
Czech Technilcal University in Prague
Faculty of Electricel Engineering

Department of Computer Graphics and Interaction

Bachelor thesis

Roller Coaster Simulator

Tereza Hyková

Supervisor: Ing. Jaroslav Sloup

Study Programme: Software engineering and Management

Field of Study: Web and multimedia

May 27, 2010

iv

Aknowledgements

I would like to thank Ing. Jaroslav Sloup for supervising this thesis, and my friends and
family for their support during my studies.

v

Declaration

I hereby declare that I have completed this thesis independently and that I have listed all
the literature and publications used.
I have no objection to usage of this work in compliance with the act §60 Zákon č. 121/2000Sb.
(copyright law), and with the rights connected with the copyright act including the changes
in the act.

In Prague, May 27, 2010 .

Abstract

This thesis describes the design and implementation of a roller coaster editor and simu-
lator. It introduces the way to describe most of existing roller coasters including its shape,
special mechanisms (e.g. lift or brake) and appearance. It implements an editor that provides
all the tools required to design a roller coaster, which can be previewed in the simulator. The
thesis then describes the physical quantities affecting the train’s movement and implements
a simplified physical model used in the simulation. The user can experiment with different
types of cars and ride his own roller coaster with an on-ride camera.

Abstrakt

Práce se zabývá návrhem a implementaćı editoru a simulátoru horské dráhy. Řeš́ı, jak
popsat většinu existuj́ıćıch horských drah včetně jejich tvaru, speciálńıch mechanismů (např.
brzda nebo výtah) a vzhledu. Popisuje implementaci editoru, který nab́ıźı veškeré nástroje
potřebné k navržeńı libovolné horské dráhy. Ta může být následně spuštěna v simulá-
toru. Práce dále popisuje fyzikálńı veličiny, které ovlivňuj́ı pohyb vlaku, a implementuje
zjednodušený fyzikálńı model. Uživatel pak může s nastaveńım vlaku experimentovat a
projet se po své dráze z pohledu prvńıho vagonu.

vi

Contents

1 Introduction 1

2 Roller coasters overview 2
2.1 Roller coaster types . 2
2.2 Roller coaster elements . 3

3 Existing editors and simulators 5
3.1 No Limits . 5
3.2 Roller Coaster Tycoon . 6
3.3 Roller Coaster Simulation - bachelor thesis by Jan Uher (2009) 8
3.4 Conclusion . 8

4 Analysis and design decisions 9
4.1 Roller coaster track description . 9

4.1.1 Shape . 9
4.1.2 Orientation . 12
4.1.3 Behavior . 15

4.2 Physics . 16
4.2.1 Gravitation force . 16
4.2.2 Frictional force . 16
4.2.3 Acceleration . 19
4.2.4 Speed . 19
4.2.5 G-force . 19

4.3 Editor . 20

5 Implementation 21
5.1 Implementation platform . 21
5.2 Application architecture . 21
5.3 Format . 22
5.4 Camera . 23

5.4.1 Camera modes . 23
5.5 Drawing . 26

5.5.1 Roller coaster style . 26
5.5.2 Rail . 27
5.5.3 Sleeper . 29
5.5.4 Supports . 30

vii

CONTENTS viii

5.5.5 Using the local frame of reference to create track geometry 31
5.5.6 Representation of vertices . 32
5.5.7 Level of detail . 33
5.5.8 The virtual world . 35

5.6 Train . 37
5.6.1 Car . 37
5.6.2 Putting the train on the track . 39
5.6.3 Train movement . 41

5.7 Editor . 43
5.7.1 User interface . 44
5.7.2 Editing tools . 48

6 Result 53

7 Conclusion 56
7.1 Future work . 56

Bibliography 57

A User manual 58
A.1 System requirements . 58
A.2 Installation instructions . 58
A.3 Controlling the application . 58

A.3.1 Menu navigation . 58
A.3.2 Controlling the editor . 58

B DVD Content 62

List of Figures

2.1 Loop . 3
2.2 Twist . 4
2.3 Zero-G roll . 4

3.1 Seglines length difference in No Limits LOD 6
3.2 Geometry difference in No Limits LOD . 6
3.3 LOD differences in RCT 3 . 7

4.1 Spline and segments . 10
4.2 Polynomial interpolation . 10
4.3 Bézier curve . 11
4.4 C1 and G2 continuity . 12
4.5 Possible orientations in loop . 13
4.6 Yaw, pitch and roll . 14
4.7 Computing the frame of reference . 14
4.8 Segment roll . 15
4.9 Local frame of reference . 15
4.10 Gravitation force acting on an object on an inclined plane 17
4.11 Normal force acting on an object on an inclined plane 18
4.12 Computation of g-force . 20

5.1 Application architecture . 22
5.2 Limititations of free camera mode . 24
5.3 On-ride camera computations . 25
5.4 Difference between orthographic and perspective projections 25
5.5 Saw - the ride . 26
5.6 Track sample . 27
5.7 Smooth and flat faces . 27
5.8 A detailed photo of Nemesis track . 28
5.9 Rail profile of Nemesis . 28
5.10 Smooth and flat faces . 29
5.11 A detailed view of sleepers . 29
5.12 Sleepers of Nemesis . 30
5.13 Distance of sleepers . 30
5.14 Adjusting pillar height . 31
5.15 Tilt of column base . 31

ix

LIST OF FIGURES x

5.16 Base tilt calculation . 32
5.17 Right (a) and left (b) handed coordinate systems 32
5.18 Simplifying the rail profile . 34
5.19 Algorithm dividing seglines into LODs . 34
5.20 Loop in three different LODs . 36
5.21 Skybox . 36
5.22 A car model placed on track profile . 38
5.23 Using bounding spheres to calculate model’s length. 39
5.24 A scheme of a train on a straight segment. 40
5.25 Problem of a train on a curved part of track. 40
5.26 Calculating the new frame of reference for a car 41
5.27 Properly put train on a curved part of track. 41
5.28 Spiral development of UI. 44
5.29 The mock-up of editor UI. 45
5.30 Schematic representation of a spline. 45
5.31 Bounding volumes . 47
5.32 Picking . 47
5.33 Up vectors snapping . 49
5.34 Adding new segment . 49
5.35 Attaching existing spline . 50
5.36 Converting to universal coordinates . 51
5.37 Preserving the continuity . 51

6.1 Photo of Blue Fire . 54
6.2 Edited Blue Fire . 54
6.3 On-ride screenshot from Blue Fire . 55
6.4 Blue Fire opened in editor . 55

A.1 The editor panel . 61

Chapter 1

Introduction

Roller coaster is one of the means for an active relaxation providing high level of adrenaline
and excitement. Theme parks around the world keep competing for the world records in the
height, speed or amount of inversions, trying to lure more and more customers who look
for an excitement. However, there are still very few parks that own these high level roller
coasters, because they are extremely expensive. Visiting such a theme park is quite difficultly
accessible experience for many people not just because of the price, but also because of the
distance – for example there is no big roller coaster in the Czech Republic at all.

With creating a virtual roller coaster ride we unfortunately cannot achieve the main thrill
it provides – the real feeling of sitting in the train and riding the coaster’s hills and loops
with its huge speed. We can, however, try to simulate the visual experience and compensate
the lack of movement with the ability to build any roller coaster according to the user’s
imagination including both its shape and appearance.

The goal of this thesis is to implement a roller coaster editor, where the user will be able to
create any desired track. It will provide all the necessary tools for editing any roller coaster,
support mechanisms like brakes or lifts, and allow the user to change the roller coaster style.
Afterwards he will be able to start its simulation based on a simplified physical model. The
user will be able to change the train’s appearance, and important physical quantities that
affect its movement. He will also be able to switch to the on-ride view.

In the following sections, we will make a short roller coasters overview (Section 2) and
look at the existing roller coaster editors and simulators and their abilities (Section 3). Then
in Section 4 we will analyze and find the solutions for the key problems we need to deal with
first. Section 5 will describe the implementation of the parts specific to this application. We
will look at the results of the final application in Section 6 and in Section 7 we conclude.

1

Chapter 2

Roller coasters overview

Roller coaster is an amusement ride developed for theme parks where it creates the biggest
attraction and sometimes even a symbol of the park itself. The biggest parks try to cover as
many roller coaster types as possible to provide the variety of shapes, colors, and levels of
excitement. In this Section we will focus on these roller coaster types and the elements they
usually contain.

2.1 Roller coaster types

There are many groups of types of roller coasters, which differ in their manufacturer,
the track style, materials they are made of, height and speed, elements that are usually
connected with it, and many other factors. Since it is impossible to just assign a fixed type
name to a roller coaster, we will rather cover the most common groups that are to be found
in Europe.

Classic sitting roller coaster This type of roller coaster is probably the most common
and the most ordinary type there is. It forms a circuit and the train’s energy is gathered
while it is being lifted up on the first initial hill. These are usually steel coasters, but wooden
ones also belong to this category. The elements they can contain depend on other factors –
classical steel coasters can contain nearly any element there is, while for example inversions
are very rare on wooden ones.

Shuttle roller coaster Shuttle coasters provide the car’s energy by launching them from
the station with a huge force, rather than lifting them first like the classic ones. These can
be either circular (these are also called launched coasters) or not (accelerator coasters) – the
train arrives at the station the same way it started after it loses energy during the ride.

Inverted and suspended roller coaster This is a type of roller coaster, where the
trains hang on the rails instead of being attached to it from the top. Unlike suspended roller
coasters, where the cars hang (and freely swing during the ride to the sides), inverted roller
coaster’s cars are tightly attached to the track. These types are not usually very high or
fast, but contain many inversions and are very interesting shape-wise.

2

CHAPTER 2. ROLLER COASTERS OVERVIEW 3

Bobsled roller coaster Bobsled coasters, as the name suggests, are derived from the track
design used for bobsleigh sports. The trains are not attached to the track at all. The track
has a half-pipe shape and the cars are very small (they usually carry up to two passengers).
These roller coasters cannot contain any inversions or even any vertical drops, as the ride
would become very unsafe.

2.2 Roller coaster elements

In this Section we will introduce the common elements to be found on roller coasters.
Each of them is specified with the effect they have on passenger, usually in the direction and
amount of g-force. Most of them are however just combination or modifications of the basic
ones. We will mention just a few of them.

Loop We can see loop in Figure 2.1. It is a very popular element with positive G’s all
along the track (if the train has enough speed).

Figure 2.1: A drop shaped loop.

Twist Twist (sometimes also called roll) is an element where the track gradually rotates
by 360◦. A heartline twist shown in Figure 2.2 keeps the passenger’s heart in the center of
the rotation, while an inline twist does not.

Zero-gravity roll Zero-gravity roll (also known as zero-G roll) is an element very similar
to twist, but with a hill (there is hardly any elevation at twist) in the middle where the train
is upside down. At the top of the hill the g-force is equal to zero, hence the name zero-g roll.
The element is shown in Figure 2.3.

CHAPTER 2. ROLLER COASTERS OVERVIEW 4

Figure 2.2: A heartline twist with a clockwise rotation.

Figure 2.3: A zero-G roll.

Chapter 3

Existing editors and simulators

After the search for existing roller coaster editors and simulators we find two main ap-
proaches: the first being a professional simulator with precise tools of editing and the second
is an integrated tool in a game with simplified controlling. These are represented by two
simulators: No Limits and Roller Coaster Tycoon. There are other applications, but mostly
outdated, no longer accessible, or they have very limited functionality. All of these are
omitted from this overview.

In studying these applications we focus mainly on the following fields:

• the principles of defining the track – how much freedom the editors provide and how
the track shape is defined,

• the drawing of the track, especially the methods used for reducing the number of
triangles in lower levels of detail,

• the platform and the cost of the product.

3.1 No Limits

No limits is a very professional roller coaster simulator that has been developed in years
2000-2007 in OpenGL by a team of programmers. The full version costs $29.95, the trial
demo version is for free but many features are disabled. For the research purpose we test
only this demo version.

The whole roller coaster track is defined by an editable spline consisting of segments –
in this case segment being a cubic Bézier curve. A roll is set in each point of this spline (i.e.
the ending point of one segment and starting point of another) – the editor allows the user
to use both relative and absolute roll and predefined steps or increments are available: 45◦,
10◦, 1◦ and 0◦.

Each segment is assigned a type – track, station, transport, lift or brake, each having
more custom settings. The editor allows saving and loading prefabricated pieces from custom
file format. It doesn’t check the coaster validation during editing at all but reports errors
and warnings when user starts a simulation (which is disabled in demo version).

5

CHAPTER 3. EXISTING EDITORS AND SIMULATORS 6

In the simulation the program displays a detailed roller coaster graphics. The physics is
very realistic and all the physical quantities such as speed, acceleration and G’s are displayed
during the ride.

The program provides two or more levels of details (the distance is adjustable in program
settings). A visible difference between these two levels is in drawing smaller amount of lines
(referred to as segline) in one segment (Fig. 3.1), the distance between sleepers, and fewer
details in track support geometry (Fig. 3.2).

(a) (b)

Figure 3.1: Differences between the distance of seglines in different LODs. b) shows one
LOD lower than a).

(a) (b)

Figure 3.2: Differences between the distance between sleepers and support geometry in
different LODs. b) shows the track from bigger distance than a).

3.2 Roller Coaster Tycoon

Roller Coaster Tycoon (RCT) is a PC game from Atari Interactive, Inc – a building
strategy where user builds his own theme park. RCT is a series of three games, but the
principle of designing a rollercoaster is the same in all of them, therefore I will be describing

CHAPTER 3. EXISTING EDITORS AND SIMULATORS 7

just the newest one (2004, this game is currently sold for $29.95 and a demo version is
available), which is unlike the previous two in 3D and allows the user to actually ride the
coaster from 1st person view. RCT is not oriented specially on building roller coasters but
still contains a quite advanced roller coaster editor. Unlike No Limits, this program is not a
professional tool but rather concentrates on enabling a design of a track as fast and as easily
as possible, which results in big restrictions in the freedom of editing.

The editor consists purely of putting predefined track pieces together (especially in RCT 3
there is a very wide range of them). The track is built continuously piece by piece without
the option to edit parts of the rollercoaster in the middle – the user has to delete all the
track pieces from the end to get back to a desired place.

The drawing of the roller coaster is rather simple – the geometry constructing the track
is very obvious even from close distance. There are at least three levels of detail (Fig. 3.3),
distance dependent on the game settings of computer performance. With increasing distance
the textures are replaced with a simple material, the segments are drawn with a smaller
number of seglines and in the end the distant track pieces even start to disappear leaving
only their shadow.

(a) (b)

(c)

Figure 3.3: The differences between various levels of detail in RCT 3. The distance of the
camera from the track gradually increases from a) to c).

CHAPTER 3. EXISTING EDITORS AND SIMULATORS 8

3.3 Roller Coaster Simulation - bachelor thesis by Jan Uher
(2009)

This program created in Java and OpenGL is a freeware and contains a very simple and
limited track editor and simulator. The editor is based on editing a 2D spline (3D vertices
in XY plane with the Z coordinate fixed to 0) from Catmull-Rom curves. The 2D limitation
prevents the roller coaster from having any turns at all, making it impossible to design any
realistic track. It also lacks the option of rolling the spline along its tangent.

The physical model lacks rolling resistance and the air resistance is simply subtracted
from the acceleration, which results in incorrect behavior in case the train should lose energy
and stop.

The geometry is drawn based on the parameter t of the curve, even in the case of sleepers
and support pillars. There is only one roller coaster style available. The application does
not support LOD.

This program is a good start but unfortunately too far from what we will aspire to achieve
because of its limited abilities and errors. We will omit it from the final conclusion.

3.4 Conclusion

No Limits and Roller Coaster tycoon offer us two different points of view on the way of
designing a roller coaster. No Limits gives us much more freedom, but it is also more difficult
to create a realistic track while in RCT it is rather easy but the possibilities are limited.

Both programs are for free only as demo versions, but offer high level roller coaster
editing tools in both approaches. They also support levels of detail to lower the performace
requirements.

Chapter 4

Analysis and design decisions

In this chapter we will analyze what is needed before we can start the actual imple-
mentation. In Section 4.1 we will talk about how to describe a roller coaster track and in
Section 4.2 we will discuss the physics and physical quantities connected with the train’s
movement.

4.1 Roller coaster track description

Before we can design the format itself, we first need to analyze what is actually required to
completely define a roller coaster track. In section 4.1.1 we focus on defining the overall shape
of the track. Section 4.1.2 then describes how to determine the orientation of the track, which
defines how a train is actually positioned in each point. Section 4.1.3 introduces individual
properties of track segments, e.g. brakes and lifts.

4.1.1 Shape

To describe a shape of a roller coaster, we will look at the track as if it was just a curved
line in 3D space and neglect all the other details which are not important for this step. We
will describe the whole track by a spline – a set of segments, each consisting of starting and
ending key point, which is shared by two adjacent segments (ending key point of one segment
is the starting key point of the following one) as shown in Figure 4.1. But we need to find a
way how to find the points between the key points. At this point, we need to meet several
conditions so that the shape of a roller coaster remains valid:

• Continuity: roller coaster track shape must not have any sharp edges so that the ride
is smooth and so that the train does not collide if the angle is too sharp.

• Intuitive behavior: we need to achieve as simple track shape editing as possible so that
the roller coaster editor is user friendly. This means that we have to find a way to
define the shape that a normal user can understand and work with, and assure that
the result of the changes the user makes in already defined shape will correspond to
what he would expect.

9

CHAPTER 4. ANALYSIS AND DESIGN DECISIONS 10

keypoint
segment

Figure 4.1: A spline consisting of segments and key points.

• Closed circuit: we want to be able to tell that the track is a closed circuit (as is usual
for the most of roller coasters in the world) while the option to leave it open is still
available (these roller coasters are called shuttle roller coasters – trains are usually
launched from a station with large speed and return the same way)

There are several ways to describe a curved line:

We can use a suitable polynomial interpolating function to find any vertex between two
adjacent key points. This option has many disadvantages: we either have to use linear
interpolation – it is simple and intuitive but creates a sharp edge at any key point that is not
in the middle of a straight line, therefore it does not meet our continuity requirement. Next
option is to use polynomial interpolation of higher degree (linear interpolation is actually
just a polynomial with degree of one) that takes into account more key points and defines a
polynomial that all these points lie in. However, this approach is not unambiguous because
we can always find more different polynomials that go through the same points (Fig. 4.2).

(a) (b) (c)

Figure 4.2: The same four points differently interpolated with polynomials. We can see
the ambiguity of polynomial interpolation. a) shows linear interpolation, b) one way of a
polynomial interpolation and c) another way of polynomial interpolation.

More suitable solution of our problem is a use of curves that have their own interpolating
function. There are many kinds of curves to choose from, we will look at Bézier curve. While
linear Bézier curve is nothing more than a straight line between two points, quadratic one
operates with an extra point that creates the curvature and cubic one adds yet one more
point to have more control over this curvature.

CHAPTER 4. ANALYSIS AND DESIGN DECISIONS 11

Cubic Bézier curve (Figure 4.3) is a parametric curve, which consists of two key points
and two auxiliary points, and the interpolating function has the following definition:

B(t) = (t− 1)3P0 + 3(t− t)2tP1 + 3(1− t)t2P2 + t3P3, t ∈ [0, 1] (4.1)

0 1

0.5

Figure 4.3: A Bézier curve with an example of finding the point at t=0 using de Casteljau
algorithm. [4]

We access the points inside with parameter t belonging to interval 〈0, 1〉. This parameter
is not uniformly distributed along the curve, the distribution depends on the position of
two auxiliary points. Further we will refer to a fixed step on the curve meaning a constant
multiplier of this parameter.

Cubic Bézier curve is commonly used in many graphics editing programs – may they be
bitmap, vector or 3D editors. Therefore, many computer users have already seen and used
it before. Even though they do not need to know how the interpolation works, they are
usually well aware of how these curves behave. For us, Bézier curve brings the advantage of
explicitness, simple implementation and optional continuity – it offers up to C1 continuity
depending on the position of two auxiliary points on two adjacent curves (Fig. 4.4). There is
parametric (C) and geometric (G) continuity, we will not discuss the principals of each but
rather mention the ones that are important for us. [4]

• C0 continuity – two auxiliary points belonging to one key point do not create a straight
line. It means that the segments are connected to each other in a knot (the key point
they are connected with).This results in sharp edges though, which we need to avoid.

• G1 continuity – two auxiliary points belonging to one key point create a straight line,
but the distance between first auxiliary point and key point and between the other
auxiliary point and key point is not the same. Two segments are connected in knot
and the tangent in the ending point of first segment equals the tangent of the starting
point of the next segment. Two curves connected with G1 continuity do not rapidly
change the direction in knot.

• C1 continuity – two auxiliary points belonging to one key point create a straight line,
and the distance between them and the knot is the same. It assures that the direction

CHAPTER 4. ANALYSIS AND DESIGN DECISIONS 12

does not change and neither does speed of a point moving on this spline with a constant
step.

C1

G1

Figure 4.4: The difference between G1 and C1 continuity.

For a valid track shape we only need the G1 continuity (since we will not be able to use
speed depending on parameter t anyway) but we will need to put a restriction on auxiliary
points editing so that it stays preserved.

4.1.2 Orientation

With defined shape of the track, we need to define the local frame of reference in each
point, which will determine the orientation of a train in that point. One axis of this frame
of reference is obviously the tangent of the spline. Therefore we only have to define the
frame’s up vector, which is, on a typical roller coaster, a direction where a passenger’s head
is pointing away from the track. On the same straight line the passenger can sit normally,
upside down or even rotate in any direction that is perpendicular to the track at that point.

Because we only have a curve in 3D space, we cannot easily determine the direction of
this up vector – it can be anywhere in the plane given by the current point of spline and
its tangent. Although there are algorithms that can determine the local frame of reference
based on the curvature of the spline, for example Frenet-Serret Frame [2], which poses two
major problems. First, it is not defined on straight segments, which are quite common to
roller coasters. Second, and more important, it does not behave intuitively. In a turn its
up vector points to the center of the turn. To see why this is undesired behavior, imagine a
simple turn parallel to the ground.

This problem has two phases. The first one is determining where the up vector points
solely from the track shape. We will demonstrate this problem on a loop (Fig. 4.5(a)): the
starting up vector points straight up and as the track goes upwards, it gradually rotates the
up vector and in the end we find ourselves completely upside down at the top peak of the
loop. Then in the second half the up vector returns to the original position. All this happens
just because of the shape.

While this may seem very obvious, let’s see another picture: exactly the same track shape,
but on this one the up vector rotates in the first half which results in up vector pointing
straight up (Fig. 4.5(b)). While this may be in some cases desired, we want to have full
control over such behavior.

CHAPTER 4. ANALYSIS AND DESIGN DECISIONS 13

(a) (b)

Figure 4.5: A loop shaped track with two different orientations.

First solution would seem to lie in defining a rotation of the original frame of reference
(being classical coordinate system) in each key point. We can define that by three angles
referred to as yaw, pitch and roll (Fig. 4.6) which however causes big problems with inter-
polation or gimbal locks. [1]

Next option is to define rotation with quaternions. They would remove the problems of
yaw, pitch, roll solution, but still are not suitable for our application since the knowledge of
frame of reference in key points give us no information about what the segment looks like in
between them and rotation interpolation would not give us correct results (for example loop
created from just one segment starting with the same frame of reference as it ends with –
interpolation would see it as a straight segment).

Since we cannot just get the up vector from the information of any point inside of the
curve, we need to use more information than given in just one point - we will iterate through
the curve. From given up vector at the start of the curve (straight up in our case) and the
shape of the curve we can calculate a new up vector using the previous one.

In each point we use the last up vector. Using a cross product of the last up vector and
tangent in the current point we calculate a binormal – a vector that is perpendicular to both
tangent and last up vector. Another cross product of tangent and this binormal will give
us our new up vector. Now the tangent, binormal and new tangent give us a new reference
frame – a coordinate system with the center being our specified vertex on spline (Fig. 4.7).

This approach has the obvious disadvantage of having to iterate to each point from the
complete start of the spline with explicitly defined up vector. If do not iterate with a step
small enough, we might skip some rapid changes in the spline shape and end up having
different up vector than we want. To make things faster, we will remember the last up
vector at each key point and we will prepare several points in each segment so that we lower
the time to get to our desired point.

At this point we still cannot describe all shapes that we want – for example a twist – a

CHAPTER 4. ANALYSIS AND DESIGN DECISIONS 14

yaw

pitch

roll

Figure 4.6: Yaw, pitch and roll demonstrated on axes of an airplane.

last up vector

new up vector

tangent

binormal

Figure 4.7: Computing the local frame of reference using last up vector.

common roller coaster element where the track is nearly straight line, but the train gradually
rotates by 360◦. This is where a user must explicitly specify a roll – an angle that tells us
how the up vector should rotate along its tangent (Figure 4.8). We will define roll at each
segment, positive roll meaning rotation clockwise and negative meaning rotation counter-
clockwise, so that we can define rotation in both directions. This number is very easily
interpolated – a simple linear interpolation of 0◦ (roll in starting point) and user defined
angle in ending point is what we need.

After rotating the up vector we need to recalculate the binormal in order to have correct
new frame of reference (Figure 4.9) – an another cross product of tangent and the new up
vector will return the desired binormal. We also have to make sure all the vectors of the
frame (up vector, binormal and tangent) are normalized (their length is equal to 1) .

Note that we always need to rotate the up vector the previous segment ends with, so we
always need to pass the up vector in the end point to the next segment. We can either save

CHAPTER 4. ANALYSIS AND DESIGN DECISIONS 15

45°

22.5°

67.5°

roll=90°

Figure 4.8: Roll and its interpolation applied on a segment.

the last rolled vector in each point and start with roll 0◦ in each segment or we can save the
last up vector yet before roll and pass just the value of roll that adds up in each segment
giving us the absolute roll value instead of relative one. Neither of these approaches has any
advantages or disadvantages, we choose the second one.

up vector

binormal

tangent

Figure 4.9: The resulting frame of reference shown on a real track.

4.1.3 Behavior

We can find many different mechanisms hidden in a roller coaster track, none of them less
important than the other. Every roller coaster has a station for trains to stop and passengers

CHAPTER 4. ANALYSIS AND DESIGN DECISIONS 16

to get in and out of the train. Many roller coasters use lift to get the train on top of the first
hill and gather enough energy for the whole ride. Shuttle coasters have very powerful boosts
to increase train’s speed on a horizontal track instead of pulling it up hill first by previously
mentioned lift.

We will define this on each segment separately in our simulator. Each segment will have
an assigned behavior type saying how it will affect the train’s speed. These types are a
normal track, a lift, a brake, a normal station, a shuttle station and a boost. The features of
these types combine – for example a normal station acts like a brake when train is entering
and as a lift after it reaches minimum speed. Shuttle station even combines brake, lift, and
a boost. Each of these types will have the parameters to set such as minimum speed (lift),
maximum speed (brake) or a force (boost). We will talk about this topic later when we
discuss how this influences the actual movement of the train.

4.2 Physics

In this Section we will talk about what influences the movement of the train. We will
discuss the important physical quantities in this area: gravity (Section 4.2.1), friction (Sec-
tion 4.2.2), accelerataion (Section 4.2.3), speed (Section 4.2.4), and g-force (Section 4.2.5).
[5]

Although we will mostly use quantities that are normally vector quantities, we can limit
them to scalar ones in our calculations. The roller coaster trains are very tightly attached
to its track from all sides (there are exceptions such as a bobsled roller coaster where trains
freely move in a pipe-shaped track, but our simulator does not cover these kinds of coasters)
and therefore it is the shape of the track which defines the direction. We will only be
interested in the value of these quantities, where positive value means it affects the train to
move forward (in the direction of tangent) and negative for the backwards direction.

4.2.1 Gravitation force

We will calculate the gravitation force acting on an object on an inclined plane, where
the inclined plane is the roller coaster track, as shown on Figure 4.10.

The force F is dependent on the object’s mass m, gravity g and the slope of the hill
defined by the tangent of the track at the specified point. The slope is characterized by the
angle α between the vector pointing down and the tangent. The final force is then:

F = Fg · cosα (4.2)

This means that if the tangent is parallel to the ground, the gravitation does not affect
the object at all while if the tangent is perpendicular to the Earth’s surface, it affects the
object with its full impact.

4.2.2 Frictional force

Friction is the force acting against the movement of the object. This is the force that
causes the roller coaster train to gradually lose its energy during the ride and eventually

CHAPTER 4. ANALYSIS AND DESIGN DECISIONS 17

Fg = mg

tangent

F = Fg cos a

a

Figure 4.10: Gravitation force acting on an object on an inclined plane.

stops it completely. Although the friction can be significantly minimized, we can never avoid
it completely. We will include the air resistance and the rolling resistance.

Rolling resistance

Rolling resistance is a special type of friction affecting a rolling wheel along a surface.
This resistance is much smaller than normal friction (which is the reason for inventing the
wheel). It can be calculated as

F = Fn ·
b

r
(4.3)

where F is the rolling resistance, Fn is the normal force, b is the rolling resistance coeffi-
cient and r is the wheel radius.

The rolling resistance coefficient is a dimensionless scalar value, which describes how the
two objects (the surface and the wheel) affect the resistance. It mainly depends on the
materials the two objects are made. For example a steel wheel on an ice plane has a very
small coefficient while a rubber wheel on a rough asphalt terrain has a high one.

The wheel radius value tells us that larger wheel will be affected by the friction less than
a small one.

Normal force is the force perpendicular to the surface (plane defined by tangent and
binormal in our case) and is the force that prevents the object from falling through. The
scheme can be seen on Figure 4.11.

Normal force Fn is computed the same way as gravitation force in Section 4.2.1, but this
time the angle α is the angle between the up vector and the vector pointing straight down.

Fn = mg · cosα (4.4)

CHAPTER 4. ANALYSIS AND DESIGN DECISIONS 18

Fg = mg

tangent

a

Fn = mg cos a

Figure 4.11: Normal force acting on an object on an inclined plane.

The fact that we need to take into account is that the roller coaster cars do not only have
wheels on top of the rails. In order to attach the car tightly to the rails in all the loops and
banked turns, they also have wheels from the sides and from the bottom. Therefore we need
to add another friction force that affects the binormal direction – the same formula with the
angle α being the angle between binormal the vector pointing straight down. Without this
friction a track rolled by 90◦ to either side from a normal state (up vector pointing straight
up) would have no force friction affecting it at all.

Because there are always side wheels from two sides of the rails and they point in the
opposite direction, we only need to calculate the force ones. The same goes for the wheels
touching the rail from the top and from the bottom. The resulting rolling resistance will
then be:

F = Fu · w + Fs · (
w

2
) (4.5)

where F is the rolling resistance, Fu resistance acting on the wheels on top/bottom, Fs

resistance acting on the wheels from sides and w the number of sets (set of wheels being the
three wheels from top, side and bottom) per a roller coaster car.

Air resistance

Air resistance is the force caused by friction of an object and the environment - in our case
the air. The calculations are quite difficult and its size depends mainly on the environment.
It is significant mainly in thick fluids, and the effect of the friction of air and our train is
quite negligible. We will therefore not include air resistance in the calculations.

CHAPTER 4. ANALYSIS AND DESIGN DECISIONS 19

4.2.3 Acceleration

Acceleration is a vector quantity specifying the change of velocity over time. The accel-
eration a of an object positioned on the track is calculated as the sum of all the forces F
acting on it divided by its mass m:

a =
F

m
(4.6)

In our case these forces are gravitation force described in Section 4.2.1 and friction force
calculated in Section 4.2.2. Our trains can have multiple cars, each is affected by the forces
on its own but the result affects the whole train. For example, the first car of the train which
would weight a hundred times as much the others would affect the train’s movement much
more than any of the other lighter cars. We then need to add all the forces acting on each
of the car first and then divide it by the total weight of the whole train.

4.2.4 Speed

The train speed can be computed from its current acceleration. We will use Euler method
[3] which is the simplest numeric procedure for solving ordinary differential equations (there
are higher-order methods such as Runge-Kutta methods for more accurate results). Although
it is accurate only for constant acceleration, it is still sufficient, even if our acceleration
changes. After putting our quantities in the formula, we get:

v(t0 + ∆t) = v(t0) + ∆t · a(t0) (4.7)

where v(t0) is the speed of the train in time t0, ∆t is the time elapsed and a(t0) is the
acceleration at time t0. The new train position can be then calculated as:

p(t0 + ∆t) = p(t0) + ∆t · v(t0) (4.8)

where p(t0) is the position of the train in time t0, ∆t is the time elapsed and v(t0) is the
speed of the train at time t0.

4.2.5 G-force

G-force is a measure of acceleration. It is the quantity that is responsible for the thrilling
factor of a roller coaster. It is measured in Gs, where G is the size of Earth’s gravity.
While g-force can have any direction, in a roller coaster case we are usually interested in the
vertical direction that either pushes the passengers into their seats (positive Gs) or out of
them (negative Gs). For example, the g-force of 1 G affects a stationary object resting on
Earth’s surface, because the normal force of the surface pushes it from the bottom with the
same acceleration that gravity pushes it down, which is 1 G.

When computing the direction (visualization on Figure 4.12), we have to, unlike with the
movement on the spline, manipulate with vector quantities. The G-force can be calculated
from two vectors of velocity in time t0 and t0 + t. From these two and the time t that elapsed
between them we can calculate the acceleration as

CHAPTER 4. ANALYSIS AND DESIGN DECISIONS 20

~a =
~v(t0)− ~v(t0 + ∆t

∆t
(4.9)

By adding the gravity ~g (with vector pointing down) we get the vector ~a′. Then to get
the value of the g-force GF in vertical direction we compute a dot product of ~a′ and negated
up vector at the current point of the spline. To convert it to G units, we divide it by the
value of gravity g (9.81 m/s2 on the Earth):

FG =
(~a+ ~g) · (− ~up)

g
(4.10)

v (t0+t)

a

v (t0)

g

-up

a’ . (-up)
a’

Figure 4.12: The computation of g-force on top of a hill.

4.3 Editor

One part of the application is a roller coaster editor. It is practically the only part where
the user interface requires a special attention. It will be discussed in Section 5.7.1. It is
however based on the analysis of the functionality requirements:

• Editing roller coaster’s shape by editing the segments. This includes adding, removing
segments and finishing and reopening the circuit.

• Attaching other coaster files, enabling to add prefabricated track pieces.

• Adjusting the segments’ options – the roll, behavior types and their settings.

• Setting the spline information such as the style or train position.

• Adding, removing and positioning the support pillars.

• Saving and loading saved roller coaster.

• The availability of preview and shortcut to displaying the roller coaster in simulator.

Chapter 5

Implementation

5.1 Implementation platform

Our application is using Microsoft XNA Framework 3.1 1. XNA is a framework based on
DirectX (9.0c in the case of XNA 3.1) and is created for game developers. Its libraries offer
wide variety of useful functions in many areas; we especially use the game loop and tools for
manipulating with vectors, matrices and other structures necessary in computer graphics.

The programming language is C#, which has been chosen mainly by the determined
XNA framework. It is an object oriented language with syntax based on C++, stripped
from the low-level programming features such as working with pointers (although the option
is still available in unsafe mode) and the necessity to manually allocate or deallocate the
memory (it has a garbage collector). The whole project has been created in the Microsoft
Visual Studio 2008 IDE.

For implementing the user interface (UI) we use Windows Forms library 2. It offers all the
basic UI elements we need in our application and poses the least problems with integration
into XNA framework (the other options is for example WPF 3. The only problem is the
problematic keyboard input. We avoid it by using UI elements that do not require keyboard
input.

5.2 Application architecture

Figure 5.1 shows a simplified class diagram of application’s classes. Only the main classes
and the most important associations are displayed.

The application uses game state management [10], which consists of a screen manager
and game screens. They take care of separate parts of the program (simulator and editor in
our case), and the transitions between them.

Class Spline represents the roller coaster. The principals and methods of describing the
roller coaster track are described in Section 4.1. SplineLoader loads and saves the created

1 Microsoft XNA Framework 3.1 can be downloaded at http://www.xna.com/.
2 Official documentation available on http://msdn.microsoft.com/en-

us/library/dd30h2yb%28v=VS.80%29.aspx.
3Windows Presentation Foundation, a graphical system for rendering UI in Windows-based applications

21

CHAPTER 5. IMPLEMENTATION 22

Figure 5.1: A simplified class diagram of the applications. Simple line represents composition;
a lite with an arrow represents inheritance.

roller coasters to hard disk and its implementation is covered in Section 5.3. Class Train and
Physics represent the roller coaster’s train and its movement (Section 5.6). Spline drawer is
responsible for drawing the geometry of spline in different ways including LOD (Section 5.5).

5.3 Format

In this Section we will discuss how to save the roller coaster data on hard disk and load
them back into our application. The information necessary to describe a roller coaster are
listed in Section 4.1.

The roller coaster is saved in a text file. Many applications (especially games) rather use
binary file so that a common user cannot easily edit their content. This is usually desired
in cases like game character abilities or game state advance and their direct editing would
be considered as cheating. However, this is not our case since there is nothing to gain by
bypassing the application. The first lines of our file contain the roller coaster information:
the name, the information whether it is closed, initial train position and the name of style
to be drawn. We also include the starting up vector here since we define that just once. The
following example shows what the first lines of the text file might look like:

CHAPTER 5. IMPLEMENTATION 23

<roller coaster name>

<’closed’ | ’’>

upVector <up vector coordinates>

initialTrainPosition <initial train position>

rollerCoasterStyle <style name>

Then the list of segments follows. Since the segments do not necessarily need to be Bézier
curve, we need to specify its type. But the application currently supports only Bézier curves,
so we will concentrate only on their implementation. They are defined by starting point,
ending point and two auxiliary points. The last number is the roll of the segment in degrees.
These values are separated by a space.

seg <type>

<start> <first auxiliary point> <end> <second auxiliary point> <roll>

The third row of a segment definition is segment implementation independent. It gives
information about its geometry to draw and behavior type. The setting of behavior is written
right after and is dependent on the type selected – the values not used at the specific type
are skipped:

<draw> <behavior> <friction coef.> <max speed> <min speed> <force>

The final line defining segment contains the information about the support pillar position:

support <’none’ | support location>

5.4 Camera

In this section we will discuss the implementation of our camera. We will not cover all
the basics of implementing the first person camera [9], but rather concentrate on the special
features or problems.

Our camera is defined by 3D coordinates representing position and a rotation defining
which direction it looks. For the rotations we use the yaw-pitch-roll approach, which is
described in Section 4.1 and marked as unsuitable because of the problems with interpolation
and gimbal lock. We will look at these problems and explain why we do not mind them in
implementing camera while they were an obstacle in defining the track’s orientation.

First, we do not interpolate anything. For the camera movement we only change the
values of the angles and use them to calculate camera settings directly. Second, we avoid
gimbal lock by limiting the absolute value of pitch to 80◦ or using our prepared local frame
of reference at the specified position, where the perpendicularity of the tree directions is
already ensured.

5.4.1 Camera modes

We want our application to offer several possible kinds of views of the world. They are
all first person cameras, but differ their control, features, limitations, and hence also the
implementation.

CHAPTER 5. IMPLEMENTATION 24

Free mode

Free mode is the state of camera, when it is almost freely controllable by the user and
creates the impression of flying around the world. The direction of looking is controlled by
moving the mouse, and keys W, A, S, D, Q and E change the position in different ways
depending on the direction the user is looking at that moment.

This camera mode has two limitations (Figure 5.3). As mentioned above, the pitch
angle is limited to the interval <-80◦,80◦>. Except for the method to avoid the gimbal lock
problem, this is quite usual feature in many computer games or other applications with first
person camera. It is very unnatural and confusing for the user to be able to rotate the
camera all the way up and beyond the pitch of 90◦ resulting in being upside down.

The other limitation is the surface level. The limit is defined by the surface level plus
avatar’s height. This results in better control of walking, since the negative Y coordinate
change of camera position is no longer applied once it reaches its minimum.

avatar’s height

pitch limit

surface level

position limit

Figure 5.2: The limititations of free camera mode.

Free mode camera uses perspective projection, which means that the objects that are
further away from the camera seem to be smaller. This projection emulates how a human
sees the world with his eyes, hence is quite obvious choice for this camera mode.

On-ride mode

This mode represents the view of the passenger sitting in the train’s first car. It is defined
by the local frame of reference in the car’s position instead of yaw and pitch angles, where
the camera’s position is offset in the up vector direction. This causes that the camera is not
right on the track or inside the car’s geometry, but is positioned rather where the passenger’s
head would approximately be.

CHAPTER 5. IMPLEMENTATION 25

All the camera controls are locked in this mode. The position changes with train position.
The point the camera looks at is not simply defined by the tangent of the frame of reference,
because the passenger’s view and hence the ride experience would became dull at some
places. For example on the top of hills or inside the loops, he would either see just a sky
or the track’s geometry instead what lies ahead of him on the ride. For this purpose, we
calculate this point as the point of the spline that is 5 meters ahead from the position the
camera is currently at (Figure 5.3).

A

Bcamera position

tangent

up vector

view direction

Figure 5.3: Calculating the view direction as the vector between car’s position (A) and the
point of the spline (B), where |AB|=5 meters.

Orthographic modes

Orthographic projection is the other kind of projection next to the perspective one (Fig-
ure 5.4). As the names suggest, perspective does not apply here. All the objects have the
dimensions according to their size no matter how far away they are from the camera. This
is used for technical purposes where we need to see the dimensions undistorted. In our case,
they are used in the editor in top, front and side camera modes. We do not allow turning
the camera in these modes.

(a) (b)

Figure 5.4: The same cube displayed with two different projections. a) ortographic projec-
tion, b) perspective projection.

CHAPTER 5. IMPLEMENTATION 26

Since the orthographic projection is set by the width and height of the view frustum,
which is a box, the area we see is the same no matter how far away they are. Therefore we
need to implement a zoom, which is simply changing the coordinate in which direction we
are looking at the world (in the Y axis direction in the top mode, in the Z axis direction in
the front mode and in the X axis direction in the side mode).

The change of zoom is based on changing the width and height of the view frustum
depending on the position’s coordinate corresponding to the current camera mode. If we
are decreasing this coordinate, we zoom in by decreasing the width of the frustum, while
increasing it does exactly the opposite. In these camera modes we also multiply the step
length by a fitting constant, because the speed of zooming in and out would be too small.

5.5 Drawing

In this section we will discuss ways how to describe a roller coaster style, divide its parts
into definable elements, have a look at how to render them in our simulator and try to reduce
the computing time used for drawing using levels of detail. In the last section we will see
how to place our roller coaster in the virtual world.

5.5.1 Roller coaster style

Some roller coaster designs are quite common and used all over the world, some less and
some are modified to match the specific coaster’s theme (for example see Figure 5.5). We
want to be able to define them so that our roller coasters look like they do in reality.

Figure 5.5: Saw - the ride, a horror themed roller coaster in Thorpe park, UK.

We can divide a typical roller coaster style into three main parts: rails, sleepers and
supports (Figure 5.6). Each of them follows different rules and needs its own special algorithm

CHAPTER 5. IMPLEMENTATION 27

to be placed and drawn correctly. When we define these, we can describe most of the common
roller coaster designs. We will call the set describing rail, sleeper and support looks a roller
coaster style.

rail 1

rail 2

rail 3

sleeper 1

sleeper 2

Figure 5.6: A part of track created from 3 kinds of rails and 2 kinds of sleepers.

The requirements for every style are given by abstract class CoasterStyle. Every specific
style must inherit from this class and therefore define all the information needed for drawing.
We will look at each of these requirements further.

5.5.2 Rail

The first element of a roller coaster track we are describing is a profile that keeps repeating
itself along the whole spline. We will refer to this as a rail. The profile is defined by a set of
2D points that describe its shape and a set of normals for the lighting model.

If we want flat faces and perceived edges instead of smooth ones, we need to define each
vertex twice with two different normals so that our normal vectors do not automatically
interpolate where we do not want them to (Figure 5.7).

(a) (b)

Figure 5.7: The same rail from 6-edged profile, but differently defined. a) rail defined by 6
vertices and 6 normals results in smooth edges, b) 12 vertices, 12 normals, flat faces

To avoid the necessity of explicitly defining which points belong to which rail, we will
pass each shape separately (as shown in Figure 5.6 with three separate rails, although they
could be described by just one profile). As we can see on Figure 5.8, the rails’ shape can
be described by two circles and a rectangle for the big supporting rail. To create the rail,

CHAPTER 5. IMPLEMENTATION 28

we extrude this profile – we copy it along the spline in predefined distances and each two
consecutive profile copies define a set of quads, thus creating the track shape (Figure 5.9).

Figure 5.8: A detail of track profile of Nemesis - an inverted roller coaster in Thorpe park,
UK.

(a) (b)

Figure 5.9: The rail profile of Nemesis - a) the basic 2D profile, b) the extruded profile
creating a 3D geometry.

Since we can never draw a perfectly smooth rail – the basic geometry we can draw is
a triangle which is flat – we have to divide a segment into smaller parts – seglines. These
seglines are straight, but if they are short enough, it is hardly noticeable. However, the
more seglines there are in one segment, the higher amount of vertices and more computer
performance is required, so we need to find a suitable balance between good looking rails
and computing demand.

At this point we will use the feature of Bézier curves, where the points given by constant
step of parameter t are not equally distant from each other, to our advantage. As we can
notice on Figure 5.10, the point density tends to be higher in the part where the curvature
is steeper, which is exactly what we need – to draw shorter seglines where the turns are
sharper, while straighter parts of segment can be drawn with just a few. This means that
we will use just a constant step of t to determine where the seglines will be.

CHAPTER 5. IMPLEMENTATION 29

0

t

0.5t

(a)

0

t

0.5t

(b)

Figure 5.10: The same Bézier curve with highlighted points at each 1/8t. a) curve is drawn
with many seglines, which makes it look smooth, b) curve is drawn with just 8 seglines.

5.5.3 Sleeper

The second element is a sleeper, which also repeats itself along the spline, but this time
there is no extrusion. A sleeper cannot be defined as easily as rails because their geometry
can be very variable (as shown in Figure 5.11). Therefore, we have to define the whole sleeper
geometry as a set of 3D vertices, their normal vectors and indices that determine where the
triangles are drawn.

Figure 5.11: This coaster style consists of 6 different types of sleepers: three that are per-
pendicular to track’s direction, and other three that create diagonals of the three rectangles
in between.

Another difference between a sleeper and a rail is that we cannot use the constant step
of t anymore, but we have to repeat the geometry in a fixed Euclidean distance along the
spline instead. For details on obtaining this distance see Section 5.6.3. The distance between
sleepers will be explicitly defined by the user, which can be used to define more complicated
sleeper patterns as shown in Figure 5.12.

Also, sleeper position needs to be determined globally on the whole spline instead of
separate segments because the sleeper geometry and the gaps between them can overlap into
the following segments (Figure 5.13).

CHAPTER 5. IMPLEMENTATION 30

(a) (b) (c)

Figure 5.12: The sleepers defined to create the inverted style of Nemesis. a) shows a basic
sleeper that repeats every 1 meter, b) shows another that repeats every 5 meters, c) shows
the result of the combination of previous two on every 5 meters of track.

(a) (b)

Figure 5.13: The same spline made of 4 segments (dots represent the key points). a) shows
the result of sleepers defined per segment (notice the irregular gaps), b) shows sleepers defined
per spline.

5.5.4 Supports

Each segment can have one support pillar where its position is defined in parameter t.
The pillar’s position will be determined by the track designer in our roller coaster editor.

We, for the sake of simplicity, limit supports to a cylinder. A user needs to define the
pillars’ radius, and the height that should be added to each pillar. This last information
is included because the profile of the track or the sleepers can reach below or above zero
Y-coordinate and we want the pillar to fit with the rest of track geometry (Figure 5.14).

Because the pillars can be placed at any position of the segment, we need to deal with
the parts where the track is not horizontal – the pillar geometry can undesirably intersect
the track’s geometry as seen on Figure 5.15.

To tilt the top base of the pillar, we need to know the height of each vertex creating the
top base of the cylinder. We first calculate the angle α between tangent in the point where
it should be drawn and its projection into plane XZ – vector ~B. Then using dot product of
~A and ~B, we get the distance of the actual vertex of the base from its center in a tangent
direction. At this point we have a right-angled triangle, we know one angle and the length
of one cathetus and we can easily calculate the desired height Y of our vertex by using the
tangent function. The draft can be seen on Figure 5.16.

CHAPTER 5. IMPLEMENTATION 31

-hx

y

0 x

y

0

Figure 5.14: The same track profile, on the left with no pillar height adjusting, on the right
with the height adjusted by the value of -h.

(a) (b)

Figure 5.15: A support pillar without (a) and with (b) tilted base depending on the track’s
slope.

Although the pillars look much better now, it still will not fit the track if the up vector has
negative Y coordinate (train is upside down) or if the roller coaster is suspended – in these
cases they will intersects the train’s path. Proper placement of the supports is delegated to
the user.

5.5.5 Using the local frame of reference to create track geometry

While creating the vertices to draw the supports uses its own algorithm, rails and sleepers
first need to be transformed to match the spline’s shape. We already know the local frame of
reference at any point of the spline and we need to convert both the rail’s profile and sleeper’s
geometry into its coordinate system. For this purpose, we can say that the X axis of the
classic coordinate system corresponds to binormal of the frame, Y axis to the up vector and
Z axis to the negated tangent (DirectX uses left-handed coordinate system while the frame
of reference is right-handed, which means that the Z axis points in opposite direction, see
Figure 5.17).

To transform vertex coordinates (and their normals) into our frame of reference, we mul-

CHAPTER 5. IMPLEMENTATION 32

Figure 5.16: A draft of top base of pillar and calculations used to get the height Y of the
point A of the base.

up vector

binormal

x

y

z

tangent

(a)

up vector

- binormal

x

y

z

tangent

(b)

Figure 5.17: The difference between right and left handed coordinate system.

tiply each coordinate (X, Y, and 0 for profile, X, Y, and Z for sleeper) by the corresponding
axis and get the result by adding all of these products. We can actually write these trans-
formations as a single transformation matrix where the frame’s vectors create its first three
columns:

x′

y′

z′

1

 =

binormal.x upvector.x −tangent.x 0
binormal.y upvector.y −tangent.y 0
binormal.z upvector.z −tangent.z 0

0 0 0 1

 ·

x
y
z
1

 (5.1)

5.5.6 Representation of vertices

We are going to save all final vertices in vertex buffers and indices in index buffers. For
rails, we will use one vertex and index array per segment, while for sleepers we use just one

CHAPTER 5. IMPLEMENTATION 33

buffer for the whole spline. These buffers are classes that send their data to graphics card
where they are saved in card’s local memory. If we did not use them, our program would
send the data to graphics card in each frame, which would slow the application down. To
use these vertices for drawing polygons, we define the first index in the index buffer, type of
polygon (usually triangle) and number of these polygons to draw.

5.5.7 Level of detail

Level of detail (LOD) is a widely used method to decrease the complexity of drawn
geometry and increase the efficiency of rendering. It is based on the fact that a high amount
of details is not necessary on geometry that is far away from our camera (but there are also
other approaches such as the importance of the object or speed the camera is moving with)
and their removing will be completely unnoticed by the user. We can reduce the details by
for example simplifying or removing the texture or drawing geometry with smaller amount
of polygons [7].

There are two kinds of algorithms to determine the LOD: discrete LOD, which defines
a finite amount of levels and the distance thresholds between them. All the objects in one
region then belong to one LOD and every object has explicitly given representation for each
of these levels. Then there is continuous LOD, which creates a continuous spectrum of
details.

Level of detail in the Simulator

In our roller coaster simulator we will use a discrete LOD algorithm. We will focus on the
parts of geometry that create the most polygons – geometry of rails and sleepers. When the
spline is loaded we compute all the vertices and their normals at all available levels for the
whole track. Based on the LOD, we determine what vertices should be drawn. Then with
a change of conditions that the LOD determining is based on we just update what parts of
what vertex buffers will be drawn. This is defined by starting index in index array and the
number of polygons drawn, as described in Section 5.5.6. These values are changed when
the LOD is recomputed.

The LOD of each point depends on its distance from the camera position. We will
explicitly set a distance where the last and the least detailed LOD starts and divide the
space in between equally to all the other available LODs.

The amount of LOD’s will depend purely on the capabilities of defined roller coaster style
and so will the representation of drawn geometry. We will further refer to the levels with
more detailed representation as high LODs and the ones with more simple representation as
low LODs.

Rails

The LOD of rails is determined per segline, because a segment can be long enough to
belong to more LODs at once (imagine a very long straight segment starting at camera
position), possibly even returning to a previously used LOD. Of course, segline also possess
this risk, but the chance of it being so long is much smaller than with the whole segment.

CHAPTER 5. IMPLEMENTATION 34

We have two ways to reduce details of drawn rails. First, we decrease the number of
edges in their profile we can see an example on Figure 5.18. Here we start with a circle made
of 24 edges and gradually reduces it to a square.

(a) (b) (c) (d)

Figure 5.18: An example what removing details at rail profile might look like - the number
of edges creating the profile gradually decrease from 24 to just 4.

Second, we reduce the number of seglines that a segment is drawn with. At this point we
need to be careful to set this number so that the rails always connect to each other and do
not create any unwanted gaps. The number of steps in higher LOD must be divisible by the
number of steps in a LOD one lower so that the points where geometry switches eventually
meet. On Figure 5.19 the higher LOD has eight steps while the other has just four. At point
three, the level changes from 0 to 1 (the level is determined by the distance between camera
position and the segline’s starting point), but since the point 3 is missing on the lower LOD,
we have to continue drawing level 0 until we can switch, which is at point 4. When switching
back to the higher LOD again we do not need to check this restriction, it is ensured by the
rule for the number of seglines.

0

1

2

3 4

5

6

7

8 0

2

4

6

8

level 0

level 1

camera

Figure 5.19: An example of dividing seglines into two LODs. Double line represents that the
segline is drawn in the particular LOD.

CHAPTER 5. IMPLEMENTATION 35

LOD 0 LOD 1 LOD 2

Number of rail types 3 3 3

Number of linesegs per segment 16 8 4

Number of sleeper types 6 3 3

Distance between sleepers (in meters) 1 2 4

Number of sleepers per 40 m segment 20 10 5

Total rail triangles 3840 960 240

Total sleeper triangles 960 240 120

Total triangles 4800 1200 360

Ratio 1 0.25 0.075

Table 5.1: The number of triangles in three different LODs on a sample roller coaster style.

Sleepers

Except for obvious geometry details reduction as used at rails we can save computing time
by increasing the distance between sleepers. Unlike the number of rail seglines, this distance
does not need to follow any rules. Although it is recommended to set the distance in higher
LOD also as multiples of distance in lower LOD so that the change when crossing level’s
boundary is not aggressive. For example, with a step of 2 m and 4.1 m and LOD changing
after 2nd sleeper – the distance between last sleeper of higher LOD and first sleeper of lower
LOD would be just 0.1 m. We can of course set that at certain LOD the sleepers will not be
drawn at all.

When loading the spline, all sleepers of all LODs are saved in a single list and sorted by
their distance from the start of the segment. Then they are looped through and just the
sleepers belonging to the LOD we currently are in are drawn.

Result

The table 5.1 shows how drawing parts of track in different LODs affect the amount of
drawn triangles. As a sample we use 20 meters long segment and a triangular steel roller
coaster style with three available LODs. We use all of the methods mentioned above (except
for sleepers’ geometry, which is the same block with 4 sides in all levels) to reduce the details
of drawn segment. As we can see, we managed to reduce the amount of rendered polygons to
a 25% in LOD1 and 7.7% in LOD2. The result of these modifications is shown on Figure 5.20
on a loop.

5.5.8 The virtual world

No roller coaster can exist in an empty space – it needs to have a ground to be put on
and the environment around so that the passenger’s ride experience is better and he does not
get disoriented while going through inversions. To create the virtual world, we will render a
skybox and compute how to place the roller coaster in it correctly.

CHAPTER 5. IMPLEMENTATION 36

(a) (b) (c)

Figure 5.20: The same loop rendered in three different LODs.

Skybox

As shown on Figure 5.21, skybox is a block surrounding all the objects in scene. In our
case the only object to display is the roller coaster (we will neglect the train because its size
is negligible at this moment). All 8 sides of skybox are textured by very large images that
fit with each other and together create the impression of having a real world around us.

Figure 5.21: A roller coaster surrounded by a wireframe of skybox.

However the roller coaster spline can be placed anywhere in the world coordinates and
be bigger than our skybox, therefore we need to place the spline correctly and adjust the
skybox’s size so that it fits in.

First we have to move the spline to the center of our world. For that we need a vector
determining which direction and how far to offset each of the spline key points. We find it by
finding maximum and minimum coordinates in every direction while iterating through the
spline. The offset vector’s X and Z coordinates are then an arithmetic mean of the minimum
and maximum values in X and Z axis direction. We are interested in the Y axis direction
separately because we do not want the roller coaster to get below surface level – Y coordinate

CHAPTER 5. IMPLEMENTATION 37

of the offset vector is computed as the difference between surface height and minimum Y
coordinate of the spline.

To determine the skybox size we need the overall roller coaster’s width, depth and height.
We easily compute those from our prepared minimum and maximum spline coordinates. The
skybox width and depth are equal so that the textures on the sides have the same sides’ length
ratio; therefore our desired horizontal size of the block is the maximum of roller coaster width
and depth, multiplied by 2 because we want some free space around it. The height of the
skybox is simply the maximum of the height of the roller coaster with addition of 10 meters
for the same reason as before and predefined minimum height of our virtual world.

Of course if we want to display a roller coaster with absurdly large height and small
horizontal size, the skybox textures will be badly deformed. But no such roller coaster
exists and there is quite big margin in our resulting skybox dimensions (width and depth are
multiplied by 2 while the height is just increased by a constant).

5.6 Train

Circuit roller coasters normally have several trains on ride at a time, depending on the
track’s and station’s length. Shuttle coasters have just one for obvious reasons. In our
simulator we have just one train since we do not need to maximize the coaster’s capacity.

The trains differ a lot depending on the coaster’s style and the cars that fit it. There
are coasters with just one car creating the whole vehicle or even 10 cars, where each car can
carry from 1 usually up to 8 passengers (but there are rare exceptions with even more seats).
Basically it is the number and type of cars that specify what the train overall looks like.

5.6.1 Car

We need to specify several things at each car: its appearance, weight and length. While
weight is important just for the purpose of computing the physics, appearance and length
are what is needed for proper drawing of the whole train. We implement several options for
each.

In simulator we are able to edit the train. We can have up to 5 cars, remove them, change
their appearance and change their weight.

Appearance

We have two possible ways of defining the appearance of a single car. The first one is by
a classical vertex buffer and index buffer as described in Section 5.5.6. But we have to insert
all the vertices and indexes manually and therefore it is very hard to create any detailed
good looking car.

The second option is inserting a model. In XNA we can load only models with extension
.X and .FBX. FBX exporters are quite common in modeling software and we can download
the convertor to the other format 4.

4We used kW X-port downloadable at http://www.kwxport.org/ - a free plug-in for various versions of
Autodesk 3ds Max

CHAPTER 5. IMPLEMENTATION 38

To place either manually created model or loaded model into our application properly,
there are several requirements that must be met: the front side of the car must be aligned
with the X axis and the front view (in direction of Z axis) must fit well on the track profile
it is supposed to ride on (Figure 5.22). Since it is not always possible (or easy at least) to
save model and load it so that its position stays as we defined it, we can define the necessary
transformations while creating a new cart right in the program. These are translation, scale
and rotation along Y axis, performed in this order.

x

y

z

length

Figure 5.22: A properly placed car model.

Length

By length we mean the difference between minimum and maximum Z coordinate of all
the vertices car is made of (Figure 5.22). We need this information to be able to compute
the position of each car in a train, which is discussed further in Section 5.6.2.

The situation is far simpler with manually edited vertices. The length is easily found by
looping through all the vertices, finding the minimum and maximum Z coordinate and sub-
tracting them. It is more complicated with loaded models though because of the differences
between the formats and modeling software.The problems lie mainly in swapped axes (for
example Autodesk 3ds Max has Z axis pointing up by default) or automatically adjusting
the model’s size when exporting.

For getting the length of a model we could make use of the method to get a bounding
sphere of a given mesh that is available in XNA. Bounding spheres are very simply represented
– by a vertex representing its center and a number representing its radius. However, this will
result in just an approximate length. The sphere must contain all the vertices in the mesh’s
vertex array and as we can see on Figure 5.23, its diameter is actually bigger than the real
model’s length. While this difference might be negligible at some models, we will rather not
use this option.

The way to compute the exact length of the model is by accessing its vertices directly
[11]. First we need to get bone transforms of the model. For example, when exporting model

CHAPTER 5. IMPLEMENTATION 39

real length

computed length

Figure 5.23: A top view of a roller coaster car and edges of the bounding spheres covering
model’s meshes.

from 3ds Max into FBX, this is the transformation that swaps axes and scales the model.
Then we need to look at all the vertices for each model’s mesh separately and transform
each of them by the bone transformations and apply the Y axis rotation (defined by user),
so that we work with the correct dimension. At this point we can finally access the correct
Z coordinate value. Once we loop through all the vertices of all the model’s meshes and
get the desired minimum and maximum coordinate, we can finally count the length as the
difference of those two values. At the very end we must not forget to multiply this length
by the scale value (also given by user).

While this way should be a reliable way to get the model’s length, we leave the option
to define its length manually open. The whole process of exporting a model and loading in
XNA is quite problematic and the behavior differs between modeling tools, models properties,
exporting software, export settings or XNA content loading settings.

5.6.2 Putting the train on the track

When positioning the train on the spline, we are basically just positioning its cars. Since
we set the rule that all the car models’ front edge must be aligned with X axis, we will refer
to the car position as the place where its front edge is. On a straight track the positioning is
very simple: each car’s position is the previous car’s position plus its length plus the gap (gap
is explicitly user defined) except for the first car which is at initial train position (Figure 5.24.
We use exactly the same transformation matrix derived from the frame of reference at given
point of the spline as described in Section 5.5.5.

However, at curved track the situation is far more complicated. Figure 5.25 shows what
happens if we simply use the frame of reference of the point where the car starts. We can see
that the back of the car is in the air although the cars are properly aligned with the frame.

CHAPTER 5. IMPLEMENTATION 40

car lengthgap size

initial train position

Figure 5.24: A train with different lengths of cars on a straight segment. The dots represent
the positions of each car.

Figure 5.25: Cars positioned on the spline using the frame of reference of the front edge
point. The arrows represent its tangent and up vector.

We have to adjust the frame of reference so that the front and the back edge of the car
fit on the track. To do that, we first need to find where the back edge position on the spline
is. We know how far the two points are from each other – it is the length of the car. But we
need the real distance, not distance along the spline. We get the point by iterating with a
very small step along the curve backwards, checking the distance in each step and returning
the point that trespass it first.

As Figure 5.26 shows, the desired frame of reference is computed from these two points.
The tangent is the vector lying on the line connecting them. The up vector is computed
by interpolating their up vectors since they already include the track’s roll – a linear inter-
polation at 0.5 will give us the up vector approximately corresponding to the desired car’s
orientation (if the track has any roll, the four points where the wheels should be do not
lie in one plane, therefore it is impossible to position the car perfectly). At this point we
also need to recalculate the binormal so that the axes of the new frame of reference remain
perpendicular and normalize all of them.

Now when positioning the other cars of the train we must get their position as the back
point’s position plus the gap, because the curve distance is obviously bigger than real car’s
length. To be absolutely precise, we should compute the position after the gap size the same
way we compute the position of the back point, but since the algorithm is more complex and
the difference is negligibly small, we will just leave the curve distance here. The result can

CHAPTER 5. IMPLEMENTATION 41

front point

back point

Figure 5.26: Frames of reference at front and back point of the car. The desired tangent and
up vector are computed from these two.

be seen in Figure 5.27.

Figure 5.27: Cars placed on the spline based on the position of the front and the back edge.

So far we expected the train to be somewhere on the track. But if the roller coaster
track is not circuit, it might fall off. Studying what happens to the train then is outside the
scope of this thesis, but we still need to take care of this special situation. Since we take
into account both the front and the back edge of each car, we need to check both of them. If
one of these points is not on the spline, we simply skip the car in all the other computations
(like physics) and it will not be drawn at all.

5.6.3 Train movement

In this section we will look at the implementation details of train movement, which is
based on the physical model described in Section 4.2. Then we will discuss the special
segment types and how can their behavior be included in this model.

Constant speed

To be able to implement the actual physics, we need to make the train move with constant
speed first. We cannot simply use constant step in parameter t in each segment, because

CHAPTER 5. IMPLEMENTATION 42

distance between the two points acquired using t does not correspond to the same Euclidean
distance. Take, for instance, spline of two straight segments, where the first is 1 m and the
second is 10 meters long. The step of 0.1t will correspond to 0.1 m on the first segment and
to 1 m on the second, where the train would move 10 times faster. The second problem is
that even if the segment’s length is the same, it is not ensured that the t will be evenly
distributed through the segment. This matter has already been discussed in Section 5.5.2
where we used this to our advantage.

To achieve the constant speed, we need to be able to calculate the length of a spline,
segment or just their part.

The length of a curve is computed numerically. We start at a certain point with the
distance 0 and iterate through the curve with a very small fixed step of t – we create very
small seglines that will not be drawn. Since segline is a straight line, we can easily compute
its length as the distance of two vertices v1 and v2:

d =
√

(v2.x− v1.x)2 + (v2.y − v1.y)2 + (v2.z − v1.z)2 (5.2)

and add this to the length we have calculated so far. This way we get an approximate length
of the curve. The smaller the step, the more accurate the result will be.

Note that it is not necessary just for the speed, but we use this algorithm for example
to draw the track sleepers. There are small variations, for example at sleepers we look for a
point that is at certain distance of another point. These are all just modifications based on
the same principal – approximation of the length as a sum of distance of very small seglines.

Special segment types

By special types we mean any type with special a mechanism that is not a simple track.
These are normal station, shuttle station, boost, brake and lift. They affect the physical
model in their own way and at certain moments of the computations.

Brake Brake slows the train’s speed down. Its function applies until the train reaches the
maximum speed defined by the user. In reality brake is basically a mechanism that creates a
powerful friction force that acts against the direction of the motion. We can apply it in our
application the same way – when the car is on a brake segment, we will add a special friction
to the natural one. The strength of the brake is defined by the value of friction coefficient
which is also defined by the user. Note that by setting a very high coefficient we can achieve
a behavior we cannot in reality (i.e. instantly stopping the train). The brake can slow the
train down no matter what direction along the track it is moving.

Lift Lifts are used to carry the roller coaster train on top of the first largest hill and gather
the energy for the whole ride - it increases a potential energy by increasing the object’s height.
We represent lift as a segment that ensures the train’s positive minimum speed (negative
would mean the same speed but opposite movement direction) which can be defined by a
user. The limitation of this implementation in our application is that the minimum speed is
set no matter how heavy the train is, while in reality lifts are made to carry a train of some
realistic weight and would not be able to lift anything significantly heavier.

CHAPTER 5. IMPLEMENTATION 43

Boost Boost is a part that speeds the train up with a powerful force. They are usually
used at the start of the track right after the station to give the train speed for the ride - it
increases a kinetic energy by increasing the speed - instead of lifting it up on the initial hill
first. This segment type adds a user defined positive force (it boosts only forward) to the
other forces affecting the car at that moment causing the train speed to increase. The higher
the force, the higher the resulting acceleration will be.

Station A station is more complicated than the previous three segment types, because it
combines them together. When the train is entering the station, it acts like a brake and slows
it down. After it is slowed to the required speed, it behaves like a lift and carries the train
to the end of the station to prepare for another ride - the train waits until the passengers
get in and out. Once it is ready to leave, the station’s behavior changes to either lift (in a
normal station case) or boost (shuttle station case).

To implement the station properly, we need to implement a variable telling us what the
current behavior of the segment is. At initialization, we set it to brake. Then we set the
current behavior depending on the train position and speed as described.

The physical parameters the user can set for a station is derived from what it can act like
– brake and lift for both and boost for shuttle station. Since we do not have any passengers
to wait for, our train waits just a short fixed amount of time once it reaches the end of the
station.

Friction direction problem

As already described, friction acts against the movement speed. However, we cannot
simply give it a negative value, because our trains can even go backwards. For example, if
they do not have enough energy to reach over the top of a hill, they start moving backwards.
With a fixed negative value of friction force, it would actually speed the train up when going
backwards, which is undesired. Or if the train stopped on a straight track only due to the
friction force, it would start going backwards.

When we set the direction of friction force depending on the current train’s speed (or to
0 if the speed is 0), the train will hardly ever stop because the chance of speed being exactly
0 is very low. Instead, the train would start oscillating between low positive and negative
values of speed and so would the friction.

To be able to stop the train completely, we need to define when the train stopped only
due to the friction force. We detect this in a moment when the train’s movement direction
changes. If it changes and the absolute value friction force is higher than the absolute value
of current gravitation force affecting all of train’s cars, we set the new speed to 0.

5.7 Editor

Next to the simulator, the editor creates the second part of the application. While it
may seem to be a half of the application, it actually mostly just uses the functionality we
have implemented so far. The difference is that this time it is used by a common user
instead of programmer; therefore the functionality must be wrapped in user friendly and
understandable tools.

CHAPTER 5. IMPLEMENTATION 44

5.7.1 User interface

Creating the user interface (UI) is a very important part of an application. Quality of
interface has a big impact on the program’s popularity. It also usually is the main factor for
a user, who is deciding between several applications of the same function, and can play even
bigger role than the functions they offer.

The designing of the user interface should go through several stages, or even better
– iterate through them over and over until it is perfect. Sometimes it is called a spiral
development (Figure 5.28). We analyze the situation, design a suitable interface, create a
prototype, test it, analyze the results and correct the mistakes in the new design. Then the
process repeats over and over and the user interface is getting more and more perfect.

analysis

design UI

implement UI (prototype)testing (UI validation)

collecting results

Figure 5.28: The spiral development of UI.

One of the most important rules when designing a user interface is actually very comfort-
able for us – we should not try to create new control tools than the users are used to from
other programs, unless they are way better. Since the perfection of the interface is not the
main goal of our application, we can rely on using the standard methods and inspire our-
selves in already existing software of similar function, as described in Section 3. We therefore
skipped many of the recommended stages such as creation of prototypes and testing. The
UI creation consists just of the analysis (which we have already done in Section 4.3), design,
and implementation.

Designing the user interface

The basic form of a UI design is a paper mock-up. A mock-up is usually the first stage
of designing a UI. Although it is called paper mock-up, it does not need to be on paper, it
rather suggests its complexity. This stage consists in a simple draft describing where and
how the functions will be available to a user.

Inspired by numerous 3D modeling applications, our editor will consists of the window
where the user can see the edited track and move around in 4 kinds of views: perspective view
with free walking and three orthographic views – top, side and front. The technical details
are discussed in Section 5.4.1. The second part of the UI will be a side panel, which contains
information and setting controls that we cannot fit into the view window (Figure 5.29).

View window The view window will cover the most of window’s space. A user will see the
spline he is editing. However, the vertices of the roller coaster style are recalculated every

CHAPTER 5. IMPLEMENTATION 45

view window

co
n

ro
l p

a
n

e
l

Figure 5.29: An application window divided into the view window and the control panel.

time the spline is changed, which is obviously happening quite often, and it would slow the
application down a lot. For this reason, we leave this preview option open, but create an
extra visualization: a schematic representation. It consists of colored lines representing the
track shape and the up vectors and colored cubes representing the key points and auxiliary
points of the segments (Figure 5.30). This information gives the user all the information he
needs for editing the roller coaster while the response time of the application stays short.

Figure 5.30: A schematic representation of a spline. The biggest cube represents the first
key point of the spline. The middle sized cubes are the other key points and the small cubes
are the auxiliary points.

The key points are selectable by a mouse click. Once they are selected, their auxiliary
points also appear and are also selectable. The user can move them with a method called
drag and drop – the point position is moving with the cursor while the mouse button stays
pressed. If the user moves one of the auxiliary points, the other one moves as well. That is
because the spline continuity (described in Section 4.1.1) must be preserved.

By selecting a key point, the user also automatically selects an adjacent segment, where
the point is its ending point (with one exception at unclosed circuits where the first key point

CHAPTER 5. IMPLEMENTATION 46

selects the first segment of the spline). This is because the roll of the segment appears to
user to be the roll of its ending point.

All of the selections are represented by colors of the cubes and lines, and are easily
modified. Clicking in the empty space deselects everything.

Control panel At this point we should divide all the tools into logical groups. These
groups will be visually isolated and help the user orient better in our application or find the
tool he is looking for.

• Roller coaster settings will display all the information and settings valid for the whole
roller coaster. These are for example roller coaster style, name or initial train position.

• Segment settings will show just the information about the selected segment. This group
can be further divided into:

– useful information, such as the dimension of the segment or the position of the
selected point,

– roll editing tools,

– segment type settings, where the user can set the type of segment and the ad-
justable physical values.

• Spline modifying tools, which will contains the functions related to modifying the
spline’s shape (e. g. adding and removing segments).

Implementing the user interface

In this Section we will focus on how to implement picking and drag and drop function. We
are not describing the other UI features since they are fully provided by Winforms framework
and require no special attention.

Picking Picking [12] is a method that provides the user to select an object by clicking
on it. Whenever the mouse button is pressed, all the selectable objects are looped through
and checked whether they were hit or not. There are special data structures to optimize the
complexity of this algorithm (such as BVH - bounding volume hierarchy), but our application
is very simple and contains too few selectable objects, to make use of these.

All the selectable objects must have a bounding volume – a volume with as simple
representation as possible, that surrounds the object’s geometry as accurately as possible.
The most basic bounding volumes are bounding box or bounding sphere (Figure 5.31), which
are sufficient for our purposes. For advanced bounding volumes and their use, see [6]. These
volumes are used for computing whether the ray created by a mouse click intersects them or
not, which is also the reason for the necessity of simple representation.

The only selectable objects in our applications are cubes representing points (key points
or auxiliary points). Each of them has its own bounding volume – we choose bounding sphere
because it is simpler. A sphere is represented by its center and its radius. It does not need

CHAPTER 5. IMPLEMENTATION 47

Figure 5.31: A tree model surrounded by a bounding box and a bounding sphere

to be rotated (because rotations do not affect a sphere at all), we only need to translate the
center into the point’s position and set the radius according to the cube’s size.

The ray is calculated when the mouse button is pressed. Each vertex in the world is
transformed by view, projection and viewport transformations. This time though we need
to invert the process. We have the position of a mouse in the viewport and need to know
the two sets of world coordinates that define the ray. XNA’s method Unproject, provided
with the viewport location (with a Z coordinate being 0 for the close coordinate and 1 for
the far coordinate) and the three matrices performs the inverse transformation for us. The
ray is then represented by the near coordinate and vector pointing in the direction of the far
one (Figure 5.32).

near plane (z=0)

far plane (z=1)

viewport

object’s z coordinate

cursor’s position

ray

object’s bounding volume

Figure 5.32: A scheme of a view frustum, bounding volume of an object and ray defined by
two vertices (represented by crosses on near and far plane).

The ray and properly transformed bounding sphere are all the information we need to
know in order to detect whether they intersect or not. Again, XNA has a method that
computes this for us. We cannot select more points at a time – only the first hit point in
the loop is selected and all the others set as not selected (this is needed for deselecting and
drawing the cubes with the proper color).

Drag and drop Drag and drop is a method that moves an object with the mouse movement
when it is selected and dragged and stops moving it when it is dropped. In our case, the

CHAPTER 5. IMPLEMENTATION 48

drag means that user holds the mouse button and drop that he releases it.

When moving an object, we need to know what its depth on the viewport is first, so that
we can keep it and the object follows the mouse’s movement accurately. This is achieved by
transforming the object’s position by view, projection and viewport matrix (XNA’s method
Project) and getting the Z coordinate, which is, at this point, between 0 and 1.

The movement (drag) is defined by the change of cursor’s position on the viewport
– current mouse position and the position in previous Update function call. Since these
two positions, with the Z coordinate calculated above, are positions on viewport, we need
to perform the inverse transformation (described in Section 5.7.1) to get the two world
coordinates. Their subtraction is the desired vector defining the offset of the selected object.

5.7.2 Editing tools

Since the editor just uses the functions that have already been implemented in other
parts of the applications, there is not much to cover in this Section. However, a few tools
deserve a special attention.

Initial train position

Although the initial train position would normally be at the end of the station, the
application does not restrict a user from creating a roller coaster with more stations. The
safest way to set this position is to let the user set it himself.

The position is given in a real distance and is limited to the spline’s length. While the
UI element allows entering negative value, program recalculates it in order to keep it always
inside this limit. The same happens with editing the spline and its length decreasing. Editor
always ensures that the initial train positions remains valid.

Editing support position

Every segment can have one support pillar. Its position is defined as parameter t of the
curve creating the segment, and thus belongs to interval 〈0, 1〉. We chose this definition
because of the more intuitive behavior while changing the shape and the length of the
segment. E.g. pillar at t=1 will always be at the end of segment, t=0 at its start and
the values in between will vary depending on the segment’s shape.

Roll snap

While the up vectors behave intuitively most of the time, somteimes, they differ from the
ones the user would intuitively expect – the up vectors expected to point straight up can
be slightly inclined. For this purpose, we enabled a feature to snap the up vectors either to
straight up or straight down direction. This feature automatically calculates the roll of the
segment needed for the end point’s up vector pointing in the desired direction.

The calculations are drafted on Figure 5.33. Using dot product, we calculate the angle
α between the vector pointing straight up and vector a being the up vector that we want
to straighten. To determine whether we want to add or subtract this angle from the roll,

CHAPTER 5. IMPLEMENTATION 49

we calculate the cross product, which results in a vector either in the direction of tangent
or in the opposite direction. To cover some numerical inaccuracy we calculate another dot
product of this cross product result and tangent, which returns positive number if they point
in the same direction from the plane given by vectors a and up, negative number if they
point in different directions.

up

a

tangent = a x up

a

Figure 5.33: A scheme of rotating vector ~a in the position of ~up.

Adding new segment

New segment is always added to the end of the spline (the feature is disabled if the spline
is a closed circuit). It is created based on the last key point and its adjacent auxiliary points.
As shown in Figure 5.34, the new key point’s position is calculated as A + 2.5·~d, with ~d being
the vector pointing from the last key point to the last auxiliary point (the one prepared for
the new added segment).

last segment

new segment

d

A

A + 2.5 d

Figure 5.34: Last segment of the spline and a new segment attached to it.

Finishing circuit

This tool automatically inserts a segment between the first and the last key points. All
the key points and their auxiliary points are already prepared, so we do not actually need

CHAPTER 5. IMPLEMENTATION 50

to calculate anything regarding its shape.

However, we must adjust the roll, so that the up vector of the last and the first segment
match. For this we use the same procedure as used in snapping up vectors in Section 5.7.2.3.
We only do not snap to straight up or straight down, but to the starting up vector of the
spline.

Attaching existing spline

This tool covers the requirement of attaching prefabricated parts to our roller coaster.
The prefabricated parts are nothing else than another spline saved as a normal roller coaster.
Of course, both the attached spline (further referred to as spline B) and the one it is being
attached to (spline A) must not be closed. The attached spline must be transformed accord-
ing to the end of the edited one – in other words, their frames of reference must match. An
example can be seen in Figure 5.35.

+ =

Figure 5.35: An example of attaching a loop at the end of spline. The frames of reference
(here represented just by the up vectors) must match.

As in many other cases, we will use the frames of reference defined by tangent, binormal
and up vector, to perform the transformation. First, we offset all the points in the spline
B so that its starting key point is in the center of coordinate system – (0, 0, 0). Then we
convert all of the points’ coordinates in universal coordinates x, y, z by expressing them in
the coordinate system defined by the frame of reference. As shown in Figure 5.36, we use
dot products.

To transform the spline B so that it starts with the same frame of reference as the one at
the ending key point of the spline A, we use the algorithm described in Section 5.5.5. At the
end we offset the spline B so that the key points to be merged (the last key point of spline
A and the first key point of spline B) have the same position. Finally, all the segments are
ready to be added to spline A.

Preserving the continuity

As described in Section 4.1.1, the desired spline continuity is ensured by the rule saying
that the auxiliary points attached to the shared key point of two adjacent segments must
lie in one line with the key point position. We need to preserve this rule in editor when the

CHAPTER 5. IMPLEMENTATION 51

up vector

tangent

y = up vector a

z = tangent a

a

A

Figure 5.36: Expressing the coordinates of vertex A in coordinate system given by the frame
of reference (here represented just by up vector and tangent).

user is changing the position of one of the auxiliary points. Whenever the point’s position
changes, we must recalculate the position of the other auxiliary point.

The process is shown in Figure 5.37, where A represents the point the user is moving
with and B represents the other one. First, we calculate the distance d between key point
and point B, because it is the value we want to keep. If the user wants to keep C1 continuity,
we calculate the distance between key point and point A instead.

Because the three points (key point, A, and B) must lie on the same line, the new point
B will lie on a line defined by key point and a vector a. To preserve the length, we normalize
this vector and multiply it with d, which results in the final position of point B.

A

A’

B

B’d

d

a

Figure 5.37: of point B’s position according to the change of the position of point A.

Surface level

We implement an extra restriction that will ensure that the track will always stay above
the defined surface level. We need to check this in all the tools that modify the spline’s
shape. We do not allow positioning any key point below the surface, we modify newly added

CHAPTER 5. IMPLEMENTATION 52

segment so that it stays above and we show an error message if an attached spline reaches
below this Y coordinate. The attached spline is not modified because it would deform the
shape which we usually want to preserve when adding a predefined piece.

The implementation has the limitation that it only checks for the key points’ position
while any of the coordinates between them may reach below the surface. This may happen
in editor, but as described in Section 5.5.8, in simulator we are making sure that the entire
track is above ground.

Chapter 6

Result

We demonstrate the result of the applications on Figure 6.1 and 6.2. We tried to model
the real Blue Fire roller coaster in Europa park, Germany according to pictures and videos.
This is a shuttle roller coaster which contains various complicated elements such as loop,
twist or zero-G roll which makes it a suitable roller coaster to test the application on.

We created the roller coaster style according to the real style of Blue Fire, both its shape
and its colors. We also designed the less detailed versions of this style for displaying lower
levels of detail.

Both roller coasters have the height of 38 meters and reach the maximum speed of
100 km/h. We managed to edit all the elements and copy the train behavior including
the two stations, boost and brake.

Figure 6.3 shows a sample of an on-ride camera including the HUD displaying the current
train speed, maximum speed reached during the ride and the current g-force in a vertical
direction.

Figure 6.4 shows the progress of editing Blue fire roller coaster in the editor. We can see
the final editing controls and the schematic view of a detail of the track.

53

CHAPTER 6. RESULT 54

Figure 6.1: Photo of Bluefire, Europa park, Germany [8].

Figure 6.2: Blue Fire modelled in the editor based on photographs, videos, and personal
experience. The skybox is temporarily disabled for better visibility of the track itself.

CHAPTER 6. RESULT 55

Figure 6.3: An on-ride view from the first car of the train, taken just before entering the
twist.

Figure 6.4: Print screen of a schematic view of a part of Bluefire in the editor. Orthographic
view is currently used.

Chapter 7

Conclusion

In this thesis we created a roller coaster editor where the user can design most of the
existing roller coasters. The editor provides all the tools required for this task and user can
freely change the roller coaster style. The simulator uses functional physical model for the
train movement, including the correct behavior of all the special types of segments. The
train’s cars appearance and weight is editable. Application is easily extendable by new roller
coaster styles or types of cars.

7.1 Future work

Roller coaster editor can go through years of development and still not provide everything
any user might want. While we created a sufficient and well working application, there are
still many handy features missing:

• Extra spline modifying tools in the editor: especially the ability to select and move
more key points at once, split a segment into two or being able to set a fixed absolute
roll in certain points of the segment that will not change by further modifications.

• Advanced track supports. We have implemented only the basic support pillars that do
not respect the track’s orientation or lack any realistic geometry for the user to choose
from.

• More realistic environment could be achieved by adding sounds, editing the height of
surface and enabling inserting of trees and other various models that support the visual
theme of a roller coaster.

• The application should check roller coaster validity. The track must not intersect, must
have some maximum curvature and other restrictions.

• Virtual ride experience could be greatly improved by providing a stereoscopy support.

56

Bibliography

[1] Samuel R. Buss. 3D Computer Graphics: A Mathematical Introduction with OpenGL.
Cambridge University Press, 2003.

[2] Andrew J. Hanson. Visualizing Quaternions. Morgan Kaufmann, 2006.

[3] Sadri Hassani. Mathematical Physics, A Modern Introduction to Its Foundations.
Springer-Verlag, New York Inc., 1999.

[4] Jǐŕı Žára; Bedřich Beneš; Jǐŕı Sochor; Petr Felkel. Moderńı poč́ıtačová grafika. Computer
Press Brno, 2004.

[5] Wendy Stahler. Beginning Math and Physics for Game Programmers. New Riders
Publishing, 2004.

[6] Gino van den Bergen. Collision Detection in Interactive 3D Environments. Morgan
Kaufmann, 2004.

[7] David Luebke; Martin Reddy; Jonathan D. Cohen; Amitabh Varshney. Level of Detail
for 3D Graphics: Application and Theory. Morgan Kaufmann, 2002.

[8] Published fan photos - blue fire panorama. [online].
http://www.epfans.com/up-down/panorama_22_03_09.jpg.

[9] First person camera xna tutorial on msdn. [online].
http://msdn.microsoft.com/en-us/library/bb203907.aspx.

[10] Game state management xna sample. [online].
http://creators.xna.com/en-US/samples/gamestatemanagement.

[11] Xna bounding box from a model tutorial. [online].
http://www.toymaker.info/Games/XNA/html/xna_bounding_box.html.

[12] Picking xna sample. [online].
http://creators.xna.com/en-us/sample/picking.

57

http://www.epfans.com/up-down/panorama_22_03_09.jpg
http://msdn.microsoft.com/en-us/library/bb203907.aspx
http://creators.xna.com/en-US/samples/gamestatemanagement
http://www.toymaker.info/Games/XNA/html/xna_bounding_box.html
http://creators.xna.com/en-us/sample/picking

Appendix A

User manual

A.1 System requirements

• Operating system MS Windows Vista Service Pack 1; Windows XP Service Pack 3;
Windows 7.

• A graphics card that supports DirectX 9.0c and Shader Model 1.1.

• Installed Microsoft XNA Game Studio 3.1.

A.2 Installation instructions

No installation is required. The application can be run by executing the file RC.exe.

A.3 Controlling the application

A.3.1 Menu navigation

Key Action

<enter> select
<esc> cancel/exit
<down arrow>, <up arrow> move selection
<left arrow>, <right arrow> change settings

Table A.1: Menu navigation

A.3.2 Controlling the editor

58

APPENDIX A. USER MANUAL 59

Key Action

<left mouse click> select
<right mouse click> switch to camera rotating mode
<mouse movement> rotate camera
<w> move forward/zoom in
<s> move backwards/zoom out
<a> move left
<d> move right
<q> move up
<r> move down
<esc> exit

Table A.2: Editor controls

Legend for the editor panel in Figure A.1

1. Roller coaster name (will be set automatically according to the file name).

2. Roller coaster style – the way the track looks like.

3. Turning the style preview on and off (editing with preview turned off is recommended
for the fast application feedback).

4. Hide/show the cubes representing the key points.

5. The initial position front edge of the first car of the train when starting the simulation
in a real distance (in dm).

6. Hide/show the first car of the train.

7. Shortcut that will directly open currently edited roller coaster in simulator. Please
note that the roller coaster will not be saved to hard disk automatically.

8. The roll of the selected segment in degrees.

9. Snap tool will compute and set the roll necessary for the up vector of the end of the
selected segment to point straight up or down.

10. Local roll toggle – if selected, the modified roll will only be applied locally and the
following segments’ roll will not change.

11. Set roll to 0◦.

12. Add 90◦ to the current segment’s roll.

13. Subtract 90◦ from the current segment’s roll.

14. The dimensions of the selected segment (in meters).

15. Adds or removes the selected segment’s support.

APPENDIX A. USER MANUAL 60

16. The position of the support in parameter t (t=0 at the start of the segment, t=1 at its
end).

17. The geometry type to draw the selected segment with.

18. The behavior of the selected segment.

19. Additional settings for selected behavior type in basic units.

20. Adds a new straight segment at the end of the spline.

21. Removes the last segment of the spline.

22. Inserts the last segment that closes the circuit based on the first and currently last
segment.

23. Breaks the connection between the last and the first segment of the circuit spline.

24. Opens a file open dialog and attaches selected spline to the currently edited spline.
Note that neither roller coaster can be a closed circuit.

25. Keeps the distance of two auxiliary points and the key point equal (useful tool for
editing symmetric parts of a roller coaster).

APPENDIX A. USER MANUAL 61

1

2

3 4

5

6

7

8

9

10

11

12

13

14

15 16

17

18

19

20

21

22 23

24

25

Figure A.1: The editor panel.

Appendix B

DVD Content

The following folders are to be found on the attached DVD:

DVD

|-- bin contains an executable file
|-- src source files of the application
|-- thesis

| |-- src source files of this text in LATEX
| \ -- thesis.pdf PDF version of this text
\-- index.html DVD guide

62

	Introduction
	Roller coasters overview
	Roller coaster types
	Roller coaster elements

	Existing editors and simulators
	No Limits
	Roller Coaster Tycoon
	Roller Coaster Simulation - bachelor thesis by Jan Uher (2009)
	Conclusion

	Analysis and design decisions
	Roller coaster track description
	Shape
	Orientation
	Behavior

	Physics
	Gravitation force
	Frictional force
	Acceleration
	Speed
	G-force

	Editor

	Implementation
	Implementation platform
	Application architecture
	Format
	Camera
	Camera modes

	Drawing
	Roller coaster style
	Rail
	Sleeper
	Supports
	Using the local frame of reference to create track geometry
	Representation of vertices
	Level of detail
	The virtual world

	Train
	Car
	Putting the train on the track
	Train movement

	Editor
	User interface
	Editing tools

	Result
	Conclusion
	Future work

	Bibliography
	User manual
	System requirements
	Installation instructions
	Controlling the application
	Menu navigation
	Controlling the editor

	DVD Content

