝐵), Adobe Stock the rest.
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𝐴 𝐴′ 𝐵 𝐵′

our approach BLIP + img2img

𝐵′

Figure 12: Comparison with Stable Diffusion [Rombach et al. 2022] (cont.): 𝐴 ="a black and white photo of a tree in a field",
𝐴′ ="a lone tree in a field of green grass", and 𝐵 ="a black and white photo of a man with a long beard". Note, how in the estimated
description of 𝐴′ color is not explicit mentioned and thus also not pronounced well in the resulting analogy 𝐵′. Source images:
© Subhamshome28 𝐵, Adobe Stock the rest.

𝐴 𝐴′ 𝐵 𝐵′ 𝐵′

our approach tokens only

Figure 13: Ablation study—a comparison of two analogies performed using our approach vs. a scenario where instead of
computing the difference of estimated CLIP features 𝑐, token vectors K are subtracted directly. Since the token order is crucial
for this operation it is unclear which tokens need to be subtracted. In the space of CLIP features 𝑐 such an ordering issue is not
present and thus the analogy is accurate. Source images: Adobe Stock.

(a)

(b)

Figure 14: Ablation study—CLIP features 𝑐 for an input image (left) are estimated without the regularization on the number of
tokens (a) and with the regularization (b). Note, how the regularization distills semantics so that when the diffusion process 𝑈 +

is executed with different random noises the output better reassembles the original setting (apples stacked on top of each other)
whereas without regularization we can see other objects in the generated images. Source image: Adobe Stock.

A A’ B B’

Figure 15: Limitations—when specifying the analogy 𝐴 : 𝐴′ the original user’s intent was to add a mountain to the horizon in
the image 𝐵. However, since in the image 𝐴′ besides the mountain contains also a lake its transfer to the image 𝐵 is performed
as well although it was not originally intended. As a future work we envision to employ additional more specific control over
the analogy. Source images: ©Martin Falbisoner 𝐴, Adobe Stock the rest.
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